Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:49:00.730Z Has data issue: false hasContentIssue false

Numerical methods for kinetic equations*

Published online by Cambridge University Press:  12 May 2014

G. Dimarco
Affiliation:
Institut de Mathématiques de Toulouse, Université de Toulouse, UPS, INSA, UT1, UTM, 31062 Toulouse, France, E-mail: giacomo.dimarco@math.univ-toulouse.fr
L. Pareschi
Affiliation:
Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 35, 44121 Ferrara, Italy, E-mail: lorenzo.pareschi@unife.it

Abstract

In this survey we consider the development and mathematical analysis of numerical methods for kinetic partial differential equations. Kinetic equations represent a way of describing the time evolution of a system consisting of a large number of particles. Due to the high number of dimensions and their intrinsic physical properties, the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity. Here we review the basic numerical techniques for dealing with such equations, including the case of semi-Lagrangian methods, discrete-velocity models and spectral methods. In addition we give an overview of the current state of the art of numerical methods for kinetic equations. This covers the derivation of fast algorithms, the notion of asymptotic-preserving methods and the construction of hybrid schemes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Colour online for monochrome figures available at journals.cambridge.org/anu.

References

REFERENCES

Abdulle, A., W. E, , Engquist, B. and Vanden-Eijnden, E. (2012), The heterogeneous multiscale method. In Acta Numerica, Vol. 21, Cambridge University Press, pp. 187.Google Scholar
Alaia, A. and Puppo, G. (2011), ‘A hybrid method for hydrodynamic-kinetic flow I: A particle-grid method for reducing stochastic noise in kinetic regimes’, J. Comput. Phys. 230, 56605683.Google Scholar
Alaia, A. and Puppo, G. (2012), ‘A hybrid method for hydrodynamic-kinetic flow II: Coupling of hydrodynamic and kinetic models’, J. Comput. Phys. 231, 52175242.CrossRefGoogle Scholar
Alekseenko, A. and Josyula, E. (2012), Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity discretization. In Proc. 28th International Symposium on Rarefied Gas Dynamics, Vol. 1501 of AIP Conference Proceedings, pp. 279286.Google Scholar
Antoine, X. and Lemou, M. (2003), ‘Wavelet approximations of a collision operator in kinetic theory’, CR Acad. Sci. Paris. Ser. I 337, 353358.Google Scholar
Aoki, K. (1989), Numerical analysis of rarefied gas flows by finite-difference method. In Rarefied Gas Dynamics: Theoretical and Computational Techniques (Muntz, E., Weaver, D. and Campbell, D., eds), AIAA, pp. 297322.Google Scholar
Armbruster, D., Degond, P. and Ringhofer, C. (2007), ‘Kinetic and fluid models for supply chains supporting policy attributes’, Bull. Inst. Math. 2, 433460.Google Scholar
Ascher, U., Ruuth, S. and Spiteri, R. (1997), ‘Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations’, Appl. Numer. Math. 25, 151167.Google Scholar
Astillero, A. and Santos, A. (2004), A granular fluid modeled as a driven system of elastic hard spheres. In The Physics of Complex Systems: New Advances and Perspectives (Mallamace, F. and Stanley, H., eds), IOS Press.Google Scholar
Ayuso, B., Carrillo, J. and Shu, C.-W. (2011), ‘Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system’, Kinet. Relat. Models 4, 955989.Google Scholar
Baker, L. and Hadjiconstantinou, N. (2005), ‘Variance reduction for Monte Carlo solutions of the Boltzmann equation’, Phys. Fluids 17, 051703.CrossRefGoogle Scholar
Banda, M., Klar, A., Pareschi, L. and Seaïd, M. (2008), ‘Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations’, Math. Comp. 77, 943965.Google Scholar
Bardos, C., Golse, F. and Levermore, D. (1991), ‘Fluid dynamic limits of kinetic equations I: Formal derivations’, J. Statist. Phys. 63, 323344.Google Scholar
Bardos, C., Golse, F. and Levermore, D. (1993), ‘Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation’, Commun. Pure Appl. Math. 46, 667753.Google Scholar
Bellomo, N. and Bellouquid, A. (2004), ‘From a class of kinetic models to the macroscopic equations for multicellular systems in biology’, Discrete Contin. Dyn. Syst. Ser. B 4, 5980.CrossRefGoogle Scholar
Bellomo, N. and Gatignol, R., eds (2003), Lecture Notes on the Discretization of the Boltzmann Equation,Vol. 63 of Series on Advances in Mathematics for Applied Sciences, World Scientific.Google Scholar
Bellomo, N., Lachowicz, M., Polewczak, J. and Toscani, G. (1991), Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation, World Scientific.CrossRefGoogle Scholar
Bennoune, M., Lemou, M. and Mieussens, L. (2008), ‘Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics’, J. Comput. Phys. 227, 37813803.CrossRefGoogle Scholar
Besse, N. (2004), ‘Convergence of a semi-Lagrangian scheme for the one dimensional Vlasov-Poisson system’, SIAM J. Numer. Anal. 42, 350382.Google Scholar
Besse, N. and Sonnendruicker, E. (2003), ‘Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space’, J. Comput. Phys. 191, 341376.Google Scholar
Bhatnagar, P., Gross, E. and Krook, M. (1954), ‘A model for collision processes in gases I: Small amplitude processes in charged and neutral one component systems’, Phys. Rev. 94, 511525.Google Scholar
Bird, G. (1994), Molecular Gas Dynamics and Direct Simulation of Gas Flows, Clarendon Press.Google Scholar
Birdsall, C. and Langdon, A. (1991), Plasma Physics via Computer Simulation, Institute of Physics.Google Scholar
Bobylev, A. (1975), ‘Exact solutions of the Boltzmann equation’ (in Russian), Dokl. Akad. Nauk. SSSR 225, 12961299.Google Scholar
Bobylev, A. (1988), ‘The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules’, Math. Phys. Rev. 7, 111233.Google Scholar
Bobylev, A. and Rjasanow, S. (1997), ‘Difference scheme for the Boltzmann equation based on the fast Fourier transform’, Eur. J. Mech. B Fluids 16, 293306.Google Scholar
Bobylev, A. and Rjasanow, S. (1999), ‘Fast deterministic method of solving the Boltzmann equation for hard spheres’, Eur. J. Mech. B Fluids 18, 869887.Google Scholar
Bobylev, A. and Rjasanow, S. (2000), ‘Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast Fourier transform’, Transport Theory Statist. Phys. 29, 289310.Google Scholar
Bobylev, A., Carrillo, J. and Gamba, I. (2000), ‘On some properties of kinetic and hydrodynamics equations for inelastic interactions’, J. Statist. Phys. 98, 743773.Google Scholar
Bokanowski, O. and Lemou, M. (2005), ‘Fast multipole method for multivariable integrals’, SIAM J. Numer. Anal. 42, 20982117.CrossRefGoogle Scholar
Boris, J. and Book, D. (1973), ‘Flux-corrected transport I: SHASTA, a fluid transport algorithm that works’, J. Comput. Phys. 11, 3869.Google Scholar
Boscarino, S., Pareschi, L. and Russo, G. (2013), ‘Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit’, SIAM J. Sci. Comput. 35, A22A51.Google Scholar
Botchorishvili, R., Perthame, P. and Vasseur, A. (2003), ‘Equilibrium schemes for scalar conservation laws with stiff sources’, Math. Comp. 72, 131157.CrossRefGoogle Scholar
Bouchut, F. and Perthame, B. (1993), ‘A BGK model for small Prandtl numbers in the Navier-Stokes approximation’, J. Statist. Phys. 71, 191207.Google Scholar
Bourgat, F., LeTallec, P., Perthame, B. and Qiu, Y. (1992), Coupling Boltzmann and Euler Equations Without Overlapping, AMS.Google Scholar
Bourgat, J., LeTallec, P. and Tidriri, M. (1996), ‘Coupling Boltzmann and Navier-Stokes equations by friction’, J. Comput. Phys. 127, 227245.Google Scholar
Broadwell, J. (1964), ‘Shock structure in a simple discrete velocity gas’, Phys. Fluids 7, 12431247.Google Scholar
Buet, C. (1996), ‘A discrete velocity scheme for the Boltzmann operator of rarefied gas dynamics’, Transport Theory Statist. Phys. 25, 3360.Google Scholar
Buet, C. and Cordier, S. (1999), ‘Numerical analysis of conservative and entropy schemes for the Fokker–Planck–Landau equation’, SIAM J. Numer. Anal. 36, 953973.Google Scholar
Buet, C. and Cordier, S. (2007), ‘An asymptotic preserving scheme for hydrodynamics radiative transfer models: Numerics for radiative transfer’, Numer. Math. 108, 199221.Google Scholar
Buet, C., Cordier, S. and Degond, P. (1998), ‘Regularized Boltzmann operators: Simulation methods in kinetic theory’, Comput. Math. App. 35, 5574.Google Scholar
Burt, J. and Boyd, I. (2008), ‘A low diffusion particle method for simulating compressible inviscid flows’, J. Comput. Phys. 227, 46534670.Google Scholar
Burt, J. and Boyd, I. (2009), ‘A hybrid particle approach for continuum and rarefied flow simulation’, J. Comput. Phys. 228, 460475.Google Scholar
Cabannes, H., Gatignol, R. and Luo, L. (2003), The Discrete Boltzmann Equation: Theory and Applications, Henri Cabannes, Paris. Revised from the lecture notes given at the University of California, Berkeley, CA, 1980. http://henri.cabannes.free.fr/Cours_de_Berkeley.pdfGoogle Scholar
Caflisch, R. (1980), ‘The fluid dynamical limit of the nonlinear Boltzmann equation’, Commun. Pure Appl. Math. 33, 651666.Google Scholar
Caflisch, R. (1998), Monte Carlo and quasi-Monte Carlo methods. In Acta Numerica, Vol. 7, Cambridge University Press, pp. 149.Google Scholar
Caflisch, R., Chen, H., Luo, E. and Pareschi, L. (2006), A hybrid method that interpolates between DSMC and CFD. In 44TH AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 2006-987.Google Scholar
Caflisch, R., Wang, C., Dimarco, G., Cohen, B. and Dimits, A. (2008), ‘A hybrid method for accelerated simulation of Coulomb collisions in a plasma’, SIAM J. Multiscale Model. Simul. 7, 865887.Google Scholar
Caflisch, R., Jin, S. and Russo, G. (1997), ‘Uniformly accurate schemes for hyperbolic systems with relaxation’, SIAM J. Numer. Anal. 34, 246281.Google Scholar
Pinto, M. Campos and Mehrenberger, M. (2008), ‘Convergence of an adaptive scheme for the one dimensional Vlasov-Poisson system’, Numer. Math. 108, 407444.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T. (1988), Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer.CrossRefGoogle Scholar
Carleman, T. (1932), ‘Sur la théorie de l'équation intégrodifférentielle de Boltzmann’, Acta Math. 60, 91146.CrossRefGoogle Scholar
Carleman, T. (1957), Problèmes Mathématiques dans la Théorie Cinétique des Gaz, Publ. Sci. Inst. Mittag-Leffler, Almqvist-Wiksell.Google Scholar
Carrillo, J. A. and Vecil, F. (2007), ‘Nonoscillatory interpolation methods applied to Vlasov-based models’, SIAM J. Sci. Comput. 29, 11791206.Google Scholar
Carrillo, J., Gamba, I., Majorana, A. and Shu, C.-W. (2006), ‘2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods’, J. Comput. Phys. 214, 5580.Google Scholar
Carrillo, J., Goudon, T., Lafitte, P. and Vecil, F. (2008), ‘Numerical schemes of diffusion asymptotics and moment closures for kinetic equations’, J. Sci. Comput. 36, 113149.Google Scholar
Case, K. and Zweifel, P. (1967), Linear Transport Theory, Addison-Wesley.Google Scholar
Cercignani, C. (1985), ‘Sur des critères d'existence globale en théorie cinétique discrète’, CR Acad. Sci. Paris 3, 8992.Google Scholar
Cercignani, C. (1988), The Boltzmann Equation and its Applications, Springer.Google Scholar
Cercignani, C., Illner, R. and Pulvirenti, M. (1994), The Mathematical Theory of Dilute Gases, Vol. 106 of Applied Mathematical Sciences, Springer.Google Scholar
Charles, F., Despres, B. and Mehrenberger, M. (2013), ‘Enhanced convergence estimates for semi-Lagrangian schemes: Application to the Vlasov-Poisson equation’, SIAM J. Numer. Anal. 2, 840863.CrossRefGoogle Scholar
Cheng, C. and Knorr, G. (1976), ‘The integration of the Vlasov equation in configuration space’, Comput. Phys. Comm. 22, 330335.Google Scholar
Cheng, Y., Gamba, I. and Proft, J. (2012), ‘Positivity-preserving discontinuous Galerkin schemes for linear Vlasov–Boltzmann transport equations’, Math. Comp. 81, 153190.Google Scholar
Chorin, A. (1972), ‘Numerical solution of Boltzmann's equation’, Comm. Pure Appl. Math. 25, 171186.Google Scholar
Cockburn, B., Johnson, C., Shu, C.-W. and Tadmor, E. (1998), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Vol. 1697 of Lecture Notes in Mathematics, Springer.Google Scholar
Cooley, J. and Tukey, J. (1965), ‘An algorithm for the machine calculation of complex Fourier series’, Math. Comp. 19, 297301.Google Scholar
Cordier, S., Pareschi, L. and Toscani, G. (2005), ‘On a kinetic model for a simple market economy’, J. Statist. Phys. 120, 253277.Google Scholar
Coron, F. and Perthame, B. (1991), ‘Numerical passage from kinetic to fluid equations’, SIAM J. Numer. Anal. 28, 2642.CrossRefGoogle Scholar
Crestetto, A., Crouseilles, N. and Lemou, M. (2012), ‘Kinetic/fluid micro–macro numerical schemes for Vlasov–Poisson–BGK equation using particles’, Kinet. Relat. Models 5, 787816.Google Scholar
Crouseilles, N. and Lemou, M. (2011), ‘An asymptotic preserving scheme based on a micro–macro decomposition for collisional Vlasov equations: Diffusion and high-field scaling limits’, Kinet. Relat. Models 4, 441477.Google Scholar
Crouseilles, N., Lemou, M. and Mehats, F. (2013), ‘Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations’, J. Comput. Phys. 248, 287308.Google Scholar
Crouseilles, N., Mehrenberger, M. and Sonnendrücker, E. (2010), ‘Conservative semi-Lagrangian schemes for Vlasov-type equations’, J. Comput. Phys. 229, 19271953.Google Scholar
Crouseilles, N., Respaud, T. and Sonnendrücker, E. (2009), ‘A forward semi-Lagrangian scheme for the numerical solution of the Vlasov equation’, J. Comput. Phys. 180, 17301745.Google Scholar
Degond, P. (2013), ‘Asymptotic-preserving schemes for fluid models of plasmas’, Panoramas et Syntheses 39/40, 190.Google Scholar
Degond, P. and Dimarco, G. (2012), ‘Fluid simulations with localized Boltzmann upscaling by direct Monte Carlo’, J. Comput. Phys. 231, 24142437.Google Scholar
Degond, P., Dimarco, G. and Mieussens, L. (2007), ‘A moving interface method for dynamic kinetic-fluid coupling’, J. Comput. Phys. 227, 11761208.Google Scholar
Degond, P., Dimarco, G. and Mieussens, L. (2010), ‘A multiscale kinetic–fluid solver with dynamic localization of kinetic effects’, J. Comput. Phys. 229, 40974133.Google Scholar
Degond, P., Dimarco, G. and Pareschi, L. (2011), ‘The moment-guided Monte Carlo method’, Internat. J. Numer. Methods Fluids 67, 189213.Google Scholar
Degond, P., Jin, S. and Mieussens, L. (2005), ‘A smooth transition between kinetic and hydrodynamic equations’, J. Comput. Phys. 209, 665694.Google Scholar
Degond, P., Pareschi, L. and Russo, G., eds (2004), Modeling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser.CrossRefGoogle Scholar
Deng, J. (2014), ‘Implicit asymptotic preserving schemes for semiconductor Boltzmann equation in the diffusive regime’, Internat. J. Numer. Anal. Model. 11, 123.Google Scholar
Deshpande, S. (1986), Kinetic theory based new upwind methods for inviscid compressible flows. AIAA paper 86-0275.Google Scholar
Desvillettes, L. and Mischler, S. (1996), ‘About the splitting algorithm for Boltzmann and BGK equations’, Math. Models Meth. Appl. Sci. 6, 10791101.Google Scholar
Dia, B. and Schatzman, M. (1996), ‘Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées’, M2AN: Math. Model. Numer. Anal. 30, 343383.Google Scholar
Dimarco, G. (2013), ‘The hybrid moment guided Monte Carlo method for the Boltzmann equation’, Kinet. Relat. Models 6, 291315.Google Scholar
Dimarco, G. and Loubère, R. (2013a), ‘Towards an ultra efficient kinetic scheme I: Basics on the BGK equation’, J. Comput. Phys. 255, 680698.Google Scholar
Dimarco, G. and Loubère, R. (2013b), ‘Towards an ultra efficient kinetic scheme II: The high order case’, J. Comput. Phys. 255, 699719.Google Scholar
Dimarco, G. and Pareschi, L. (2006), ‘Hybrid multiscale methods I: Hyperbolic relaxation problems’, Commun. Math. Sci. 4, 155177.Google Scholar
Dimarco, G. and Pareschi, L. (2007), ‘Hybrid multiscale methods II: Kinetic equations’, Multiscale Model. Simul. 6, 11691197.Google Scholar
Dimarco, G. and Pareschi, L. (2010), ‘Fluid solver independent hybrid methods for multiscale kinetic equations’, SIAM J. Sci. Comput. 32, 603634.Google Scholar
Dimarco, G. and Pareschi, L. (2011), ‘Exponential Runge-Kutta methods for stiff kinetic equations’, SIAM J. Numer. Anal. 49, 20572077.Google Scholar
Dimarco, G. and Pareschi, L. (2012), ‘High order asymptotic-preserving schemes for the Boltzmann equation’, CR Math. Acad. Sci. Paris 350, 481486.Google Scholar
Dimarco, G. and Pareschi, L. (2013), ‘Asymptotic preserving implicit–explicit Runge–Kutta methods for nonlinear kinetic equations’, SIAM J. Numer. Anal. 51, 10641087.CrossRefGoogle Scholar
Dimarco, G., Pareschi, L. and Rispoli, V. (2014), ‘Implicit–explicit Runge–Kutta schemes for the Boltzmann–Poisson system for semiconductors’, Comm. Comput. Phys. 15, 12911319.Google Scholar
Ernst, M. (1983), Exact solutions of the nonlinear Boltzmann equation and related kinetic models. In Nonequilibrium Phenomena I: The Boltzmann Equation, North-Holland, pp. 51119.Google Scholar
Escobedo, M., Mischler, S. and Valle, M. (2003), Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Monograph 4 of Electronic Journal of Differential Equations, Southwest Texas State University, San Marcos, TX.Google Scholar
Fainsilber, L., Kurlberg, P. and Wennberg, B. (2006), ‘Lattice points on circles and discrete velocity models for the Boltzmann equation’, SIAM J. Math. Anal. 37, 19031922.Google Scholar
Fijalkow, E. (1999), ‘A numerical solution to the Vlasov equation’, Comput. Phys. Comm. 116, 319328.Google Scholar
Filbet, F. (2001), ‘Convergence of a finite volume scheme for the Vlasov–Poisson system’, SIAM J. Numer. Anal. 39, 11461169.Google Scholar
Filbet, F. (2012), ‘On deterministic approximation of the Boltzmann equation in a bounded domain’, Multiscale Model. Simul. 10, 792817.Google Scholar
Filbet, F. and Jin, S. (2010), ‘A class of asymptotic-preserving schemes for kinetic equations and related problems with stif sources’, J. Comput. Phys. 229, 76257648.Google Scholar
Filbet, F. and Jin, S. (2011), ‘An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation’, J. Sci. Comput. 46, 204224.Google Scholar
Filbet, F. and Mouhot, C. (2011), ‘Analysis of spectral methods for the homogeneous Boltzmann equation’, Trans. Amer. Math. Soc. 363, 19471980.Google Scholar
Filbet, F. and Pareschi, L. (2003), ‘A numerical method for the accurate solution of the Fokker–Planck–Landau equation in the nonhomogeneous case,’ J. Comput. Phys. 186, 457480.Google Scholar
Filbet, F. and Rey, T. (2013), ‘A rescaling velocity method for dissipative kinetic equations: Applications to granular media,’ J. Comput. Phys. 248, 177199.Google Scholar
Filbet, F. and Russo, G. (2003), ‘High order numerical methods for the space non-homogeneous Boltzmann equation,’ J. Comput. Phys. 186, 457480.Google Scholar
Filbet, F. and Russo, G. (2006), A rescaling velocity method for kinetic equations: The homogeneous case. In Modelling and Numerics of Kinetic Dissipative Systems, Nova Science Publishers, pp. 191202.Google Scholar
Filbet, F. and Russo, G. (2009), ‘Semi-Lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics’, Kinet. Relat. Models 2, 231250.Google Scholar
Filbet, F., Hu, J. and Jin, S. (2012), ‘A numerical scheme for the quantum Boltzmann equation efficient in the fluid regime’, M2AN: Math. Model. Numer. Anal. 46, 443463.CrossRefGoogle Scholar
Filbet, F., Mouhot, C. and Pareschi, L. (2006), ‘Solving the Boltzmann equation in O(N log N)’, SIAM J. Sci. Comput. 28, 10291053.Google Scholar
Filbet, F., Pareschi, L. and Toscani, G. (2005), ‘Accurate numerical methods for the collisional motion of (heated) granular flows’, J. Comput. Phys. 202, 216235.Google Scholar
Filbet, F., Sonnendrücker, E. and Bertrand, P. (2001), ‘Conservative numerical schemes for the Vlasov equation,’ J. Comput. Phys. 172, 166187.Google Scholar
Gabetta, E. and Pareschi, L. (1994), The Maxwell gas and its Fourier transform towards a numerical approximation. In Proc. WASCOM 93, Vol. 23 of Series on Advances in Mathematics for Applied Sciences, pp. 197–201.Google Scholar
Gabetta, E., Pareschi, L. and Toscani, G. (1997), ‘Relaxation schemes for nonlinear kinetic equations’, SIAM J. Numer. Anal. 34, 21682194.Google Scholar
Gamba, I. and Haack, J. (2014), ‘A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit,’ J. Comput. Phys. 270, 4057.Google Scholar
Gamba, I. and Tharkabhushanam, S. (2009), ‘Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states,’ J. Comput. Phys. 228, 20122036.Google Scholar
Gamba, I. and Tharkabhushanam, S. (2010), ‘Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation,’ J. Comput. Math. 28, 430460.Google Scholar
Gatignol, R. (1975), Theorie Cinetique d'un Gas à Repartition Discrete de Vitesses, Vol. 36 of Lecture Notes in Physics, Springer.Google Scholar
Ghiroldi, G. and Gibelli, L. (2014), ‘A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization’, J. Comput. Phys. 258, 568584.Google Scholar
Godlewski, E. and Raviart, P. (1996), Numerical Approximation of Hyperbolic System of Conservation Laws, Springer.Google Scholar
Goldstein, D., Sturtevant, B. and Broadwell, J. (1989), Investigation of the motion of discrete velocity gases. In Rarefied Gas Dynamics: Theoretical and Computational Techniques, AIAA, pp. 100117.Google Scholar
Golse, F. and Saint-Raymond, L. (2004), ‘The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels’, Invent. Math. 155, 81161.Google Scholar
Gosse, L. (2012), ‘Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension’, Kinet. Relat. Models 5, 283323.Google Scholar
Gosse, L. (2013), Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit, Well-Balanced and Asymptotic-Preserving, Springer.Google Scholar
Gosse, L. and Toscani, G. (2002), ‘An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations’, CR Math. Acad. Sci. Paris 334, 337342.Google Scholar
Gosse, L. and Toscani, G. (2003), ‘Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes’, SIAM J. Numer. Anal. 41, 641658.Google Scholar
Gottlieb, D. and Orszag, S. (1977), Numerical Analysis of Spectral Methods: Theory and Applications, SIAM CBMS-NSF Series.Google Scholar
Greenberg, J. and Leroux, A. (1996), ‘A well-balanced scheme for the numerical processing of source terms in hyperbolic equations’, SIAM J. Numer. Anal. 33, 116.Google Scholar
Grigoriev, A. and Mikhalitsyn, A. (1983), ‘A spectral method of solving Boltzmann's kinetic equation numerically’, USSR Comput. Maths. Math. Phys. 23, 105111.Google Scholar
Gustafsson, T. (1986), ‘Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation’, Arch. Rat. Mech. Anal. 92, 2357.Google Scholar
Ha, S.-Y. and Tadmor, E. (2008), ‘From particle to kinetic and hydrodynamic descriptions of flocking’, Kinet. Relat. Models 1, 415435.Google Scholar
Hairer, E. and Wanner, G. (1996), Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Vol. 14 of Springer Series in Computational Mathematics, second revised edition, Springer.Google Scholar
Hairer, E., Lubich, C. and Wanner, G. (2002), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer.Google Scholar
Hardy, G. and Wright, E. (1979), An Introduction to the Theory of Numbers, fifth edition, Clarendon Press.Google Scholar
Hauck, C., Chacon, L. and del Castillo-Negrete, D. (2014), ‘Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas for arbitrary magnetic fields’, J. Comput. Phys., to appear.Google Scholar
Heath, R., Gamba, I., Morrison, P. and Michler, C. (2012), ‘A discontinuous Galerkin method for the Vlasov-Poisson system’, J. Comput. Phys. 231, 11401174.Google Scholar
Herty, M. and Ringhofer, C. (2011), ‘Averaged kinetic models for flows on unstructured networks,’ Kinet. Relat. Models 4, 10811096.Google Scholar
Hochbruck, M. and Ostermann, A. (2010), Exponential integrators. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 209286.Google Scholar
Holway, L. (1966), ‘New statistical models for kinetic theory: Methods of construction’, Phys. Fluids 9, 16581673.Google Scholar
Homolle, T. and Hadjiconstantinou, N. (2007 a), ‘Low-variance deviational simulation Monte Carlo,’ J. Comput. Phys. 19, 041701.Google Scholar
Homolle, T. and Hadjiconstantinou, N. (2007 b), ‘A low-variance deviational simulation Monte Carlo for the Boltzmann equation’, J. Comput. Phys. 226, 23412358.Google Scholar
Hu, J. and Ying, L. (2012), ‘A fast spectral algorithm for the quantum Boltzmann collision operator,’ Commun. Math. Sci. 10, 989999.Google Scholar
Ibragimov, I. and Rjasanow, S. (2002), ‘Numerical solution of the Boltzmann equation on the uniform grid’, Computing 69, 163186.Google Scholar
Jin, S. (1995), ‘Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms,’ J. Comput. Phys. 122, 5167.Google Scholar
Jin, S. (1999), ‘Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,’ SIAM J. Sci. Comput. 21, 441454.Google Scholar
Jin, S. (2012), ‘Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review’, Riv. Mat. Univ. Parma 3, 177216.Google Scholar
Jin, S. and Levermore, C. (1993), ‘Fully-discrete numerical transfer in difusive regimes,’ Transport Theory Statist. Phys. 22, 739791.Google Scholar
Jin, S. and Levermore, C. (1996), ‘Numerical schemes for hyperbolic conservation laws with stif relaxation terms,’ J. Comput. Phys. 126, 449467.Google Scholar
Jin, S. and Li, Q. (2013), ‘A BGK-penalization-based asymptotic-preserving scheme for the multispecies Boltzmann equation’, Numer. Methods Partial Differential Equations 29, 10561080.Google Scholar
Jin, S. and Pareschi, L. (2000), ‘Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes’, J. Comput. Phys. 161, 312330.Google Scholar
Jin, S. and Pareschi, L. (2001), Asymptotic-preserving (AP) schemes for multiscale kinetic equations: A unified approach. In Hyperbolic Problems: Theory, Numerics, Applications, Vol. 141 of International Series of Numerical Mathematics, Springer, pp. 573582.Google Scholar
Jin, S. and Wang, L. (2013), ‘Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime’, SIAM J. Sci. Comput. 35, B799B819.Google Scholar
Jin, S. and Xin, Z. (1995), ‘The relaxation schemes for systems of conservation laws in arbitrary space dimensions,’ Comm. Pure Appl. Math. 48, 235276.Google Scholar
Jin, S. and Yan, B. (2011), ‘A class of asymmptotic-preserving schemes for the Fokker-Planck-Landau equation,’ J. Comput. Phys. 230, 64206437.Google Scholar
Jin, S., Pareschi, L. and Slemrod, M. (2002), ‘A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion,’ Acta Math. Appl. Sin. Engl. Ser. 18, 3762.Google Scholar
Jin, S., Pareschi, L. and Toscani, G. (1998), ‘Difusive relaxation schemes for multiscale discrete-velocity kinetic equations,’ SIAM J. Numer. Anal. 35, 24052439.Google Scholar
Jin, S., Pareschi, L. and Toscani, G. (2000), ‘Uniformly accurate difusive relaxation schemes for multiscale transport equations,’ SIAM J. Numer. Anal. 38, 913936.Google Scholar
Kennedy, C. and Carpenter, M. (2003), ‘Additive Runge–Kutta schemes for convection–difusion–reaction equations,’ Appl. Numer. Math. 44, 139181.Google Scholar
Klar, A. (1998 a), ‘An asymptotic-induced scheme for non stationary transport equations in the difusive limit,’ SIAM J. Numer. Anal. 35, 10731094.Google Scholar
Klar, A. (1998 b), ‘A numerical method for kinetic semiconductor equations in the drift difusion limit,’ J. Sci. Comput. 19, 20322050.Google Scholar
Klar, A. and Wegener, R. (1997), ‘Enskog-like kinetic models for vehicular traffic’, J. Statist. Phys. 87, 91114.Google Scholar
Kolobov, V., Arslanbekov, R., Aristov, V., Frolova, A. and Zabelok, S. (2007), ‘Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement’, J. Comput. Phys. 223, 589608.Google Scholar
Kowalczyk, P., Palczewski, A., Russo, G. and Walenta, Z. (2008), ‘Numerical solutions of the Boltzmann equation: Comparison of diferent algorithms,’ Eur. J. Mech. B Fluids 27, 6274.Google Scholar
Lafitte, P. and Samaey, G. (2012), ‘Asymptotic-preserving projective integration schemes for kinetic equations in the difusion limit,’ SIAM J. Sci. Comput. 34, 579602.Google Scholar
Landau, L. (1981), The transport equation in the case of the Coulomb interaction. In Collected Papers ofL. D. Landau (ter Haar, D., ed.), Pergamon, pp. 163170.Google Scholar
Lanford, O. III (1975), Time evolution of large classical systems. In Dynamical Systems, Theory and Applications (Moser, J., ed.), Vol. 38 of Lecture Notes in Physics, Springer, pp. 1111.CrossRefGoogle Scholar
Lemou, M. (2010), ‘Relaxed micro-macro schemes for kinetic equations,’ Comptes Rendus Math. 348, 455460.Google Scholar
Lemou, M. and Mehats, F. (2012), ‘Micro–macro schemes for kinetic equations including boundary layers,’ SIAM J. Sci. Comput. 34, 134160.Google Scholar
Lemou, M. and Mieussens, L. (2005), ‘Implicit schemes for the Fokker–Planck–Landau equation,’ SIAM J. Sci. Comput. 27, 809830.Google Scholar
Lemou, M. and Mieussens, L. (2008), ‘A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the difusion limit,’ SIAM J. Sci. Comput. 31, 334368.Google Scholar
Levermore, C. (1996), ‘Moment closure hierarchies for kinetic theories,’ J. Statist. Phys. 83, 10211065.Google Scholar
Lewis, E. and Miller, W. F. (1993), Computational Methods ofNeutron Transport, American Nuclear Society.Google Scholar
Li, Q. and Pareschi, L. (2014), ‘Exponential Runge–Kutta schemes for inhomogeneous Boltzmann equations with high order of accuracy,’ J. Comput. Phys. 259, 402420.Google Scholar
Li, Q., Hu, J. and Pareschi, L. (2014), ‘Asymptotic preserving exponential methods for the quantum Boltzmann equations with high order of accuracy, submitted to J. Sci. Comput.Google Scholar
Lions, P. (1994), ‘Compactness in Boltzmann s equation via Fourier integral operators and applications I,’ J. Math. Kyoto Univ. 34, 391427.Google Scholar
Liu, T.-P. and Yu, S.-H. (2004), ‘Boltzmann equation: Micro–macro decompositions and positivity of shock profiles’, Comm. Math. Phys. 246, 133179.Google Scholar
Majorana, A. (2011), ‘A numerical model of the Boltzmann equation related to the discontinuous Galerkin method,’ Kinet. Relat. Models 4, 139151.Google Scholar
Markowich, P. and Pareschi, L. (2005), ‘Fast conservative and entropic numerical methods for the boson Boltzmann equation,’ Numer. Math. 99, 509532.Google Scholar
Markowich, P., Ringhofer, C. and Schmeiser, C. (1989), Semiconductor Equations, Springer.Google Scholar
Martin, Y.-L., Rogier, F. and Schneider, J. (1992), ‘Une méthode déterministe pour la résolution de l'équation de Boltzmann inhomogène’, CR Acad. Sci. Paris Sér. I Math. 314, 483487.Google Scholar
Maset, S. and Zennaro, M. (2009), ‘Unconditional stability of explicit exponential Runge–Kutta methods for semi-linear ordinary differential equations’, Math. Comput. 78, 957967.Google Scholar
Mieussens, L. (2000), ‘Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics’, Math. Models Meth. Appl. Sci. 8, 11211149.Google Scholar
Mieussens, L. (2001), ‘Convergence of a discrete-velocity model for the Boltzmann-BGK equation,’ Comput. Math. App. 41, 8396.Google Scholar
Mischler, S. (1997), ‘Convergence of discrete velocity schemes for the Boltzmann equation’, Arch. Rat. Mech. Anal. 140, 5377.Google Scholar
Mouhot, C. and Pareschi, L. (2004), ‘Fast methods for the Boltzmann collision integral’, CR Math. Acad. Sci. Paris 339, 7176.Google Scholar
Mouhot, C. and Pareschi, L. (2006), ‘Fast algorithms for computing the Boltzmann collision operator’, Math. Comp. 75, 18331852.Google Scholar
Mouhot, C., Pareschi, L. and Rey, T. (2013), ‘Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation’, Math. Model. Numer. Anal. 47, 15151531.Google Scholar
Müller, I. and Ruggeri, T. (1993), Extended Thermodynamics, Vol. 37 of Springer Tracts in Natural Philosophy, Springer.Google Scholar
Naldi, G. and Pareschi, L. (1998), ‘Numerical schemes for kinetic equations in diffusive regimes’, Appl. Math. Lett. 11, 2935.Google Scholar
Naldi, G. and Pareschi, L. (2000), ‘Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation’, SIAM J. Numer. Anal. 37, 12461270.Google Scholar
Naldi, G., Pareschi, L. and Toscani, G. (2003), ‘Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit’, ESAIM RAIRO Math. Model. Numer. Anal. 37, 7390.Google Scholar
Naldi, G., Pareschi, L. and Toscani, G., eds (2010), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhüuser.Google Scholar
Nanbu, K. (1980), ‘Direct simulation scheme derived from the Boltzmann equation I: Monocomponent gases’, J. Phys. Soc. Japan 49, 20422049.Google Scholar
Narayan, A. and Klückner, A. (2009), Deterministic numerical schemes for the Boltzmann equation. arXiv:0911.3589v1Google Scholar
Nishida, T. (1978), ‘Fluid dynamical limit of the nonlinear Boltzmann equation at the level of the compressible Euler equations’, Commun. Math. Phys. 61, 119148.Google Scholar
Nogueira, A. and Sevennec, B. (2006), ‘Multidimensional Farey partitions’, Indag. Math. (NS) 17, 437456.Google Scholar
Ohwada, T. (1993), ‘Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard sphere molecules’, Phys. Fluids A 5, 217234.Google Scholar
Palczewski, A., Schneider, J. and Bobylev, A. (1997), ‘A consistency result for a discrete-velocity model of the Boltzmann equation,’ SIAM J. Numer. Anal. 34, 18651883.Google Scholar
Panferov, V. and Heintz, A. (2002), ‘A new consistent discrete-velocity model for the Boltzmann equation,’ Math. Methods Appl. Sci. 25, 571593.Google Scholar
Pareschi, L. (1998), Characteristic-based numerical schemes for hyperbolic systems with nonlinear relaxation. In Proc. Ninth International Conference on Waves and Stability in Continuous Media, pp. 375380.Google Scholar
Pareschi, L. (2003), Computational methods and fast algorithms for Boltzmann equations. Chapter 7 of Lecture Notes on the Discretization ofthe Boltzmann Equation (Bellomo, N. and Gatignol, R., eds), World Scientific, pp. 527548.Google Scholar
Pareschi, L. and Caflisch, R. (1999), ‘Implicit Monte Carlo methods for rarefied gas dynamics I: The space homogeneous case,’ J. Comput. Phys. 154, 90116.Google Scholar
Pareschi, L. and Caflisch, R. (2004), ‘Towards an hybrid method for rarefied gas dynamics’, IMA Vol. App. Math. 135, 5773.Google Scholar
Pareschi, L. and Perthame, B. (1996), ‘A spectral method for the homogeneous Boltzmann equation,’ Transport Theory Statist. Phys. 25, 369383.Google Scholar
Pareschi, L. and Russo, G. (1999), ‘An introduction to Monte Carlo methods for the Boltzmann equation’, ESAIM Proc. 10, 138.Google Scholar
Pareschi, L. and Russo, G. (2000 a), ‘Asymptotic preserving Monte Carlo methods for the Boltzmann equation’, Transport Theory Statist. Phys. 29, 415430.Google Scholar
Pareschi, L. and Russo, G. (2000 b), ‘Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator,’ SIAM J. Numer. Anal. 37, 12171245.Google Scholar
Pareschi, L. and Russo, G. (2000 c), ‘On the stability of spectral methods for the homogeneous Boltzmann equation,’ Transport Theory Statist. Phys. 29, 431447.Google Scholar
Pareschi, L. and Russo, G. (2001), ‘Time relaxed Monte Carlo methods for the Boltzmann equation’, SIAM J. Sci. Comput. 23, 12531273.Google Scholar
Pareschi, L. and Russo, G. (2005), ‘Implicit–explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation’, J. Sci. Comput. 25, 129155.Google Scholar
Pareschi, L. and Russo, G. (2011), Efficient asymptotic preserving deterministic methods for the Boltzmann equation. In Models and Computational Methods for Rarefied Flows, AVT-194 RTO AVT/VKI, Rhode-Saint-Gerèse, Belgium.Google Scholar
Pareschi, L. and Toscani, G. (2004), Modelling and numerical methods for granular gases. In Modeling and Computational Methods for Kinetic Equations , Modeling and Simulation in Science, Engineering and Technology, Birkhüauser, pp. 259285.Google Scholar
Pareschi, L. and Toscani, G. (2013),Interacting Multi-Agent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press.Google Scholar
Pareschi, L., Russo, G. and Toscani, G. (2000), ‘Fast spectral methods for the Fokker-Planck-Landau collision operator,’ J. Comput. Phys. 165, 216236.Google Scholar
Pareschi, L., Toscani, G. and Villani, C. (2003), ‘Spectral methods for the non cut-of Boltzmann equation and numerical grazing collision limit,’ Numer. Math. 93, 527548.Google Scholar
Pareschi, L., Trazzi, S. and Wennberg, B. (2008), ‘Adaptive and recursive time relaxed Monte Carlo method for rarefied gas dynamics’, SIAM J. Sci. Comput. 31, 13791398.Google Scholar
Perthame, B. (1989), ‘Global existence to the BGK model of Boltzmann equation,’ J. Diff. Eq. 82, 191205.Google Scholar
Perthame, B. (1990), ‘Boltzmann type schemes for gas dynamics and the entropy property’, SIAM J. Numer. Anal. 27, 14051421.Google Scholar
Perthame, B. (2007), Transport Equations in Biology, Frontiers in Mathematics, Springer.Google Scholar
Pieraccini, S. and Puppo, G. (2007), ‘Implicit–explicit schemes for BGK kinetic equations,’ J. Sci. Comput. 32, 128.Google Scholar
Pieraccini, S. and Puppo, G. (2012), ‘Microscopically implicit–macroscopically explicit schemes for the BGK equation,’ J. Comput. Phys. 231, 299327.Google Scholar
Platkowski, T. and Wallis, W. (2000), ‘An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator,’ Comput. Math. Appl. 39, 151163.Google Scholar
Pöschel, T. and Brilliantov, N. (2003), Granular Gas Dynamics, Vol. 624 of Lecture Notes in Physics, Springer.Google Scholar
Preziosi, L. and Longo, E. (1997), ‘On a conservative polar discretization of the Boltzmann equation,’ Japan J. Indust. Appl. Math. 14, 399435.Google Scholar
Pullin, D. (1980), ‘Direct simulation methods for compressible inviscid ideal gas flow’, J. Comput. Phys. 34, 231244.Google Scholar
Qiu, J.-M. and Shu, C.-W. (2011), ‘Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov–Poisson system,’ J. Comput. Phys. 230, 83868409.Google Scholar
Radtke, G. and Hadjiconstantinou, N. (2009), ‘Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation,’ Phys. Rev. E 79, 056711.Google Scholar
Radtke, G., Hadjiconstantinou, N. and Wagner, W. (2011), ‘Low-noise Monte Carlo simulation of the variable hard sphere gas,’ Phys. Fluids 23, 030606.Google Scholar
Radtke, G., Péraud, J.-P. and Hadjiconstantinou, N. (2013), ‘On efficient simulations of multiscale kinetic transport,’ Phil. Trans. R. Soc. A 23, 030606.Google Scholar
Rana, A., Torrilhon, M. and Struchtrup, H. (2013), ‘A robust numerical method for the R13 equations of rarefied gas dynamics: Application to lid driven cavity’, J. Comput. Phys. 236, 169186.Google Scholar
Respaud, T. and Sonnendrucker, E. (2011), ‘Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations,’ Numer. Math. 118, 329366.Google Scholar
Rjasanow, S. and Wagner, W. (1996), ‘A stochastic weighted particle method for the Boltzmann equation,’ J. Comput. Phys. 124, 243253.Google Scholar
Rjasanow, S. and Wagner, W. (2001), ‘Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,’ Math. Comput. Modelling 33, 907926.Google Scholar
Rjasanow, S. and Wagner, W. (2006), Stochastic Numerics for the Boltzmann Equation, Vol. 37 of Springer Series in Computational Mathematics, Springer.Google Scholar
Rogier, F. and Schneider, J. (1994), ‘A direct method for solving the Boltzmann equation,’ Transport Theory Statist. Phys. 23, 313338.Google Scholar
Santagati, P., Russo, G. and Yun, S.-B. (2012), ‘Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation,’ SIAM J. Numer. Anal. 50, 11111135.Google Scholar
Schneider, J. (1993), Une méthode déterministe pour la résolution de l'équation de Boltzmann. PhD thesis, Université Pierre et Marie Curie (Paris VI).Google Scholar
Schneider, J. (1996), ‘Direct coupling of fluid and kinetic equations’, Transport Theory Statist. Phys. 25, 681698.Google Scholar
Shu, C.-W. (2009), ‘High order weighted essentially non-oscillatory schemes for convection dominated problems’, SIAM Review 51, 82126.Google Scholar
Shu, C.-W. and Osher, S. (1989), ‘Efficient implementation of essentially nonoscillatory shock-capturing schemes II,’ J. Comput. Phys. 83, 3278.Google Scholar
Sod, G. (1977), ‘A numerical solution of Boltzmann's equation’, Comm. Pure Appl. Math. 30, 391419.Google Scholar
Sone, Y., Ohwada, T. and Aoki, K. (1989), ‘Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltz-mann equation for hard-sphere molecules,’ Phys. Fluids A 1, 363370.Google Scholar
Sonnendrücker, E. (2013), Numerical methods for Vlasov equations. Technical report, MPI TU Munich. http://www-m16.ma.tum.de/foswiki/pub/M16/Allgemeines/NumMethVlasov/Num-Meth-Vlasov-Notes.pdfGoogle Scholar
Sonnendruücker, E., Roche, J., Bertrand, P. and Ghizzo, A. (1999), ‘The semi-Lagrangian method for the numerical resolution of the Vlasov equation,’ J. Comput. Phys. 149, 201220.Google Scholar
Spohn, H. (1991), Large Scale Dynamics of Interacting Particles, Springer.Google Scholar
Strang, G. (1968), ‘On the construction and the comparison of difference schemes’, SIAM J. Numer. Anal. 5, 506517.Google Scholar
Struchtrup, H. (2005), Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory, Interaction of Mechanics and Mathematics, Springer.Google Scholar
Succi, S. (2001), The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press.Google Scholar
Tcheremissine, F. (2006), ‘Solution to the Boltzmann kinetic equation for highspeed flows’, Comput. Math. and Math. Phys. 46, 315329.Google Scholar
Tiwari, S. (1998), ‘Coupling of the Boltzmann and Euler equations with automatic domain decomposition,’ J. Comput. Phys. 144, 710726.Google Scholar
Tiwari, S. and Klar, A. (1998), ‘An adaptive domain decomposition procedure for Boltzmann and Euler equations,’ J. Comput. Appl. Math. 90, 223237.Google Scholar
Tran, M.-B. (2013), Nonlinear approximation theory for the homogeneous Boltzmann equation. arXiv:1305.1667Google Scholar
Uehling, E. and Uhlenbeck, G. (1933), ‘Transport phenomena in Einstein-Bose and Fermi-Dirac gases I,’ Phys. Rev. 43, 552561.Google Scholar
Valougeorgis, D. and Naris, S. (2003), ‘Acceleration schemes of the discrete velocity method: Gaseous flows in rectangular microchannels’, SIAM J. Sci. Comput. 25, 534552.Google Scholar
Villani, C. (2002), A review of mathematical topics in collisional kinetic theory. In Handbook of Mathematical Fluid Mechanics, Vol. 1 (Friedlander, S. and Serre, D., eds), North-Holland, pp. 71305.Google Scholar
Wijesinghe, H. and Hadjiconstantinou, N. (2004), ‘Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics’, Internat. J. Multi. Comput. Engrg 2, 189202.Google Scholar
Wild, E. (1951), ‘On Boltzmann's equation in the kinetic theory of gases’, Proc. Camb. Phil. Soc. 47, 602609.Google Scholar
Wu, L., White, C., Scanlon, T., Reese, J. and Zhang, Y. (2013), ‘Deterministic numerical solutions of the Boltzmann equation using the fast spectral method’, J. Comput. Phys. 250, 2752.Google Scholar
Xu, K. (2001), ‘A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method’, J. Comput. Phys. 171, 289335.Google Scholar