Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T15:18:59.957Z Has data issue: false hasContentIssue false

Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record

Published online by Cambridge University Press:  09 February 2021

William I. Ausich
Affiliation:
Ohio State University

Summary

The history of life on earth is largely reconstructed from time-averaged accumulations of fossils. A glimpse at ecologic-time attributes and processes is relatively rare. However, the time-sensitive and predictability of echinoderm disarticulation makes them model organisms to determine post-mortem transportation and allows recognition of ecological-time data within paleocommunity accumulations. Unlike many other fossil groups, this has allowed research on many aspects of echinoderms and their paleocommunities, such as the distribution of soft tissues, assessment of the amount of fossil transportation prior to burial, determination of intraspecific variation, paleocommunity composition, estimation of relative abundance of taxa in paleocommunities, determination of attributes of niche differentiation, etc. Crinoids and echinoids have received the most amount of taphonomic research, and the patterns present in these two groups can be used to develop a more thorough understanding of all echinoderm clades.
Get access
Type
Element
Information
Online ISBN: 9781108893374
Publisher: Cambridge University Press
Print publication: 11 February 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, W. S. (1928). Handbook of Texas Cretaceous fossils. University of Texas Bulletin, 2838Google Scholar
Aigner, T. (1985). Storm depositional systems: Dynamic stratigraphy in modern and ancient shallow-marine sequences. Lecture Notes in the Earth Sciences, 3, New York, Springer-Verlag.Google Scholar
Allison, P. A. (1990). Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data. PALAIOS, 5, 432440.CrossRefGoogle Scholar
Aronson, R. B. (1987). Predation on fossil and Recent ophiuroids. Paleobiology, 13, 187192.CrossRefGoogle Scholar
Aronson, R. B., & Blake, D. B. (1997). Evolutionary paleoecology of dense ophiuroids populations. In Waters, J. A. & Maples, C. G., eds., Geobiology of Echinoderm. Paleontological Society Papers, 3, pp. 107119.CrossRefGoogle Scholar
Aslin, C. J. (1968). Echinoid preservation in Upper Estuarine Limestone of Blisworth Northamptonshire. Geological Magazine, 105, 506518.Google Scholar
Ausich, W. I. (1977). The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology, 51, 672686.Google Scholar
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54, 273288.Google Scholar
Ausich, W. I. (1983). Functional morphology and feeding dynamics of the Early Mississippian crinoid Barycrinus asteriscus. Journal of Paleontology, 57, 3141.Google Scholar
Ausich, W. I. (1997). Regional encrinites: A vanished lithofacies. In Brett, C. E. and Baird, G. C., eds., Paleontological Events: Stratigraphic, Ecologic and Evolutionary Implications. New York: Columbia University Press, pp. 509519.Google Scholar
Ausich, W. I. (2001). Echinoderm taphonomy. In Lawrence, J. and Jangoux, M., eds., Echinoderm Studies, Vol. 6. Rotterdam: A. A. Balkema Press, pp. 171227.Google Scholar
Ausich, W. I. (2016). Fossil species as data: A perspective from echinoderms. In Allmon, W. D. & Yacobucci, M. M., eds., Species and Speciation in the Fossil Record. Chicago, IL: University of Chicago Press, pp. 301311.Google Scholar
Ausich, W. I. , & Baumiller, T. K. (1993a). Taphonomic method for determining muscular articulations in fossil crinoids. PALAIOS, 8, 477484.CrossRefGoogle Scholar
Ausich, W. I., & Baumiller, T. K. (1993b). Column regeneration in an Ordovician crinoid (Echinodermata): Paleobiologic implications. Journal of Paleontology, 67, 10681070.CrossRefGoogle Scholar
Ausich, W. I. , & Baumiller, T. K. (1998). Disarticulation patterns in Ordovician crinoids: Implications for the evolutionary history of connective tissue in the Crinoidea. Lethaia, 31: 113123.Google Scholar
Ausich, W. I. , & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216, 173174.CrossRefGoogle ScholarPubMed
Ausich, W. I. , & Lane, N. G. (1980). Platform communities and rocks of the Borden Siltstone Delta (Mississippian) along the south shore of Monroe Reservoir, Monroe County, Indiana. In Shaver, R. H., ed., Field Trips 1980 from the Indiana University Campus, Bloomington: Indiana University, pp. 3667.Google Scholar
Ausich, W. I. , & Meyer, D. L. (1990). Origin and composition of carbonate buildups and associated facies in the Fort Payne Formation (Lower Mississippian, south-central Kentucky): An integrated sedimentologic and paleoecologic analysis. Geological Society of America Bulletin, 102, 129146.Google Scholar
Ausich, W. I. , & Sevastopulo, G. D. (1994). Taphonomy of Lower Carboniferous crinoids from the Hook Head Formation, Ireland. Lethaia, 27, 245256.Google Scholar
Balaústegui, Z, Muñiz, F., Nebelsick, J. H., Domènech, R., & Martinell, J. (2012). Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology, 91, 643661.Google Scholar
Bantz, H. –U. (1969). Echinoidea uns Plattenkalken der Altmühlabhre Biostratyinomie. Erlanger Geologische Abhandlunge, 78, 135.Google Scholar
Bathurst, R. G. C. (1976). Carbonate Sediments and Their Diagensis, 2nd ed. Amsterdam: Elsevier.Google Scholar
Baumiller, T. K. (2003). Experimental and biostratinomic disarticulation of crinoids: Taphonomic implications In Echinoderm Research 2001. In Féral, J.-P. & David, B., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. Lisse: Swets and Zietlinger, pp. 243248.Google Scholar
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Reviews in the Earth Sciences, 36, 221249.CrossRefGoogle Scholar
Baumiller, T. K., & Ausich, W. I. (1992). The “broken stick” model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissues in fossils. Paleobiology, 18, 288298.Google Scholar
Baumiller, T. K. , & Hagdorn, H. (1995). Taphonomy as a guide to functional morphology of Holocrinus, the first post-Paleozoic crinoid. Lethaia, 28, 221228.Google Scholar
Baumiller, T. K., Gahn, F. J., Hess, H. , & Messing, C. G. (2008). Taphonomy as an indicator of behavior among fossil crinoid. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology, Bloomington: Indiana University Press, pp. 720.Google Scholar
Baumiller, T. K., Llewellyn, G., Messing, C. G., & Ausich, W. I. (1995). Taphonomy and autotomy of isocrinid stalks: Influence of decay and autotomy. Palaios, 10, 8795.Google Scholar
Bell, B. M. (1976). A study of North American Edrioasteroidea. New York State Museum Memoir, 21, 447 p.Google Scholar
Bernardi, M., Boschele, S., Ferretti, P., & Avanzini, M. (2010). Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55, 479486.Google Scholar
Birkenmajer, K. (1977). Jurassic and Cretaceous lithostratigraphic unites of the Leinny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45, 1158.Google Scholar
Blake, D. B. (1967). Pre-burial abrasion of articulated asteroid skeletons. Paleobios, 2, 4 p.Google Scholar
Blake, D. B. (1975). A new west American Miocene species of the modern Australian ophiuroids. Ophiocrassota. Journal of Paleontology, 49, 501506.Google Scholar
Blake, D. B., & Zinsmeister, W. J. (1979). Two early Cenozoic sea stars (Class Asteroidea) from Seymour Island, Antarctica Peninsula. Journal of Paleontology, 53, 11451154.Google Scholar
Blake, D. B., Guensburg, T. E., Sprinkle, J. , & Sumrall, C. D. (2007). A new phylogenetically significant Early Ordovician asteroid (Echinodermata). Journal of Paleontology, 81, 11001101.Google Scholar
Blumer, M. (1951). Fossile Kohlenwassertoffe und Farbstoffe in Kalketeinen. Mikrochemie, 36/37, 10481055CrossRefGoogle Scholar
Blumer, M. (1960). Pigments of a fossil echinoderm. Nature, 188, 11001101.Google Scholar
Blumer, M. (1962a). The organic chemistry of a fossil – I: The structure of fringelite-pigments. Geochimica et Cosmochimica Acta, 26, 225227.CrossRefGoogle Scholar
Blumer, M. (1962b). The organic chemistry of a fossil – II: Some rare polynuclear hydrocarbons. Geochimica et Cosmochimica Acta, 26, 228230.Google Scholar
Blumer, M. (1965). Organic pigments: Their long-term fate. Science, 149, 722726.Google Scholar
Blyth Cain, J. D. (1968). Aspects of the depositional environment and paleoecology of crinoidal limestones. Scottish Journal of Geology, 4, 191208.Google Scholar
Bottjer, D. J. , & Ausich, W. I.. (1987). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12, 400420.Google Scholar
Breton, G. (1997). Deux étoiles de mer du Bajocien du nord-est du basin de Paris (France): leur allies actuels sond des fossils vivants. Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Museum du Havre, 84, 2334.Google Scholar
Brett, C. E. (1985). Pelmatozoan echinoderms on Silurian bioherms in western New York and Ontario. Journal of Paleontology, 59, 820838.Google Scholar
Brett, C. E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. PALAIOS, 10, 597616.Google Scholar
Brett, C. E., & Baird, G. (1986). Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. PALAIOS, 1, 207227.Google Scholar
Brett, C. E., & Baird, G. (1997). Epiboles, outages, and ecological evolutionary bioevents: Taphonomy, ecological, and biogeographic factors. In Brett, C. E. & Baird, G., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. New York: Columbia University Press, pp. 249284.Google Scholar
Brett, C. E., & Liddell, W. D. (1978). Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4, 329348.Google Scholar
Brett, C. E., & Seilacher, A. (1991). Fossil-Lagerstätten: a taphonomic consequence of event sedimentation. In Einsele, G., Ricken, W. & Seilacher, A., eds., Cycles and Events in Stratigraphy. New York, Berlin: Springer Verlag, pp. 283297.Google Scholar
Brett, C. E., & Taylor, W. L. (1997). The Homocrinus beds: Silurian Lagerstätten of western New York and southern Ontario. In Brett, C. E. & Baird, G., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. New York: Columbia University Press, pp. 181499.Google Scholar
Brett, C. E., Deline, B. L., & McLaughlin, P. I. (2008). Attachment, facies distribution, and life history strategies in crinoids from the Upper Ordovician of Kentucky. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 2352.Google Scholar
Brett, C. E., Dick, V. E., & Baird, G. C. (1991). Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale facies from Western New York. In E. Landing & C. E. Brett, eds., Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part II. New York State Museum Bulletin, 469, pp. 536.Google Scholar
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. In J. A. Waters & C. G. Maples, eds., Geobiology of Echinoderms. Paleontological Society Papers, 3, p147190.CrossRefGoogle Scholar
Bridges, P. H., Gutteridge, P., & Pickard, N. A. H. (1995). The environmental setting of Early Carboniferous mud-mounds. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H. & Pratt, B. R., eds., Carbonate Mud-mounds Their Origin and Evolution. Oxford: Blackwell Science, pp. 171190.CrossRefGoogle Scholar
Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 5965.Google Scholar
Brower, J. C. (1974). Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7, 259499.Google Scholar
Brower, J. C., & Veinus, J. (1978). Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74, 369506.Google Scholar
Carozzi, A. V., & Soderman, J. G. (1962). Petrography of Mississippian (Borden) crinoidal limestones at Stobo, Indiana. Journal of Sedimentary Petrology, 32, 397414.Google Scholar
Cassa, M. R., & Kissling, D. L. (1982). Carbonate facies of the Onondaga and Boise Blanc Formations Niagara Peninsula, Ontario. In Buehler, E. J. & Calkin, P. E., eds., Guidebook for Field Trips in Western New York, Northern Pennsylvania, and Adjacent Southern Ontario. New York State Geological Association 54th Annual Meeting, 55–97. Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 111128.Google Scholar
Cole, S. R. (2017). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91, 815828.Google Scholar
Cole, S. R. (2018). Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology, 62, 357373.Google Scholar
Cole, S. R. (2019). Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny. Paleobiology, doi: https://doi.org/10.1017/pab.2019.37.Google Scholar
Cole, S. R., Wright, D. W., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.CrossRefGoogle Scholar
Cornell, S. R., Brett, C. E., & Sumrall, C. D. (2003). Paleoecology and taphonomy of an edrioasteroid-dominated hardground association from tentaculitid limestones in the Early Devonian of New York: A Paleozoic rocky peritidal community. PALAIOS, 18, 212224.2.0.CO;2>CrossRefGoogle Scholar
Desrocher, A. (2006). Rocky shoreline deposits in the Lower Silurian (upper Llandovery, Telychian) Chicotte Formation, Anticosti Island, Quebec. Canadian Journal of Earth Sciences, 43, 12051214.Google Scholar
Dickson, J. A. D. (1995). Paleozoic Mg calcite preserved: Implications for the Carboniferous ocean. Geology, 23, 535538.Google Scholar
Dickson, J. A. D. (2001a). Diagenesis and crystal caskets: Echinoderm Mg calcite transformation. Dry Canyon, New Mexico, U.S.A. Journal of Sedimentary Research, 71, 764777.Google Scholar
Dickson, J. A. D. (2001b). Transformation of echinoid Mg calcite skeletons by heating. Geochimica, Geocosmochimica, Acta, 65, 443454.CrossRefGoogle Scholar
Dickson, J. A. D. (2002). Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science, 298, 12221224.Google Scholar
Dickson, J. A. D. (2004). Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research, 74, 355365.Google Scholar
Dickson, J. A. D. (2009). Mississippian paleocean chemistry from biotic and abiotic carbonate, Muleshoe Mound, Lake Valley Formation, New Mexico, U.S.A. – discussion. Journal of Sedimentary Research, 79, 4041.Google Scholar
Donovan, S. K. (1991). Taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. In Donovan, S. K., ed., The Process of Fossilization. London: Belhaven, pp. 241269.Google Scholar
Donovan, S. K., & Pawson, D. L. (1997). Proximal growth of the column in bathycrinid crinoids (Echinodermata) following decapitation. Bulletin of Marine Science, 61, 571579.Google Scholar
Donovan, S. K., & Schmidt, D. A. (2001). Survival of crinoid stems following decapitation: Evidence from the Ordovician and palaeobiological implications. Lethaia, 34, 263370.CrossRefGoogle Scholar
Durham, J. W. (1978). Polymorphism in the Pliocene sand dollar Merriamaster (Echinodermata). Journal of Paleontology, 52, 275286.Google Scholar
Durham, J. W. (1993). Observations on the Early Cambrian helicoplacoid echinoderms. Journal of Paleontology, 67, 590604.CrossRefGoogle Scholar
Emson, R. H., & Wilkie, I. C. (1980). Fission and autotomy in echinoderms. Oceanography and Marine Biology, 18, 155250.Google Scholar
Franzén, C. (1982). A Silurian crinoid thanatotope from Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 103, 469490.Google Scholar
Ginsburg, R. N. (2005). Disobedient sediments can feedback on their transportation, deposition, and geomorphology. Sedimentary Geology, 175, 918.Google Scholar
Gahn, F. J., & Baumiller, T. K. (2004). A bootstrap analysis for comparative taphonomy as applied to Early Mississippian (Kinderhookian) crinoids from the Wassonville cycle of Iowa. PALAIOS, 19, 1738.2.0.CO;2>CrossRefGoogle Scholar
Gale, A. S. (1986). Goniasteridae (Asteroidea, Echinodermata) from the Late Cretaceous of north-west Europe. I. Introduction. The genera Metopaster and Recurvaster. Mesozoic Research, 1, 169.Google Scholar
Glass, A. (2005). Two isorophid edrioasteroids (Echinodermata) encrusting conularids from the Hunsrück Slate (Lower Devonian, Emsian; Rheinisches Schiefergebirge) of Germany. Senckenbergiana lethaea, 85, 3137.Google Scholar
Glynn, P. W. (1984). An amphionid worm predator of the crown-of-thorns sea star and general predation on asteroids in eastern and western Pacific coral reefs. Bulletin of Marine Science, 35, 5471.Google Scholar
Goldring, R., & Laggenstrassen, F. (1979). Open shelf and near-shore clastic facies in the Devonian. Special Papers in Palaeontology, 23, 8197.Google Scholar
Goldring, B., & Stephenson, D. G. (1972). The depositional environment of three starfish beds. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 10, 611624.Google Scholar
Gorzelak, P. (2018). Microstructural evidence for stalk autotomy in Holocrinus: The oldest stem-group isocrinid. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 202207. DOI: doi.org/10.1016/j.palaeo.2018.06.036.Google Scholar
Gorzelak, P., Głuchowski, E., & Salamon, M. (2014). Reassessing the improbability of a muscular crinoid stem. Scientific Reports, 4. DOI: 10:1038/srep06049.CrossRefGoogle ScholarPubMed
Gorzelak, P., Krzykawski, T., & Stolarski, J. (2016). Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions. Global and Planetary Change, 144, 142157.Google Scholar
Gorzelak, P., Stolarski, J., Mazur, M., & Meibom, A. (2012). Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons. Geobiology. DOI: 10:1111/gbi.12012.Google Scholar
Greb, S. F., Potter, P. E., Meyer, D. L., & Ausich, W. I. (2009). Mud Mounds, Paleoslumps, Crinoids, and More; The Geology of the Fort Payne Formation at Lake Cumberland, South-central Kentucky. Kentucky Geological Survey Guidebook. www.professionalgeologist.org/guidebook.thtm; last accessed March 27, 2019.Google Scholar
Greenstein, B. J. (1989). Mass mortality of the West-Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): A natural experiment in taphonomy. PALAIOS, 4, 487492.Google Scholar
Greenstein, B. J. (1990). Taphonomic biasing of subfossil echinoid populations adjacent to St. Croix, U.S.V.I. In D. K. Larve, ed., Transactions of the 12th International Caribbean Congress, Miami Geological Society, pp. 290300.Google Scholar
Greenstein, B. J. (1991). An integrated study of echinoid taphonomy: Predictions for the fossil record of four echinoid families. PALAIOS, 6, 519540.Google Scholar
Greenstein, B. J. (1992). Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea). Paleobiology, 18, 5079.CrossRefGoogle Scholar
Grun, T. B., Mancosu, A., Bealaústegui, Z., & Nebelsick, J. H. (2018). The taphonomy of Clypeaster: A paleontological tool to identify stable structures in natural shell systems. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 289, 189202. DOI:10.1127/njgpa/2018/0737.Google Scholar
Guensburg, T. E. (1988). Systematics, functional morphology, and life modes of late Ordovician edrioasteroids, Orchard Creek Shale, southern Illinois. Journal of Paleontology, 62, 110126.Google Scholar
Guensburg, T. E., & Sprinkle, J. (1994). Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early Ordovician of eastern Utah. Fieldiana (Geology), 29, 43 p.Google Scholar
Guensburg, T. E., & Sprinkle, J. (1995). Origin of echinoderms in the Paleozoic evolutionary fauna: The role of substrates. PALAIOS, 10, 437453.Google Scholar
Gutschick, R. C., Sandberg, C. A., & Sando, W. J. (1980). Mississippian shelf margin and carbonate platform from Montana to Nevada. In T. D. Fouch & E. R. Magathan, eds., Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 111128.Google Scholar
Hagdorn, H., & Schulz, M. (1996). Echinodermen-Konservatlagerstätten im Unteren Muschelkalk Osthessens, 1. Die Bimbacher Seelilienbank von Grossenlüder-Bimbach. Geologisches Jahrbuch Hessen, 124, 97122.Google Scholar
Hagdorn, H., Berra, F., & Tintori, A. (2018). Encrinus aculeatus von Meyer, 1849 (Crinoidea, Echinodermata) from the Middle Triassic of Bal Brembana (Alpi Orobie, Bergamo, Italy). Swiss Journal of Paleontology, 137, 211224. DOI: doi.org/10.1007/s13358-018-1270-0.CrossRefGoogle Scholar
Hess, H. (1972a). Chariocrinus n. gen. für Isocrinus andraea Desor aus dem unteren Hauptrogenstein (Bajocien) des Basler Juras. Eclogae Geologicae Helvetiae, 65, 197210.Google Scholar
Hess, H. (1972b). The fringilites of the Jurassic Sea. CIBA-GEIGY Journal, 2, 1417.Google Scholar
Hess, H. (1985). Schlangensterne und Seelilien aus dem unteren Lias von Hallau (Kanton Schaffhausen). Sonderdruck aus den Mitteilungen der Naturforschenden Gesellschoft Schaffhausen, 33, 115.Google Scholar
Jackson, W. D., & De Keyser, T. (1984). Microfacies analysis of Muleshoe Mound (Early Mississippian), Sacramento Mountains, New Mexico: A point-source depositional model Part II. West Texas Geological Society Bulletin, 23 (6), 610.Google Scholar
Jaekel, O. (1894). Über die Morphogenie und Phylogenic der Crinoiden. Sitzungsberichten der Gesellschaft Naturforschender Freunde, Jargang 1894, 4, 101121.Google Scholar
Jagt, J. W. M., Thuy, B., Donovan, S. K., et al. (2014). A starfish bed in the middle Miocene Grand Bay Formation of Carriacou, The Grenadines (West Indies). Geological Magazine, 151, 381393.Google Scholar
James, N. P., Desrochers, A., & Kyser, T. K. (2015). Polygenetic (polyphase) karsted hardground omission surfaces in lower Silurian neritic limestones: Anticosti Island, eastern Canada. Journal of Sedimentary Research, 85, 11381154.CrossRefGoogle Scholar
Kammer, T. W., Tissue, E. C., & Wilson, M. A. (1987). Neoisorophusella, a new edrioasteroid genus from the Upper Mississippian of the Eastern United States. Journal of Paleontology, 61, 10331042.Google Scholar
Kent, W. N., & Rawson, R. R. (1980). Depositional environments of the Mississippian Redwall Limestone in northeastern Arizona. In T. D. Fouch & E. R. Magathan, eds., Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 101–109.Google Scholar
Kesling, R. V. (1969). A new brittle-star from the Middle Devonian Arkona Shale of Ontario. University of Michigan Museum of Paleontology Contributions, 23, 3751.Google Scholar
Kesling, R. V., & Le Vasseur, D. (1971). Strataster ohioensis, a new Early Mississippian brittle-star, and the paleoecology of its community. Contributions to the Museum of Paleontology, University of Michigan, 23, 305341.Google Scholar
Kidwell, S. M., & Baumiller, T. K. (1990). Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology, 16, 247271.Google Scholar
Kidwell, S. M., & Jablonski, D. (1983). Taphonomic feedback: Ecological consequences of shell accumulation. In Tevesz, M. J. S. & McCall, P. L., eds., Biotic Interactions in Recent and Fossil Communities. New York: Plenum Press, pp. 195248.Google Scholar
Kidwell, S. M., Fürsich, & T. Aigner, . (1986). Conceptual framework for the analysis and classification of fossil concentrations. PALAIOS, 1, 228238.Google Scholar
Kier, P. M. (1968). Triassic echinoids from the North America. Journal of Paleontology, 42, 10001006Google Scholar
Kier, P. M. (1977). The poor fossil record of the regular echinoid. Paleobiology, 3, 168174.Google Scholar
Koch, D. L., & Strimple, H. L. (1968). A new upper Devonian cystoid attached to a discontinuity surface. Iowa Geological Survey Report of Investigations, 5, 49 p.Google Scholar
Kotake, N. (1993). Tiering of trace fossil assemblages in Plio-Pleistocene bathyal deposits of Boso Peninsula, Japan. PALAIOS, 8, 544553.CrossRefGoogle Scholar
Krivicich, E. B., Ausich, W. I., & Meyer, D. L. (2014). Crinoid assemblages from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) from Kentucky, Tennessee, and Alabama. Journal of Paleontology, 88, 11541162.CrossRefGoogle Scholar
Kroh, A., & Nebelsick, J. H. (2003). Echinoid assemblages as a tool for palaeoenvironmental reconstruction – An example from the early Miocene of Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 201, 157177.CrossRefGoogle Scholar
Kühl, G., Bartels, C., Briggs, D. E. G., & Rust, J. (2012). Visions of a Vanished World. New Haven: Yale University Press, 128 p.Google Scholar
Lane, H. R. (1978). The Burlington Shelf (Mississippian, north-central North America). Geologica et Paleontologica, 12, 165176.Google Scholar
Lane, H. R., & DeKeyser, T. L. (1980). Paleogeography of the late Early Mississippian (Tournaisian 3) in the central and southwestern United States. In T. D. Fouch and Magathan, E., eds., Paleozoic paleogeography of west-central United States: West-central United States. West-Central United States Paleogeographic Symposium, 1, pp. 149162.Google Scholar
Lane, N. G. (1963). The Berkeley crinoid collection from Crawsfordsville, Indiana. Journal of Paleontology, 3, 10011008.Google Scholar
Lane, N. G. (1971). Crinoids and reefs. Proceedings of the First North American Paleontological convention, 1, 14301443.Google Scholar
Lane, N. G. (1973). Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian. Indiana). California University Publications in the Geological Sciences, 99, 141 p.Google Scholar
Lane, N. G., & Ausich, W. I. (1995). Interreef crinoid faunas from the Mississinewa Shale Member of the Wabash Formation (northern Indiana: Silurian; Echinodermata). Journal of Paleontology, 69, 10901106.Google Scholar
Lane, N. G., & Macurda, D. B., Jr. (1975). New evidence for muscular articulations in Paleozoic crinoids. Paleobiology, 1, 5962.Google Scholar
Lapham, K. E., Ausich, W. I., & Lane, N. G. (1976). A technique for developing the stereom of fossil crinoid ossicles. Journal of Paleontology, 50, 245248.Google Scholar
Latch, R., Trzęsoik, D., & Szopa., P. (2014). Life and death: an intriguing history of a Jurassic crinoid. Paleontological Journal, 18, 4044.Google Scholar
Laudon, L. R., & Beane, B. H. (1937). The crinoid fauna of the Hampton Formation at LeGrand, Iowa. University of Iowa Studies, 17, 227272.Google Scholar
Le Clare, E. E. (1993). Effects of anatomy and environment on the relative preservation of asteroids: a biomechanical observation. PALAIOS, 8, 233243.Google Scholar
Lees, A., & Miller, J. (1995). Waulsortian banks. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., & Pratt, B. R., eds. Carbonate Mudmounds Their Origin and Evolution Oxford: Blackwell Science, pp. 191271.Google Scholar
Lewis, R. (1980). Taphonomy. In Broadhead, T. W. and Waters, J. A., eds., Echinoderms: Notes for a Short Course. Knoxville: University of Tennessee Department of Geological Sciences Studies in Geology, pp. 4058.Google Scholar
Lewis, R. (1986). Relative rates of skeletal disarticulation in modern ophiuroids and Paleozoic crinoids. Geological Society of America Abstracts with Programs, 18, 672.Google Scholar
Liddell, W. D. (1975). Recent crinoid biostratinomy. Geological Society of America, Abstracts with Programs, 7, 1169.Google Scholar
Lin, J.-P., Ausich, W. I., & Zhao, Y.-L. (2008). Settling strategy of stalked echinoderms from the Kaili Biota (middle Cambrian), Guizhou Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 213221.CrossRefGoogle Scholar
Lin, J.-P., Ausich, W. I., Zhao, Y.-L., & Peng, J. (2007). Taphonomy, palaeocological implications, and colouration of Cambrian gogiid echinoderms from Guizhou Province, China. Geological Magazine, 145, 1736. doi:10.1017/S0016756807003901 (published on paper in 2008 volume)Google Scholar
Lin, J.-P., Ausich, W. I., Zhao, Y.-L., Peng, J., & Tai, T. S. (2015). Crypto-helical body plan in partially disarticulated gogiids from the Cambrian of South China. Palaeoworld, 24, 393399.Google Scholar
Lowenstam, H. A. (1957). Niagaran reefs in the Great Lakes region. Geological Society of America Memoir, 67, 215248.Google Scholar
MacQueen, R. W., Ghent, E. D., & Davies, G. R. (1974). Magnesium distribution in living and fossil specimens of the echinoid Peronella lesueuia Agassiz, Shark Bay, Western Australia. Journal of Sedimentary Petrology, 44, 6069.Google Scholar
Macurda, D. B., Jr., & Meyer, D. L. (1975). The microstructure of the crinoid endoskeleton. University of Kansas Paleontological Institute Paper, 74, 22 p.Google Scholar
Macurda, D. B., Jr., Meyer, D. L., & Roux, M. (1978). The crinoid stereom. In Moore, R. C. & Teichert, C, eds., Treatise on Invertebrate Paleontology, Part T., Echinodermata 2, 1. Lawrence, KS, and Boulder, CO: University of Kansas Press and Geological Society of America, pp. 217232.Google Scholar
Mancousa, A., & Nebelsick, J. H. (2013). Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoids beds of Sardinia. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 173186.CrossRefGoogle Scholar
Mancousa, A., & Nebelsick, J. H. (2015). The origin and paleoecology of clypeasteroid assemblages from different shelf settings of the Miocene of Sardinia, Italy. PALAIOS, 30, 273287.Google Scholar
Mancousa, A., & Nebelsick, J. H. (2017). Ecomorphological and taphonomic gradients in clypeasteroid-dominated echinoderm assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontologica Polonica, 62, 627646.Google Scholar
Maples, C. G., & Archer, A. W. (1989). Paleoecological and sedimentological significance of bioturbated crinoid calyces. PALAIOS, 4, 379383.Google Scholar
Meyer, D. L. (1971). Post-mortem disarticulation of Recent crinoids and ophiuroids under natural conditions. Geological Society of America, Abstracts with Programs, 3, 645.Google Scholar
Meyer, D. L. (1990). Population paleoecology and comparative taphonomy of two edrioasteroid (Echinodermata) pavements: Upper Ordovician of Kentucky and Ohio. Historical Biology, 4, 155178.Google Scholar
Meyer, D. L., & Ausich, W. I. (2019). Ecological and taphonomic fidelity in fossil crinoid accumulations. PALAIOS, 34, 575583. DOI: http://dx.doi.org/10.2110/palo.2019.032.Google Scholar
Meyer, D. L., & Meyer, K. B. (1986). Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. PALAIOS, 1, 294301.Google Scholar
Meyer, D. L., & Weaver, T. R. (1980). Biostratinomy of crinoid-dominated communities in the lower Bull Fork Formation (Upper Ordovician) of southwestern Ohio. Geological Society of America Abstracts with Programs, 12, 251.Google Scholar
Meyer, D. L., Ausich, W. I., Bohl, D. T., Norris, W. A., & Potter, P. E. (1995). Carbonate mud-mounds in the Fort Payne Formation (lower Carboniferous) Cumberland Saddle region, Kentucky and Tennessee USA. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., & Pratt, B. R., eds., Carbonate Mudmounds Their Origin and Evolution Oxford: Blackwell Science, pp. 273287.Google Scholar
Meyer, D. L., Ausich, W. I., & Terry, R. E. (1990). Comparative taphonomy of echinoderms in carbonate facies: Fort Payne Formation (Lower Mississippian) of Kentucky and Tennessee. PALAIOS, 4, 533552. (this 1989 issue not published until 1990).Google Scholar
Meyer, D. L., Tobin, R. C., Pryor, W. A., et al. (eds.) (1981). Stratigraphy, sedimentology, and paleoecology of the Cincinnatian Series (Upper Ordovician) in the vicinity of Cincinnati, Ohio. In Roberts, T. G., (ed.), Geological Society of America Cincinnati 1981, Field Trip Guidebooks, Falls Church, VA: American Geological Institute pp. 3172.Google Scholar
Milam, M. J., Meyer, D. L., Dattilo, B. J., & Hunda, B. R. (2017). Taphonomy of an Ordovician crinoid Lagerstätte from Kentucky. Palaios, 32: 166180, figs. 115.Google Scholar
Miller, J. S. (1821). A natural history of the Crinoidea, or lily-shaped animals; with observations on the genera, Asteria, Euryale, Comatula and Marsupites. Bristol, UK: Bryan and Co.Google Scholar
Moore, R. C., & Laudon, L. R. (1943). Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 151 p.Google Scholar
Moran, P. J. (1992). Preliminary observations of the decomposition of crown-of-thorns starfish, Acanthaster planci (L.). Coral Reefs, 11, 115118.Google Scholar
Müller, A. H. (1963). Lehrbuch der Paläozoologie I. Allgemeine Grudlagen, Second Edition. Jena: G. Fisher.Google Scholar
Nagle, J. S. (1967). Wave and current orientation of shells. Journal of Sedimentary Petrology, 37, 11241138.Google Scholar
Nebelsick, J. H. (1992). The northern bay of Safaga (Red Sea, Egypt): An actuopaläontological approach, III distribution of echinoids. Beiträge zut Paläontologie von Österreich, 17, 579Google Scholar
Nebelsick, J. H. (1995a). Actuopalaeontological investigations of echinoids: The potential for taphonomic interpretations. In Emson, R., Smith, A. & Campbell, A., eds., Echinoderm Research, 1995, Rotterdam: Balkema Press, pp. 209214.Google Scholar
Nebelsick, J. H. (1995b). Uses and limitations of actuopalaeontological investigations on echinoids. Geobios, 18, 329336.Google Scholar
Nebelsick, J. H. (1995c). Comparative taphonomy of Clypeasteroids. Ecologae Geologicue Helvetiae 88, 685693.Google Scholar
Nebelsick, J. H. (1996). Biodiversity of shallow-water Red Sea echinoids: implications for the fossil record. Journal of the Marine Biological Association. U.K. 76, 185194.Google Scholar
Nebelsick, J. H. (2008). Taphonomy of the irregular echinoid Clypeaster humilis from the Red Sea: Implications for taxonomic resolution along taphonomic gradients. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 115128.Google Scholar
Nebelsick, J. H., Dynowski, J. F., Grossmann, J. N., & Tötzke, C. (2015). Echinoderms: Hierarchically organized light weight skeletons. In Hamm, C., ed., Evolution of Lightweight Structures: Analyses and Technical Applications, Biologically-Inspired Systems, Vol. 6, London: Springer-Verlag, 141156. DOI 10.1007/978–017-9398–8_8. ISBN-10: 9401793972.Google Scholar
Nebelsick, J. H., & Kampfer, S. (1994). Taphonomy of Cypeaster humilis and Echinodiscus auritus (Echinoidea, Clypeateroide) from the Red Sea. In David, B., Guille, A., Feral, J.-P., and Roux, M., eds., Echinoderms Through Time, Rotterdam: Balkema, pp. 803808.Google Scholar
Nebelsick, J. H., & Kroh, A. (1999). Palaeoecology and taphonomy of Parascutella bed from the lower Miocene of the Eastern Desert, Egypt. In Candia Carnevali, M. D. & Bonasoro, F, eds., Echinoderm Research 1998. Rotterdam: A.A. Balkema Press, p.353.Google Scholar
Nebelsick, J. H., & Mancosu, A. (2021). The taphonomy of echinoids: skeletal morphologies, environmental factors, and preservational pathways. Element in preparation.Google Scholar
Newell, N. D., Imbie, J., Purdy, E. G., & Thurber, D. L. (1959). Organism communities and bottom facies, Great Bahamas Bank. Bulletin of the American Museum of Natural History, 117, 177228.Google Scholar
Oji, T., & Amemiya, S. (1998). Survival of crinoid stalk fragments and its taphonomic implications. Paleontological Research, 2, 6770.Google Scholar
Okulitch, V. J., & Tovell, W. M. (1941). A crinoidal marking in the Dundas Formation at Toronto. Journal of Paleontology, 15, 89.Google Scholar
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2008). Crinoid biomarkers (Borden Group, Mississippian): Implications for phylogeny. In Ausich, W. I. and Webster, G. D., eds., Echinoderm Paleobiology, Bloomington: Indiana University Press, pp. 290306.Google Scholar
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2013). Isolation and characterization of the earliest taxon-specific organic molecules (Mississippian, Crinoidea). Geology, 41, 347350. (doi:10.1130/G33792.1)Google Scholar
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2016). Deep echinoderm phylogeny preserved in organic molecules from Paleozoic fossils. Geology, 4, 379382. [doi:10.1130/G37761.1]Google Scholar
Parsley, R. (2009). Morphology, ontogeny, and heterochrony in Lower and Middle Cambrian gogiids (Eocrinoidea, Echinodermata) from Guizhou Province, China. Palaeontological Journal, 43, 14061414.Google Scholar
Parsley, R. L., & Zhou, Y. (2006). Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology, 80, 10581071.Google Scholar
Pawson, D. L. (1980). Holothurians. In Broadhead, T. W. & Waters, J. A., eds., Echinoderm Notes for a Short Course. Knoxville: University of Tennessee Studies in Geology, 3, 175189.Google Scholar
Purdy, E. G. (1963). Recent calcium carbonate facies on the Great Bahamas Bank, 2, sedimentary facies. Journal of Geology, 71, 472497.Google Scholar
Régis, M. B. (1977). Organisation microstructurale du stéréome de l’Echinoïde Paracentrotus lifidus Lamarck et ses éventuelles incidences physiologiques. Comptes Rendus de l’Académie des Sciences Paris, Séries D, 285, 189192.Google Scholar
Reid, M., Bordy, E. M., & Taylor, W. (2015). Taphonomy and sedimentology of an echinoderm obrution bed in the Lower Devonian Voorstehoek Formation (Bokkeveld Group, Cape Supergroup) of South Africa. Journal of African Earth Sciences, 110, 135149.Google Scholar
Rhenberg, E. C., Ausich, W. I., & Meyer, D. L. (2016). Actinocrinitidae from the Lower Mississippian Fort Payne Formation of Kentucky and Alabama. Journal of Paleontology, 90,11481159. dx.doi.org/10.1017/jpa.2016.85CrossRefGoogle Scholar
Riddle, S. W., Wulff, J. I. & Ausich, W. I. (1988). Biomechanics and stereomic microstructure of the Gilbertsocrinus tuberosus column. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L., eds., Echinoderm Biology. Rotterdam: A.A. Balkema, pp. 641648.Google Scholar
Rosenkranz, D. (1971). Zur sedimentology und Okölogie von Echinoderm-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 138, 221258.Google Scholar
Rousseau, J., Gale, A. S., & Thuy, B. (2018). New articulated asteroids (Echinodermata, Asteroidea) and ophiuroids (Echinodermata, Ophiuroidea) from the Late Jurassic (Volgian/Tithian) of central Spitsbergen. European Journal of Taxonomy, 411, 16.Google Scholar
Roux, M. (1970). Introduction à l’etude des microstructures des tiges de crinöids. Geobios, 3, 7998.Google Scholar
Roux, M. (1974a). Les principaux modes d’articulation des ossicules du squelete des Crinöides pédonculés actuels, Observations microstructurales et consequences pour l’interprétation des fossils. Compte Rendu de l’Academie des Sciences, Paris, 278, 20152018.Google Scholar
Roux, M. (1974b). Observations au microscope électronique à bakayage de quelques articulations entre les ossicules de sequelette des Crinöides pédonculés actuels (Bathycrinidae et Isocrinina). Travaux du Labroratoire de Paléontologie, Orsay, 10 p.Google Scholar
Roux, M. (1975). Microstructural analysis of the crinoid stem. University of Kansas Paleontological Contributions, Paper, 75, 17.Google Scholar
Sadler, M., & Lewis, R. D. (1996). Actualistic studies of taphonomy and ichnology the of irregular echinoid Meoma verntricosa at San Salvador, Bahamas. Geological Society of America Abstracts with Programs, 28, 293294.Google Scholar
Savarese, M., Dodd, J. R., & Lane, N. G. (1997). Taphonomic and sedimentologic implications of crinoid intraskeletal porosity. Lethaia, 29, 141156.Google Scholar
Schäfer, W. (1972). Ecology and Paleoecology of Marine Environments. Chicago: University of Chicago Press.Google Scholar
Schneider, C. L., Sprinkle, J., & Ryder, D. (2005). Pennsylvanian (Late Carboniferous) echinoids from the Winchell Formation, North-Central Texas, USA. Journal of Paleontology, 79, 745762.Google Scholar
Schumacher, G. A. (1986). Storm processes and crinoid preservation. Abstracts, Fourth North American Paleontological Convention, Boulder, 12–15 August, p. A41.Google Scholar
Schwarzacher, W. (1961). Petrology and structure of some Loer Carboniferous reefs in northwestern Ireland. Journal of Sedimentary Petrology, 45, 481503.Google Scholar
Schwarzacher, W. (1963). Orientation of crinoid by current action. Journal of Sedimentary Geology, 33, 580586.Google Scholar
Seilacher, A. (1960). Strömumgsanzeichen in Hunsrückshiefer Notizblatt des Hessischen. Landesant für Bodenforschung zu Wiesbaden, 88, 88106.Google Scholar
Seilacher, A. (1968). Origin and diagenesis of the Oriskany Sandstone (Lower Devonian, Appalachians) as reflected in the fossil shells. In Müller, B. & Friedman, G. M., eds., Recent Developments in Sedimentary Geology in Central Europe, New York: Springer-Verlag, pp. 175185.Google Scholar
Seilacher, A. (1979). Constructional morphology of sand dollars. Paleobiology, 5, 120.Google Scholar
Sevastopulo, G. D., & Keegan, J. B. (1980). A technique for revealing the stereom structure of fossil crinoids. Palaeontology, 23, 749756.Google Scholar
Shroat-Lewis, R. A., McKinney, M. L., Brett, C. E., Meyer, D. L., & Sumrall, C. D. (2011). Paleoecological assessment of an edrioasteroid (Echinodermata)-encrusted hardground from the Upper Ordovician (Maysvillian) Bellevue Member, Maysville, Kentucky. PALAIOS, 26, 470483.Google Scholar
Shroat-Lewis, R. A., Sumrall, C. D., McKinney, M. L., & Meyer, D. L. (2014). A paleoecological comparison of two edrioasteroid (Echinodermata) encrusted pavements from the Upper Ordovician Correyville Formation of Florence, Kentucky and the Miamitown Shale of Sharonville, Ohio, U.S.A. PALAIOS, 29, 154169.Google Scholar
Shroat-Lewis, R. A., Greenwood, E. N., & Sumrall, C. D. (2019). Paleoecological analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (Upper Mississippian) Kinkaid Limestone of southern Illinois. PALAIOS, 34, 146158.Google Scholar
Smith, A. B. (1980). Stereom microstructure of echinoid tests. Special Papers in Palaeontology, 25, 181.Google Scholar
Smith, A. B. (1984). Echinoid Paleobiology. London:George Allen and Unwin.Google Scholar
Smith, A. B., & Gallemí, J. (1991). Middle Triassic holothurians from northern Spain. Palaeontology, 34, 4976.Google Scholar
Smith, A. B., & Paul, C. R. C. (1982). Revision of the class Cyclocystoidea (Echinodermata). Philosophical Transactions of the Royal Society of London, B, Biological Series, 296, 577684.Google Scholar
Smith, A. B., & Rader, W. L. (2009). Echinoid diversity, preservation potential and sequence stratigraphic cycles in the Glen Rose Formation (early Albian, Early Cretaceous), Texas, USA. Palaeobiodiversity and Palaeoenvironments, 89, 752.Google Scholar
Smith, A. B., Reich, M., & Zamora, A. (2009). Morphology and ecological setting of the basal echinoid genus Rhenechinus from the early Devonian of Spain. Acta Palaeontologica Polonica, 58, 751762.Google Scholar
Smosma, R. (1988). Paleogeographic reconstruction of the Lower Devonian Helderberg Group in the Appalachian Basin. In N. J. McMillan, A. F. Embry & D. J. Glass, eds., Devonian of the World, Proceedings of the Second International Symposium on the Devonian of the World, Calgary, Canada, 1, 265275. Canadian Society of Petroleum Geologists.Google Scholar
Spencer, W. K., & Wright, C. W. (1966). Asterozoans. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part V, Echinodermata 3. Lawrence, KS, Boulder, CO: University of Kansas Paleontological Institute and Geological Society of America, pp. U4U107.)Google Scholar
Sprinkle, J. (1973). Morphology and evolution of blastozoan echinoderms. Harvard Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Sprinkle, J. (1982). Echinoderm zones and faunas of the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1, 4656.Google Scholar
Sprinkle, J., and Guensburg, T. E. (1995). Origin of echinoderms in the Paleozoic Evolutionary Fauna: The role of substrates. PALAIOS, 10, 437453.Google Scholar
Sprinkle, J., & Gutschick, R. C. (1967). Costaloblastus, a channel fill blastoids from the Sappington Formation of Montana. Journal of Paleontology, 41, 385402.Google Scholar
Sroka, S. D. (1988). Preliminary studies on a complete fossil holothurian from the Middle Pennsylvanian Francis Shale of Illinois. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L., eds., Echinoderm Biology, Proceedings of the Sixth International Echinoderm Conference, Victoria, British Columbia. 23–28 August, 1987. Rotterdam: Balkema Press, pp. 159160.Google Scholar
Sroka, S. D., & Blake, D. B. (1997). Echinodermata. In Shabica, C. W., and Hay, A. A., eds., Richardson’s Guide to the Fossil Fauna of Mazon Creek. Chicago, IL: Northeastern University Press, pp. 223225.Google Scholar
Stevenson, A., Gahn, F. J., Baumiller, T. K., & Sevastopulo, G. D. (2017). Predation on feather stars by regular echinoids as evidenced by laboratory and field observations and its paleobiological implications. Paleobiology, 43, 274285.Google Scholar
Stolarski, J., Gorzelak, P., Mazur, M., Marrocchi, Y., & Meibon, A. (2009). Nanostructural and geochemical features of the Jurassic isocrinids columnal ossicles. Acta Palaeontological Polonica, 54, 6975.Google Scholar
Strimple, H. L., & Moore, R. C. (1971). Crinoids from the LaSalle Limestone (Pennsylvanian) Illinois. University of Kansas Paleontological Institute, Echinodermata Article 11, 48 p.Google Scholar
Sumrall, C. D. (2000). The biologic implications of an edrioasteroid attached to a pleurocystitid rhombiferan. Journal of Paleontology, 84, 356359.Google Scholar
Sumrall, C. D. (2001). Paleoecology and taphonomy of two new edrioasteroids from a Mississippian hardground in Kentucky. Journal of Paleontology, 75, 136146Google Scholar
Sumrall, C. D. (2010). The systematics of a new upper Ordovician edrioasteroid pavement from northern Kentucky. Journal of Paleontology, 84, 783794.Google Scholar
Sumrall, C. D., Brett, C. E., Work, P. T., & Meyer, D. L. (2001). Taphonomy and paleoecology of an edrioasteroid encrusted hardground in the Bellevue Formation at Maysville, Kentucky. In T. J. Algeo & C. E. Brett, eds., Sequence, Cycle, and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Region. Kentucky Geological Survey, Kentucky Guidebook Series 12, 1, 123131.Google Scholar
Sumrall, C. D., Sprinkle, J., & Bonem, R. M. (2006). An edrioasteroid-dominated echinoderm assemblage from a Lower Pennsylvanian marine conglomerate in Oklahoma. Journal of Paleontology, 80, 229244.Google Scholar
Taylor, W. L., & Brett, C. E. (1996). Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. PALAIOS, 11, 118140.Google Scholar
Telford, M. (1985a). Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology, 105, 114124.Google Scholar
Telford, M. (1985b). Structural analysis of the test of Echinocyamus pusillus (O. F. Müller). In Keegan, B. F. and O’Conner, B. D. S., eds., Proceedings of the Fifth International Echinoderm Conference. Rotterdam: Balkema, pp. 353360.Google Scholar
Thompka, J. R., Lewis, R.D., Mosher, D., Pabian, R. K., & Holterhoff, P. F. (2011). Genus-level taphonomic variation within cladid crinoids from the Upper Pennsylvanian Barnsdall Formation, northeastern Oklahoma. PALAIOS, 26, 377389.Google Scholar
Tetreault, D. K. (1995). An unusual Silurian arthropod/echinoderm dominated soft-bodied fauna from the Eramosa Member (Ludlow) of the Guelph Formation, southern Bruce Peninsula, Ontario, Canada. Geological Society of America Abstracts with Programs, 27, A114.Google Scholar
Ubaghs, G. (1963). Rhopalocystis detombsei n. gen., n. sp. Eocrinoïde de l’Ordovicien inférieur (Trémadocien supériur de Sud marocain. Notes du Service Géologique du Marocain, 23, 2545.Google Scholar
Veitch, M. A., Messing, C. G., & Baumiller, T. K. (2015). Contractile connective tissue (CCT) in the stalk of the bourgueticrinid crinoid, Democrinus: functional, ecological, and evolutionary implications. Geological Society of America Abstracts with Programs, 47(7), 855.Google Scholar
Wachsmuth, C., & Springer, F. (1880–1886). Revision of the Palaeocrinoidea. Proceedings of the Academy of Natural Sciences of Philadelphia Pt. I. The families Ichthyocrinidae and Cyathocrinidae (1880), pp. 226–378, (separate repaged pp. 1–153). Pt. II. Family Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and Actinocrinidae (1881), pp. 177–411, (separate repaged, pp. 1–237). Pt. III, Sec. 1. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1885), pp. 225–364 (separate repaged, pp. 1–138). Pt. III, Sec. 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1886), pp. 64226 (separate repaged to continue with section 1, pp. 139–302).Google Scholar
Waddington, J. B. (1980). A soft substrata community with edrioasteroids from the Verulum Formation (Middle Ordovician) at Gambridge, Ontario. Canadian Journal of Earth Sciences, 17, 674749.Google Scholar
Weber, J. N. (1969). The incorporation of magnesium into the skeletal calcite of echinoderms. American Journal of Science, 267, 537566.Google Scholar
Welch, J. R. (1984). The asteroid Lepidasterella montanaensis n. sp., from the upper Mississippian Bear Gulch Formation of Montana. Journal of Paleontology, 58, 843851.Google Scholar
Wilson, J. L. (1975). Carbonate Facies in Geologic History. New York: Springer-Verlag, 471 p.Google Scholar
Witzke, B. J., Tassier-Surine, S. A., Anderson, R. R., Bunker, B. J., & Artz, J. A. (2002). Pleistocene, Mississippian, and Devonian Stratigraphy of the Burlington, Iowa, area. Iowa Geological Survey Guidebook, 23, 23–51 p.Google Scholar
Wolkenstein, K., Głuchowski, E., Gross, J. H., & Marynowski, L. (2008). Hypericrinoid pigments in millericrinids from the lower Kimmeridgian of the Holy Cross Mountains (Poland). PALAIOS, 23, 773777.Google Scholar
Wolkenstein, K., Gross, J. H., Heinz, F., & Schöler, H. F. (2006). Preservation of hypericine and related polycyclic quinone pigments in fossil crinoids. Proceedings of the Royal Society, B–Biological Sciences, 273, 451456, doi:10.1098/rspb.2005.3358Google Scholar
Wright, D. F. (2017a). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91, 799814. doi: 10.1017/jpa.2016.141.Google Scholar
Wright, D. F. (2017b). Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7: 13745 | DOI:10.1038/s41598-017-13979-9.Google Scholar
Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., & Rhenberg, E. C., (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, 91, 829846. doi 10.1917/jpa.2016.142; published online 02–22-17.Google Scholar
Zhao, Y., Parsley, R. L., & Peng, J. (2008). Basal middle Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China. Journal of Paleontology, 82, 415422.Google Scholar
Zamora, S., Gozalo, R. & Linñán, E. (2009). Middle Cambrian gogiid echinoderms from Northeastern Spain: Taxonomy, palaeoecology, and palaeogeographic implications. Acta Palaeontologica Polonica, 54, 253265.Google Scholar
Zittel, K. A. von. (1895). Grundzüge der Palaeontologie (Palaeozoologie), 1st edit. München: R. Oldenbourg.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record
Available formats
×