Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-s2vjv Total loading time: 0.28 Render date: 2023-01-28T16:18:04.866Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Mathematical Simulation of Metamaterial Solar Cells

Published online by Cambridge University Press:  03 June 2015

Jichun Li*
Affiliation:
Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4020, USA
Yitung Chen*
Affiliation:
Department of Mechanical Engineering, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4027, USA
Yang Liu*
Affiliation:
Department of Mechanical Engineering, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4027, USA
*
Corresponding author. URL: http://faculty.unlv.edu/jichun/ Email: jichun@unlv.nevada.edu
Get access

Abstract

In this paper, we propose several solar cell designs based on metamaterials. Extensive numerical simulations of various designs with different materials are carried out. Our tests show that metamaterial solar cells are quite efficient, and over 80% and 90% absorption rates can be attained for solar spectrum and visible rays, respectively.

Type
Research Article
Copyright
Copyright © Global-Science Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Avitzour, Y., Urzhumov, Y. A. and Shvets, G., Wide-angle infrared absorber based on negative index plasmonic metamaterial, arXiv Phys. Opt., 0807 (2008), pp. 1312v1.Google Scholar
[2] Coutts, T. J., A review of progress in thermophotovoltaic generation of electricity, Renew. Sust. Energ. Rev., 3 (1999), pp. 77184.CrossRefGoogle Scholar
[3] Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. and Linden, S., Simultaneous negative phase and group velocity of light in a metamaterial, Science, 312 (2006), pp. 892894.CrossRefGoogle Scholar
[4] Huang, Y. and Li, J., Recent advances in time-domain Maxwell’s equations in metamaterials, in HPCA 2009 (eds. by Zhang, W. et al.), Lect. Notes Comput. Sci., 5938 (2010), pp. 48–57.Google Scholar
[5] Laroche, M., Carminati, R. and Greffet, J.-J., Near-field thermophotovoltaic energy conversion, J. Appl. Phys., 100 (2006), pp. 063704.CrossRefGoogle Scholar
[6] Li, J., Chen, Y. and Elander, V., Mathematical and numerical study of wave propagation in negative-index materials, Comput. Methods Appl. Mech. Eng., 197 (2008), pp. 3976–3987.CrossRefGoogle Scholar
[7] Li, J. and Wood, A., Finite element analysis for wave propagation in double negative metamaterials, J. Sci. Comput., 32 (2007), pp. 263–286.CrossRefGoogle Scholar
[8] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (2000), pp. 4184–4187.CrossRefGoogle ScholarPubMed
[9] Tvingstedt, K., Persson, N.-K., Inganaäs, O., Rahachou, A. and Zo-Zoulenko, I. V., Surface plasmon increase absorption in polymer photovoltaic cells, Appl. Phys. Lett., 91(11) (2007), pp. 113514.CrossRefGoogle Scholar
[10] Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ϵ and µ, Sov. Phys. Uspekhi, 47 (1968), pp. 509–514.Google Scholar
[11] Wu, C., Avitzour, Y. and Shvets, G., Ultra-thin, wide-angle perfect absorber for infrared frequencies, in: Metamaterials: Fundamentals and Applications (eds. by Noginov, Mikhail A., Zheludev, Nikolay I., Boardman, Allan D., Engheta, Nader), Proc. SPIE, 7029 (2008), pp. 70290W.Google Scholar
24
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mathematical Simulation of Metamaterial Solar Cells
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Mathematical Simulation of Metamaterial Solar Cells
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Mathematical Simulation of Metamaterial Solar Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *