Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T06:30:25.746Z Has data issue: false hasContentIssue false

Human Color Vision and Tetrachromacy

Published online by Cambridge University Press:  12 May 2020

Kimberly A. Jameson
Affiliation:
University of California, Irvine
Timothy A. Satalich
Affiliation:
University of California, Irvine
Kirbi C. Joe
Affiliation:
University of California, Irvine
Vladimir A. Bochko
Affiliation:
University of Vaasa, Finland
Shari R. Atilano
Affiliation:
University of California, Irvine
M. Cristina Kenney
Affiliation:
University of California, Irvine

Summary

Human color perception is widely understood to be based on a neural coding system involving signals from three distinct classes of retinal photoreceptors. This retina processing model has long served as the mainstream scientific template for human color vision research and has also proven to be useful for the practical design of display technologies, user interfaces, and medical diagnosis tools that enlist human color perception behaviors. Recent findings in the area of retinal photopigment gene sequencing have provided important updates to our understanding of the molecular basis and genetic inheritance of individual variations of human color vision. This Element focuses on new knowledge about the linkages between color vision genetics and color perception variation and the color perception consequences of inheriting alternative, nonnormative, forms of genetic sequence variation.
Get access
Type
Element
Information
Online ISBN: 9781108663977
Publisher: Cambridge University Press
Print publication: 25 June 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asenjo, A. B., Rim, J., and Oprian, D. D. (1994). Molecular determinants of human red/green color discrimination. Neuron, 12(5), 11311138.Google Scholar
Atilano, S., Jameson, K. A., and Kenney, M. C. (2017). Procedures for characterizing the genetic sequences underlying human visual phenotypes: Genotyping methods and a case-study demonstration. Technical Report Series # MBS 17–05. Institute for Mathematical Behavioral Sciences, University of California at Irvine. Available at www.imbs.uci.edu/research/MBS%2017–05.pdfGoogle Scholar
Shari, R. Atilano, M. Cristina, Kenney, Adriana, D. Briscoe, and Kimberly, A. Jameson. (2020). “A two-step method for identifying photopigment opsin and rhodopsin gene sequences underlying human color vision phenotypes.” Molecular Vision; 26:158172 <http://www.molvis.org/molvis/v26/158>Google Scholar
Balding, S. D., Sjoberg, S. A., Neitz, J., and Neitz, M. (1998). Pigment gene expression in protan color vision defects. Vision Research, 38(21), 33593364.Google Scholar
Berns, R. S. (2004). Rejuvenating Seurat’s palette using color and imaging science: A simulation. In R. L. Herbert (ed.), Seurat and the making of La Grande Jatte, 214227. The Art Institute of Chicago and University of California Press.Google Scholar
Bimler, D., and Kirkland, J. (2009). Colour-space distortion in women who are heterozygous for colour deficiency. Vision Research, 49(5), 536543.Google Scholar
Bimler, D. L., Kirkland, J., and Jameson, K. A. (2004). Quantifying variations in personal color spaces: Are there sex differences in color vision? COLOR Research and Application, 29(2), 128134.Google Scholar
Birch, J. (2001). Diagnosis of defective colour vision, 2429. Oxford: Butterworth-Heinemann.Google Scholar
Bochko, V. A., and Jameson, K. A. (2018). Investigating potential human tetrachromacy in individuals with tetrachromat genotypes using multispectral techniques. Electronic Imaging, 2018(14), 112.Google Scholar
Bochko, V. A., Jameson, K. A., Nakaguchi, T., Miyake, Y., and Alander, J. T. (2017). Non-negative matrix factorization for spectral colors using genetic algorithms: Substantially Updated Version. IMBS Technical Report Series #MBS 17–03. Institute for Mathematical Behavioral Sciences University of California at Irvine, Irvine, CA. Available at www.imbs.uci.edu/research/MBS%2017–03.pdfGoogle Scholar
Bongard, M. M., Smirnov, M. S., and Friedrich, L. I. (1958). The four-dimensional colour space of the extra-foveal retinal area of the human eye. In Visual problems of colour I, 325330. London: HMSO.Google Scholar
Bosten, J. M., Robinson, J. D., Jordan, G., and Mollon, J. D. (2005). Multidimensional scaling reveals a color dimension unique to ‘color-deficient’ observers. Current Biology, 15(23), R950R952.Google Scholar
Bowmaker, J. K., Astell, S., Hunt, D. M., and Mollon, J. D. (1991). Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology, 156(1), 119.Google Scholar
Bowmaker, J. K., and Dartnall, H. (1980). Visual pigments of rods and cones in a human retina. The Journal of Physiology, 298(1), 501511.Google Scholar
Bowmaker, J. K., Dartnall, H. J., Lythgoe, J. N., and Mollon, J. D. (1978). The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta. Journal of Physiology, 274(1), 329348.CrossRefGoogle ScholarPubMed
Brill, M. H. (1990). Mesopic color matching: Some theoretical issues. Journal of the Optical Society of America A, 7(10), 20482051.Google Scholar
Carroll, J., Gray, D. C., Roorda, A., and Williams, D. R. (2005). Recent advances in retinal imaging with Percher optics. Optics and Photonics News, 16(1), 3642.CrossRefGoogle Scholar
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2(2), 217221.Google Scholar
Crognale, M. A., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1998). Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies. Vision Research, 38(21), 33773385.CrossRefGoogle ScholarPubMed
Dalton, J. (1798). Extraordinary facts relating to the vision of colours: With observations. London: Cadell and Davies.Google Scholar
Dartnall, H. J., Bowmaker, J. K., and Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London B: Biological Sciences, 220(1218), 115130.Google ScholarPubMed
Deeb, S. S. (2004). Molecular genetics of color-vision deficiencies. Visual Neuroscience, 21(3), 191196.Google Scholar
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics, 67(5), 369377.CrossRefGoogle ScholarPubMed
Dees, E. W., and Baraas, R. C. (2014). Performance of normal females and carriers of color-vision deficiencies on standard color-vision tests. Journal of the Optical Society of America A, 31(4), A401A409.Google Scholar
Dees, E. W., Gilson, S. J., Neitz, M., and Baraas, R. C. (2015). The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20–71 year olds. Vision Research, 116, 1324.CrossRefGoogle ScholarPubMed
Dominy, N. J., and Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410(6826), 363.Google Scholar
Farnsworth, D. (1949, revised 1957). The Farnsworth-Munsell 100-Hue test for the examination of color vision. Baltimore, MD: Munsell Color Company.Google Scholar
Feil, R., Aubourg, P., Heilig, R., and Mandel, J. L. (1990). A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics, 6(2), 367373.Google Scholar
Fernandez, A. A., and Morris, M. R. (2007). Sexual selection and trichromatic color vision in primates: Statistical support for the preexisting-bias hypothesis. American Naturalist, 170(1), 1020.CrossRefGoogle ScholarPubMed
Gardner, J. C., Liew, G., Quan, Y. H., et al. (2014). Three different cone opsin gene array mutational mechanisms with genotype–phenotype correlation and functional investigation of cone opsin variants. Human Mutation, 35(11), 13541362. DOI:10.1002/humu.22679.Google ScholarPubMed
Gegenfurtner, K. R., and Sharpe, L. T. (eds.). (1999). Color vision: From genes to perception. Cambridge: Cambridge University Press.Google Scholar
Gordon, J., and Abramov, I. (2008). Color appearance: Maxwellian vs. Newtonian views. Vision Research, 48(18), 18791883.CrossRefGoogle ScholarPubMed
Hagstrom, S. A., Neitz, J., and Neitz, M. (1998). Variations in cone populations for red–green color vision examined by analysis of mRNA. NeuroReport, 9(9), 19631967.CrossRefGoogle ScholarPubMed
Hayashi, T., Motulsky, A. G., and Deeb, S. S. (1999). Position of a ‘green-red ‘hybrid gene in the visual pigment array determines colour-vision phenotype. Nature Genetics, 22(1), 90.CrossRefGoogle ScholarPubMed
He, J. C., and Shevell, S. K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments. Vision Research, 35(18), 25792588.Google Scholar
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 96699679.Google Scholar
Hood, S. M., Mollon, J. D., Purves, L., and Jordan, G. (2006). Color discrimination in carriers of color deficiency. Vision Research, 46(18), 2894-2900.Google Scholar
Ishihara, S. (1989). Ishihara’s tests for colour blindness: Concise 14 plate edition. Tokyo: Kanehara.Google Scholar
Jacobs, G. H. (1998). Photopigments and seeing: Lessons from natural experiments: The Proctor lecture. Investigative Ophthalmology and Visual Science, 39(12), 2204.Google Scholar
Jacobs, G. H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience, 25(5–6), 619633.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2018). Photopigments and the dimensionality of animal color vision. Neuroscience and Biobehavioral Reviews, 86, 108130.Google Scholar
Jacobs, G. H., and Nathans, J. (2009). The evolution of primate color vision. Scientific American, 300(4), 5663.Google Scholar
Jameson, K. A. (2009). Tetrachromatic color vision. In The Oxford companion to consciousness, 155158. Oxford: Oxford University Press.Google Scholar
Jameson, K. A., Bimler, D., and Wasserman, L. M. (2006). Re–assessing perceptual diagnostics for observers with diverse retinal photopigment genotypes. In Pitchford, N. J. and Biggam, C. P., eds.), Progress in colour studies, Vol. 2: Cognition, 1333. Amsterdam: John Benjamins.Google Scholar
Jameson, K. A., Bochko, V. A., Joe, K. C., Satalich, T. A., and Atilano, S. R. (2018). Color processing in artists and non-artist participants in relation to individually determined photopigment opsin genotypes. In Munsell Centennial Color Symposium: Bridging science, art, & industry, June 10–15, 2018, Massachusetts College of Art and Design, Boston.Google Scholar
Jameson, K. A., Highnote, S. M., and Wasserman, L. M. (2001). Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review, 8(2), 244261.Google Scholar
Jameson, K. A., Wasserman, L., and Highnote, S. (1998a). Photopigment opsin genes and color perception. Poster presented at the Annual Meeting of the Optical Society of America, October 1–4, 1998, Baltimore, MD.Google Scholar
Jameson, K. A., Wasserman, L., and Highnote, S. (1998b). Understanding color appearance: Can variation in photopigment opsin genes give rise to individuals with perceptual tetrachromacy? Poster presented at the 21st European Conference of Visual Perception, August 24–28, 1998, Oxford.Google Scholar
Jameson, K. A., Winkler, A. D., and Goldfarb, K. (2016). Art, interpersonal comparisons of color experience, and potential tetrachromacy. Electronic Imaging, 2016(16), 112.Google Scholar
Jameson, K. A., Winkler, A. D., Herrera, C., and Goldfarb, K. (2014). The veridicality of color: A case study of potential human tetrachromacy. Technical Report Series# MBS 14-02. Institute for Mathematical Behavioral Sciences University of California at Irvine. Irvine, CA. www.imbs.uci.edu/files/imbs/docs/technical/2014/mbs14-02.pdfGoogle Scholar
Jameson, K. A. (2009). Tetrachromatic color vision. In The Oxford companion to consciousness (pp. 155158). Oxford Press Oxford.Google Scholar
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8), 119 DOI:10.1167/10.8.12.Google Scholar
Jordan, G., and Mollon, J. D. (1993). A study of women heterozygous for colour deficiencies. Vision Research, 33(11), 14951508.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. (2019). Tetrachromacy: The mysterious case of extra-ordinary color vision. Current Opinion in Behavioral Sciences, 30, 130134.CrossRefGoogle Scholar
Konstantakopoulou, E., Rodriguez-Carmona, M., and Barbur, J. L. (2012). Processing of color signals in female carriers of color vision deficiency. Journal of Vision, 12(2), 111. DOI:10.1167/12.2.11.CrossRefGoogle ScholarPubMed
Liebman, P. A. (1972). Microspectrophotometry of photoreceptors. In Photochemistry of vision, 481528. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Lucas, P. W., Dominy, N. J., Riba‐Hernandez, P., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57(11), 26362643.Google ScholarPubMed
Luo, M. R., Cui, G., and Rigg, B. (2001). The development of the CIE 2000 colour‐difference formula: CIEDE2000. COLOR Research and Application, 26(5), 340350.CrossRefGoogle Scholar
Macbeth (2014). ColorChecker Classic. X-Rite Pantone, Grand Rapids, MI.Google Scholar
MacLeod, D. I. A. (1985). Receptoral constraints on colour appearance. In Central and peripheral mechanisms of colour vision, 103116. London: Palgrave Macmillan.Google Scholar
MacLeod, D. I. A., and von der Twer, T. (2003). The pleistochrome: Optimal opponent codes for natural colours. Colour Perception: Mind and the Physical World, 155184.Google Scholar
Mausfeld, R., and Niederée, R. (1993). An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli. Perception, 22(4), 427462.Google Scholar
Merbs, S. L., and Nathans, J. (1992a). Absorption spectra of human cone pigments. Nature, 356(6368), 433.Google Scholar
Merbs, S. L., and Nathans, J. (1992b). Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258(5081), 464466.Google Scholar
Merbs, S. L., and Nathans, J. (1993). Role of hydroxyl‐bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochemistry and Photobiology, 58(5), 706710.Google Scholar
Mollon, J. (1992). Worlds of difference. Nature, 356, 2.Google Scholar
Mollon, J. D. (1989). “Tho’she kneel’d in that place where they grew … ” The uses and origins of primate colour vision. Journal of Experimental Biology, 146(1), 2138.Google Scholar
Moore, C., Romney, A. K., and Hsia, T. L. (2002). Cultural, gender, and individual differences in perceptual and semantic structures of basic colors in Chinese and English. Journal of Cognition and Culture, 2(1), 128.Google Scholar
Munsell (1976). Munsell book of color: Matte finish collection. Munsell Color, Inc., Baltimore, MD.Google Scholar
Nagy, A. L., MacLeod, D. I., Heyneman, N. E., and Eisner, A. (1981). Four cone pigments in women heterozygous for color deficiency. Journal of the Optical Society of America, 71(6), 719722.Google Scholar
Nathans, J., Merbs, S. L., Sung, C. H., Weitz, C. J., and Wang, Y. (1992). Molecular genetics of human visual pigments. Annual Review of Genetics, 26(1), 403424.Google Scholar
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, D. S. (1986a). Molecular genetics of inherited variation in human color vision. Science, 232(4747), 203210.Google Scholar
Nathans, J., Thomas, D., and Hogness, D. S. (1986b). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232(4747), 193202.Google Scholar
Neitz, J., and Jacobs, G. H. (1986). Polymorphism of the long-wavelength cone in normal human colour vision. Nature, 323(6089), 623625.Google Scholar
Neitz, J., and Jacobs, G. H. (1990). Polymorphism in normal human color vision and its mechanism. Vision Research, 30(4), 621636.Google Scholar
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51(7), 633651. DOI:10.1016/j.visres.2010.12.002. Epub 2010 Dec 15. Review.Google Scholar
Neitz, M., and Neitz, J. (1998). Molecular genetics and the biological basis of color vision. Color Vision: Perspectives from Different Disciplines, 101, 119.Google Scholar
Neitz, M., Neitz, J., and Grishok, A. (1995). Polymorphism in the number of genes encoding long-wavelength sensitive cone pigments among males with normal colour vision. Vision Research, 35, 23952407.Google Scholar
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252(5008), 971974.Google Scholar
Neitz, J., Neitz, M., and Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision. Vision Research, 33(1), 117122.Google Scholar
Neitz, M., Neitz, J., and Jacobs, G. H. (1995). Genetic basis of photopigment variations in human dichromats. Vision Research, 35(15), 20952103.Google Scholar
Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B: Biological Sciences, 263(1370), 593599.Google Scholar
Pircher, M., and Zawadzki, R. (2017). Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging. Biomedical Optics Express, 8, 25362562.Google Scholar
Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles–Dominique, P., and Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356(1407), 229283.Google Scholar
Sanocki, E., Lindsey, D. T., Winderickx, J., Teller, D. Y., Deeb, S. S., and Motulsky, A. G. (1993). Serine/alanine amino acid polymorphism of the L and M cone pigments: Effects on Rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Research, 33(15), 21392152.Google Scholar
Sanocki, E., Shevell, S. K., and Winderickx, J. (1994). Serine/alanine amino acid polymorphism of the L-cone photopigment assessed by dual Rayleigh-type color matches. Vision Research, 34(3), 377382.Google Scholar
Satalich, T. (2015). Modeling color appearance. Paper presented at IMBS Conference, November 5–6, 2015, University of California, Irvine.Google Scholar
Sayim, B., Jameson, K. A., Alvarado, N., and Szeszel, M. (2005). Semantic and perceptual representations of color: Evidence of a shared color-naming function. Journal of Cognition and Culture, 5(3–4), 427486.Google Scholar
Schanda, J. (2007). CIE colorimetry. In Colorimetry: Understanding the CIE system, 3746. Hoboken, NJ: John Wiley & Sons.Google Scholar
Schnapf, J. L., Kraft, T. W., and Baylor, D. A. (1987). Spectral sensitivity of human cone photoreceptors. Nature, 325(6103), 439.Google Scholar
Schnapf, J. L., Kraft, T. W., Nunn, B. J., and Baylor, D. A. (1988). Spectral sensitivity of primate photoreceptors. Visual Neuroscience, 1(3), 255261.Google Scholar
Schneck, M. E., Haegerstrom-Portnoy, G., Lott, L. A., and Brabyn, J. A. (2014). Comparison of panel D-15 tests in a large Older Population. Optometry and Vision Science, 91(3): 284290. DOI:10.1097/OPX.0000000000000152.Google Scholar
Shaaban, S. A., and Deeb, S. S. (1998). Functional analysis of the promoters of the human red and green visual pigment genes. Investigative Ophthalmology & Visual Science, 39(6), 885896.Google Scholar
Sharpe, L. T., Stockman, A., Jägle, H., Knau, H., Klausen, G., Reitner, A., and Nathans, J. (1998). Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. Journal of Neuroscience, 18(23), 1005310069.Google Scholar
Shepard, R. N., and Cooper, L. A. (1992). Representation of colors in the blind, color-blind, and normally sighted. Psychological Science, 3(2), 97104.CrossRefGoogle Scholar
Shevell, S. K., and He, J. C. (1997). The visual photopigments of simple deuteranomalous trichromats inferred from color matching. Vision Research, 37(9), 11151127.Google Scholar
Shevell, S. K., He, J. C., Kainz, P., Neitz, J., and Neitz, M. (1998). Relating color discrimination to photopigment genes in deutan observers. Vision Research, 38(21), 33713376.CrossRefGoogle ScholarPubMed
Shinomori, K., Schefrin, B. E., and Werner, J. S. (2001). Age-related changes in wavelength discrimination. Journal of the Optical Society of America A, 18(2), 310318.CrossRefGoogle ScholarPubMed
Shyue, S. K., Boissinot, S., Schneider, H., et al. (1998). Molecular genetics of spectral tuning in New World monkey color vision. Journal of Molecular Evolution, 46(6), 697702.Google Scholar
Sjoberg, S. A., Neitz, M., Balding, S. D., and Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision. Vision Research, 38(21), 32133219.Google Scholar
Smith, T., and Guild, J. (1931). The CIE colorimetric standards and their use. Transactions of the Optical Society, 33(3), 73.Google Scholar
Smith, V.C. and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research; 15(2): 161171. DOI:10.1016/0042–6989(75)90203–5Google Scholar
Sparkes, R. S., Klisak, I., Kaufman, D., Mohandas, T., Tobin, A. J., and McGinnis, J. F. (1986). Assignment of the rhodopsin gene to human chromosome three, region 3q21–3q24 by in situ hybridization studies. Current Eye Research, 5(10), 797798.Google Scholar
Stockman, A. and Sharpe, L.T. (2000). The spectral sensitivities of the middle- and long-wavelength- sensitive cones derived from measurements in observers of known genotype. Vision Research; 40(13): 17111737. DOI:10.1016/S0042–6989(00)00021–3Google Scholar
Sumner, P., and Mollon, J. D. (2003). Colors of primate pelage and skin: Objective assessment of conspicuousness. American Journal of Primatology, 59(2), 6791.Google Scholar
Sun, Y., and Shevell, S. K. (2008). Rayleigh matches in carriers of inherited color vision defects: The contribution from the third L/M photopigment. Visual Neuroscience, 25(3), 455462.Google Scholar
Thomas, P. B. M., Formankiewicz, M. A., and Mollon, J. D. (2011). The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Research, 51(20), 22242233.Google Scholar
Trezona, P. W. (1973). The tetrachromatic colour match as a colorimetric technique. Vision Research, 13(1), 925.Google Scholar
Vollrath, D., Nathans, J., and Davis, R. W. (1988). Tandem array of human visual pigment genes at Xq28. Science, 240(4859), 16691672.Google Scholar
Wachtler, T., Doi, E., Lee, T.-W., and Sejnowski, T. J. (2007). Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. Journal of Vision, 7(8), 6,114. Available at www.journalofvision.org/content/7/8/6, DOI:10.1167/7.8.6.Google Scholar
Wang, Y., Smallwood, P. M., Cowan, M., Blesh, D., Lawler, A., and Nathans, J. (1999). Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. Proceedings of the National Academy of Sciences of the USA, 96(9), 52515256.Google Scholar
Wasserman, L. M., Szeszel, M. K., and Jameson, K. A. (2009). Long-range polymerase chain reaction analysis for specifying photopigment opsin gene polymorphisms. Technical Report Series# MBS 09–07. Institute for Mathematical Behavioral Sciences University of California at Irvine, Irvine, CA. Available at www.imbs.uci.edu/files/docs/technical/2009/mbs_09–07.pdfGoogle Scholar
Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). A Ser/Ala polymorphism in red photopigment underlies variation in colour matching. Nature, 356(6368), 431.Google Scholar
Yamaguchi, T., Motulsky, A. G., and Deeb, S. S. (1997). Visual pigment gene structure and expression in human retinae. Human Molecular Genetics, 6(7), 981990.Google Scholar
Yokoyama, S., and Radlwimmer, F. B. (1999). The molecular genetics of red and green color vision in mammals. Genetics, 153(2), 919932.Google Scholar
Zhao, Z., Hewett-Emmett, D., and Li, W. H. (1998). Frequent gene conversion between human red and green opsin genes. Journal of Molecular Evolution, 46(4), 494496.Google Scholar
Zhaoping, L., and Carroll, J. (2016). An analytical model of the influence of cone sensitivity and numerosity on the Rayleigh match. Journal of the Optical Society of America A, 33(3), A228A237.Google Scholar
Zhou, Y. H., Hewett-Emmett, D., Ward, J. P., and Li, W. H. (1997). Unexpected conservation of the X-linked color vision gene in nocturnal prosimians: Evidence from two bush babies. Journal of Molecular Evolution, 45(6), 610618.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Human Color Vision and Tetrachromacy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Human Color Vision and Tetrachromacy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Human Color Vision and Tetrachromacy
Available formats
×