Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 1.197 Render date: 2021-12-09T14:47:26.918Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A Hybrid Method for Dynamic Mesh Generation Based on Radial Basis Functions and Delaunay Graph Mapping

Published online by Cambridge University Press:  28 May 2015

Li Ding
Affiliation:
Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Tongqing Guo
Affiliation:
Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Zhiliang Lu*
Affiliation:
Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
*
*Corresponding author. Email: luzl@nuaa.edu.cn (Z. L. Lu)
Get access

Abstract

Aiming at complex configuration and large deformation, an efficient hybrid method for dynamic mesh generation is presented in this paper, which is based on Radial Basis Functions (RBFs) and Delaunay graph mapping. Based on the computational mesh, a set of very coarse grid named as background grid is generated firstly, and then the computational mesh can be located at the background grid by Delaunay graph mapping technique. After that, the RBFs method is applied to deform the background grid by choosing partial mesh points on the boundary as the control points. Finally, Delaunay graph mapping method is used to relocate the computational mesh by employing area or volume weight coefficients. By applying different dynamic mesh methods to a moving NACA0012 airfoil, it can be found that the RBFs-Delaunay graph mapping hybrid method is as accurate as RBFs and is as efficient as Delaunay graph mapping technique. Numerical results show that the dynamic meshes for all test cases including one two-dimensional (2D) and two three-dimensional (3D) problems with different complexities, can be generated in an accurate and efficient manner by using the present hybrid method.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Byun, C. and Guruswamy, G. P., A parallel, multi-block, moving grid method for aeroelastic applications on full aircraft, AIAA Paper 98-4782, September 1998.Google Scholar
[2]Reuther, J., Jameson, A., Farmer, J., Martinelli, L. and Saunders, D., Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation, AIAA Paper 960094, January 1996.Google Scholar
[3]Jones, W. T. and Samareh-Abolhassani, J., A grid generation system for multi-disciplinary design optimization, AIAA Paper 95-1689, June 1995.Google Scholar
[4]Huang, W., Lu, Z. L. and Guo, T. Q.et al., Numerical method of static aeroelastic correction andjigshape design for large airliners, Science China Tech. Sci., 55(9) (2012), pp. 24472453.CrossRefGoogle Scholar
[5]Batina, J. T., Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis, AIAA J., 29(3) (1991), pp. 327333.CrossRefGoogle Scholar
[6]Venkatakrishnan, V. and Mavriplis, D. J., Implicit method for the computation of unsteady flows on unstructured grids, J. Comput. Phys., 127(2) (1996), pp. 380397.CrossRefGoogle Scholar
[7]Farhat, C., Degand, C., Koobus, B. and Lesoinne, M., Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput. Methods Appl. Mech. Eng., 163 (1998), pp. 231245.CrossRefGoogle Scholar
[8]Witteveen, J. A. S., Explicit and robust inverse distance weighting mesh deformation for CFD, AIAA 2010-165, January 2010.Google Scholar
[9]Witteveen, J. A. S. and Bijl, H., Explicit mesh deformation using inverse distance weighting interpolation, AIAA 2009-3996, June 2009.Google Scholar
[10]Bar-Yoseph, P. Z., Mereu, S. and Chippada, S., Automatic monitoring of element shape quality in 2D and 3D computational mesh dynamics, Comput. Mech., 27(5) (2001), pp. 378395.CrossRefGoogle Scholar
[11]Nielsen, E. J. and Anderon, W. K., Recent improvements in aerodynamic design optimization on unstructured meshes, AIAA J., 40(6) (2002), pp. 11551163.CrossRefGoogle Scholar
[12]Sheta, E. F., Yang, H. Q. and Hanchi, S. D., Solid brickanalogy for automatic grid deformation for Fluid-Structure interaction, AIAA 2006-3219, June 2006.Google Scholar
[13]Frank, R., Scattered data interpolation: Tests of some methods, Math. Comput., 38 (1982), pp. 181200.Google Scholar
[14]Wu, Z. M., Multivariate compactly supported positive definite radial functions, Adv. Comput. Math., 4 (1995), pp. 283292.CrossRefGoogle Scholar
[15]Bernal, F. and Gutierrez, G., Solving delay differential equations through BRF collocation, Adv. Appl. Math. Mech., 1 (2009), pp. 257272.Google Scholar
[16]Liu, X. Q., Qin, N. and Xia, H., Fast dynamic grid deformation based on Delaunay graph mapping, J. Comput. Phys., 211(2) (2006), pp. 405423.CrossRefGoogle Scholar
[17]Ding, L., Lu, Z. L. and Guo, T. Q., An efficient dynamic mesh generation method for complex multi-block structured grid, Adv. Appl. Math. Mech., 6(1) (2014), pp. 120134.CrossRefGoogle Scholar
[18]Spekreijse, S. P., Prananta, B. B. and Kok, J. C., A simple, robust and fast algorithm to compute deformations of multi-block structured grids, NLR-TP-2002-105, 2002.Google Scholar
[19]Zhou, X., Li, S. X. and Chen, B., Spring-interpolation approach for generating unstructureddynamic meshes, Acta Aeronautica Et Astronautica Sinica, 31(7) (2010), pp. 13891395.Google Scholar
[20]Buhmann, M. D., Radial basis functions, Acta Numer., 9 (2000), pp. 138.CrossRefGoogle Scholar
[21]Shu, C., Ding, H. and Yeo, K. S., Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 192 (2003), pp. 941954.CrossRefGoogle Scholar
[22]Faul, A. C. and Powell, M. J. D., Proof of convergence of an interactive technique for thin plate spline interpolation in two dimensions, Adv. Comput. Math., 11 (1999), pp. 183192.CrossRefGoogle Scholar
[23]Wendland, H., Fast evaluation of radial basis functions: methods based on partition of unity, Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University Press, 2002, pp. 473483.Google Scholar
[24]De Boer, A., Van Der Schoot, M. S. and Bijl, H., Mesh deformation based on radial basis function interpolation, Comput. Struct., 85 (2007), pp. 784795.CrossRefGoogle Scholar
[25]Botsch, M. and Kobbelt, L., Real-time shape editing using radial basis functions, Comput. Graphics Forum, 24(3) (2005), pp. 611621.CrossRefGoogle Scholar
[26]Rendall, T. C. S. and Allen, C. B., Efficient mesh motion using radial basis functions with data reduction algorithms, J. Comput. Phys., 228 (2009), pp. 62316249.CrossRefGoogle Scholar
[27]Rendall, T. C. S. and Allen, C. B., Improved radial basis function fluid-structure coupling via efficient localized implementation, Int. J. Numer. Methods Eng., 78(10) (2009), pp. 11881208.CrossRefGoogle Scholar
[28]ANASYS Software Corporation, ANASYS FLUENT 14.0 User Manual, Printer in U.S.A, 2011.Google Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Hybrid Method for Dynamic Mesh Generation Based on Radial Basis Functions and Delaunay Graph Mapping
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Hybrid Method for Dynamic Mesh Generation Based on Radial Basis Functions and Delaunay Graph Mapping
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Hybrid Method for Dynamic Mesh Generation Based on Radial Basis Functions and Delaunay Graph Mapping
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *