Skip to main content Accessibility help
Hostname: page-component-7d8f8d645b-clzrd Total loading time: 0 Render date: 2023-05-28T17:50:14.771Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Pelagic Barite

Tracer of Ocean Productivity and a Recorder of Isotopic Compositions of Seawater S, O, Sr, Ca and Ba

Published online by Cambridge University Press:  23 December 2020

Weiqi Yao
University of Toronto
Elizabeth Griffith
Ohio State University
Adina Paytan
University of California, Santa Cruz


Reconstruction of ocean paleoproductivity and paleochemistry is paramount to understanding global biogeochemical cycles such as the carbon, oxygen and sulfur cycles and the responses of these cycles to changes in climate and tectonics. Paleo-reconstruction involves the application of various tracers that record seawater compositions, which in turn may be used to infer oceanic processes. Several important tracers are incorporated into pelagic barite, an authigenic mineral that forms in the water column. Here we summarize the utility of pelagic barite for the reconstruction of export production and as a recorder of seawater S, O, Sr, Ca and Ba.
Get access
Online ISBN: 9781108847162
Publisher: Cambridge University Press
Print publication: 28 January 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Primary Sources

Dehairs, E., Stroobants, N., and Goeyens, L. (1991) Suspended barite as a tracer of biological activity in the Southern Ocean. Mar. Chem. 35, 399410.CrossRefGoogle Scholar
In this article the distribution of particulate barite suspended in seawater is described showing a subsurface maximum associated with the depth of organic matter regeneration in the water column and the oxygen minimum zone.Google Scholar
Dymond, J., Suess, E., and Lyle, M. (1992) Barium in deep-sea sediments: A geochemical proxy for paleoproductivity. Paleoceanography 7, 163181.CrossRefGoogle Scholar
The first quantitative use of biogenic barium to reconstruct export productivity. This is based on relationship between Ba and organic C in sediment trap material and core top sediments.Google Scholar
Ganeshram, R. S., Francois, R., Commeau, J., and Brown-Leger, S. L. (2003) An experimental investigation of barite formation in seawater. Geochim. Cosmochim. Acta 67, 25992605.CrossRefGoogle Scholar
An experimental mesocosm setup that simulated barite production in seawater from decaying organic matter from phytoplankton cultures. This shows that barite forms regardless of the specific organism used.Google Scholar
Griffith, E. M., and Paytan, A. (2012) Barite in the ocean: Occurrence, geochemistry and palaeoceangraphic applications. Sedimentology 59, 18171835.CrossRefGoogle Scholar
A review article summarizing the formation and use of barite in marine sediments for palaeoceanographic applications.Google Scholar
Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas, E. (2008a) A dynamic marine calcium cycle during the past 28 million years. Science 322, 16711674.CrossRefGoogle ScholarPubMed
The first report on Ca isotope analyses in pelagic barite and their fluctuations over the past 28 million years.Google Scholar
Griffith, E. M., Paytan, A., Wortmann, U. G., Eisenhauer, A., and Scher, H. D. (2018b) Combining metal and nonmetal isotopic measurements in barite to identify mode of formation. Chem. Geol. 500, 148158.CrossRefGoogle Scholar
In this article the authors investigate the isotopic signatures of barite that is formed in different terrestrial and marine settings and use the differences to distinguish modes of formation.Google Scholar
Horner, T. J., Kinsley, C. W., and Nielsen, S. G. (2015) Barium isotopic fractionation in seawater mediated by barite cycling and oceanic circulation. Earth Planet. Sci. Lett. 430, 511522.CrossRefGoogle Scholar
Barium isotopes of dissolved and particulate Ba in seawater are reported and the distribution linked to formation and dissolution of barite in the marine water column.Google Scholar
Martinez-Ruiz, F., Jroundi, F., Paytan, A., Guerra-Tschuschke, I., Abad, M. M., and González-Muñoz, M.T. (2018) Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies. Nat. Commun. 9, 1619.CrossRefGoogle ScholarPubMed
Barite is formed in seawater media by bacterial mediation and the particulate barite crystals that are formed are investigated under the scanning electron microscope to reveal nucleation on phosphorus-rich biofilms.Google Scholar
Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F. (1999) The marine barite saturation state of the world’s oceans. Mar. Chem. 65, 253261.CrossRefGoogle Scholar
A thorough investigation of the concentrations on Ba in seawater and the saturation state of seawater with respect to barite. The authors demonstrate that much of the seawater is undersaturated with respect to barite.Google Scholar
Paytan, A., and Griffith, E. M. (2007) Marine barite: Recorder of variations in ocean export productivity. Deep Sea Res. Part II 54, 687705.CrossRefGoogle Scholar
A review on the formation of barite in seawater and its utility as a proxy for export productivity.Google Scholar
Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., and Herbert, T. (1993) Marine barite as a monitor of seawater strontium isotope composition. Nature 366, 445449.CrossRefGoogle Scholar
The first report on Sr isotopes in pelagic barite over the past 35 million years clearly demonstrating that barite incorporates and preserves the seawater Sr isotopic composition.Google Scholar
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H. (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304, 16631665.CrossRefGoogle ScholarPubMed
A high-resolution seawater sulfate S isotope curve over the past 130 million years derived from pelagic barite and an interpretation of the causes of the observed fluctuations.Google Scholar
Turchyn, A. V., and Schrag, D. P. (2004) Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science 303, 2004–2007.CrossRefGoogle ScholarPubMed
A high-resolution seawater sulfate O isotope curve over the past 10 million years derived from pelagic barite and an interpretation of the causes of the observed fluctuations.Google Scholar

Secondary Sources

Aharon, P., and Fu, B. (2000) Microbial sulfate reduction rates and sulfur oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 64, 233246.CrossRefGoogle Scholar
Alt, J. C., Laverne, C., Coggon, R. M., et al. (2010) Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem. Geophy. Geosy. 11, Q10010.CrossRefGoogle Scholar
Aquilina, L., Dia, A. N., Boulegue, J., Bourgois, J., and Fouillac, A. M. (1997) Massive barite deposits in the convergent margin off Peru: Implications for fluid circulation. Geochim. Cosmochim. Acta 61, 12331245.CrossRefGoogle Scholar
Averyt, K. B., and Paytan, A. (2003) Empirical partition coefficients for Sr and Ca in marine barite: Implications for reconstructing seawater Sr and Ca concentrations. Geochem. Geophy. Geosy. 4, 1043.CrossRefGoogle Scholar
Averyt, K. B., and Paytan, A. (2004) A comparison of multiple proxies for export production in the equatorial Pacific. Paleoceanography 19, PA4003.CrossRefGoogle Scholar
Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L. (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171174.CrossRefGoogle ScholarPubMed
Balci, N., Mayer, B., Shanks, W. C., and Mandernack, K. W. (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim. Cosmochim. Acta 77, 335351.CrossRefGoogle Scholar
Bernstein, R. E., and Byrne, R. H. (2004) Acantharians and marine barite. Mar. Chem. 86, 4550.CrossRefGoogle Scholar
Bishop, J. K. B. (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332, 341343.CrossRefGoogle Scholar
Blättler, C. L., and Higgins, J. A. (2017) Testing Urey’s carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241251.CrossRefGoogle Scholar
Bonn, W. J., and Gingele, F. X. (1998) Palaeoproductivity at the Antarctic continental margin: Opal and barium records for the last 400 ka. Palaeogeogr. Palaeoclimatol. Palaeoecol. 139, 195211.CrossRefGoogle Scholar
Böttcher, M.E., Thamdrup, B., Gehre, M., and Theune, A. (2005) 34S/32S and 18O/16O fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geochem. J. 22, 219226.Google Scholar
Bridgestock, L., Hsieh, Y. T., Porcelli, D., Homoky, W. B., Bryan, A., and Henderson, G. M. (2018) Controls on the barium isotope compositions of marine sediments. Earth Planet. Sci. Lett. 481, 101–10.CrossRefGoogle Scholar
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B. (1982) Variation of sea-water 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516519.2.0.CO;2>CrossRefGoogle Scholar
Carter, S. C., Griffith, E. M., and Penman, D. E. (2016) Peak intervals of equatorial Pacific export production during the middle Miocene climate transition. Geology 44, 923926.CrossRefGoogle Scholar
Chiba, H., and Sakai, H. (1985) Oxygen Isotope exchange-rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49, 9931000.CrossRefGoogle Scholar
Chow, T. J., and Goldberg, E.D. (1960) On the marine geochemistry of barium. Geochim. Cosmochim. Acta 20, 192198.CrossRefGoogle Scholar
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I. (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199260.CrossRefGoogle Scholar
Dean, W. E., Gardner, J. V., and Piper, D. A. (1997) Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochim. Cosmochim. Acta 61, 45074518.CrossRefGoogle Scholar
Dehairs, F., Chesselet, R., and Jedwab, J. (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet. Sci. Lett. 49, 528550.CrossRefGoogle Scholar
Dehairs, E., Fagel, N., Antia, A. N., Peinert, R., Elskens, M., and Goeyens, L. (2000) Export production in the Bay of Biscay as estimated from barium-barite in settling material: A comparison with new production. Deep Sea Res. Part I 47, 583601.CrossRefGoogle Scholar
De La Rocha, L., and DePaolo, D. J. (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289, 11761178.CrossRefGoogle ScholarPubMed
Dymond, J., and Collier, R. (1996) Particulate barium fluxes and their relationships to biological productivity. Deep Sea Res. Part II 43, 12831308.CrossRefGoogle Scholar
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W. (2003) A comparison between excess barium and barite as indicators of carbon export. Paleoceanography 18, 21.121.13.Google Scholar
Eickmann, B., Thorseth, I. H., Peters, M., Strauss, H., Brocker, M., and Pedersen, R. B. (2014) Barite in hydrothermal environments as a recorder of subseafloor processes: A multiple-isotope study from the Loki’s Castle vent field. Geobiology 12, 308321.CrossRefGoogle ScholarPubMed
Erhardt, A. M., Pälike, H., and Paytan, A. (2013) High-resolution record of export production in the eastern equatorial Pacific across the Eocene-Oligocene transition and relationships to global climatic records. Paleoceanography 28, 130142.CrossRefGoogle Scholar
Esser, B. K., and Volpe, A. M. (2002) At-sea high-resolution chemical mapping: Extreme barium depletion in North Pacific surface water. Mar. Chem. 79, 6779.CrossRefGoogle Scholar
Fantle, M. S. (2010) Evaluating the Ca isotope proxy. Am J Sci. 310, 194230.CrossRefGoogle Scholar
Fantle, M. S. (2015) Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. Geochim Cosmochim Acta 148, 378401.CrossRefGoogle Scholar
Fantle, M. S., and DePaolo, D. J. (2005) Variations in the marine Ca cycle over the past 20 million years. Earth Planet. Sci. Lett. 237, 102117.CrossRefGoogle Scholar
Fantle, M. S., and DePaolo, D. J. (2007) Ca isotopes in carbonate sediment and pore fluid from ODP 807a: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochem. Cosmochim. Acta 71, 25242546.CrossRefGoogle Scholar
Fantle, M. S., and Tipper, E. T. (2014) Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci. Rev. 129, 148177.CrossRefGoogle Scholar
Farkas, J., Buhl, D., Blenkinsop, J., and Veizer, J. (2007) Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates. Earth Planet. Sci. Lett. 253, 96111.CrossRefGoogle Scholar
Feng, D., and Roberts, H. 2011. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico. Earth Planet. Sci. Lett. 309, 8999.Google Scholar
Finlay, B. J., Hetherington, N. B., and Davison, W. (1983) Active biological participation in lacustrine barium chemistry. Geochim. Cosmochim. Acta 47, 13251329.CrossRefGoogle Scholar
Francois, R., Honjo, S., Manganini, S. J., and Ravizza, G. E. (1995) Biogenic barium fluxes to the deep: Implications for paleoproductivity reconstruction. Global Biogeochem. Cy. 9, 289303.CrossRefGoogle Scholar
Fritz, P., Basharmal, G. M., Drimmie, R. J., Ibsen, J., and Qureshi, R. M. (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. 79, 99105.Google Scholar
Goldberg, E. D., Somayajulu, B. L. K., Gallway, J., Kaplann, I. R., and Faure, G. (1969) Difference between barites of marine and continental origins. Geochim. Cosmochim. Acta 33, 287289.CrossRefGoogle Scholar
González-Muñoz, M. T., Fernandez-Luque, B., Martinez-Ruiz, F., et al. (2003) Precipitation of barite by Myxococcus xanthus: Possible implications for the biogeochemical cycle of barium. Appl. Environ. Microbiol. 69, 57225725.CrossRefGoogle ScholarPubMed
González-Muñoz, M. T., Martinez-Ruiz, F., Morcillo, F., Martin-Ramos, J. D., and Paytan, A. (2012) Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology 40, 675678.CrossRefGoogle Scholar
Gooday, A. J., and Nott, J. A. (1982) Intracellular barite crystals in two Xenophyaphores, Aschenonella ramuliformia and Galatheammina sp. with comments on the taxonomy of A. Ramuliformia. J. Mar. Biol. Assoc. UK 62, 595605.CrossRefGoogle Scholar
Goodfellow, W. D., Grapes, K., Cameron, B., and Franklin, J. M. (1993) Hydrothermal alteration associated with massive sulfide deposits, middle valley, northern Juan de Fuca ridge. Can. Mineral. 31, 10251060.Google Scholar
Greinert, J., Bollwerk, S. M., Derkachev, A., Bohrmann, G., and Suess, E. (2002) Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: Precipitation processes at cold seep sites. Earth Planet. Sci. Lett. 203, 165180.CrossRefGoogle Scholar
Griffith, E.M., Calhoun, M., Thomas, E., et al.(2010) Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene). Paleoceanography 25, PA3212.CrossRefGoogle Scholar
Griffith, E. M., Fantle, M., Eisenhauer, A., Paytan, A., and Bullen, T.D. (2015) Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 419, 8192.CrossRefGoogle Scholar
Griffith, E. M., Paytan, A., Eisenhauer, A., Bullen, T. D., and Thomas, E. (2011) Seawater calcium isotope ratios across the Eocene-Oligocene transition. Geology 39, 683686.CrossRefGoogle Scholar
Griffith, E. M., Schauble, E. A., Bullen, T. D., and Paytan, A. (2008b) Characterization of calcium isotopes in natural and synthetic barite. Geochim. Cosmochim. Acta 72, 56415658.CrossRefGoogle Scholar
Heuser, A., Eisenhauer, A., Böhm, F., et al. (2005) Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20, PA2013.CrossRefGoogle Scholar
Hippler, D., Eisenhauer, A., and Nagler, T. F. (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim. Cosmochim. Acta 70, 90100.CrossRefGoogle Scholar
Hodell, D. A., Mead, G. A., and Mueller, P. A. (1990) Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol. 80, 291307.Google Scholar
Jaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., and Röhl, U. (2005) Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, 10031006.CrossRefGoogle ScholarPubMed
Jaquet, S. H. M., Dehairs, F., Elskens, M., Savoye, N., and Cardinal, D. (2007) Barium cycling along WOCE SR3 line in the Southern Ocean. Mar. Chem. 106, 3345.CrossRefGoogle Scholar
Jørgensen, B. B. (1982) Mineralization of organic-matter in the sea bed – the role of sulfate reduction. Nature 296, 643645.CrossRefGoogle Scholar
Jørgensen, B. B., and Kasten, S. (2006) Sulfur cycling and methane oxidation. In Schulz, H. D. and Zabel, M. (eds.),. Marine Geochemistry, 2nd ed., pp. 271309.Berlin: Springer.CrossRefGoogle Scholar
Kim, J., Lee, I., and Lee, K.-Y. (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res. 109, B12210.CrossRefGoogle Scholar
Krabbenhöft, A., Eisenhauer, A., Böhm, F., et al.(2010) Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river water. Geochim. Cosmochim. Acta 74, 40974109.CrossRefGoogle Scholar
Ma, Z., Gray, E., Thomas, E., Murphy, B., Zachos, J., and Paytan, A. (2014). Carbon sequestration during the Palaeocene-Eocene Thermal Maximum by an efficient biological pump. Nat. Geosci. 7, 382388.CrossRefGoogle Scholar
Ma, Z., Ravelo, A. C., Liu, Z., Zhou, L., and Paytan, A. (2015) Export production fluctuations in the eastern equatorial Pacific during Pliocene-Pleistocene: Reconstruction using barite accumulation rates. Paleoceanogr. Paleocl. 30, 14551469.CrossRefGoogle Scholar
Markovic, S., Paytan, A., Li, H., and Wortmann, U. G. (2016) A revised seawater sulfate oxygen isotope record for the last 4 Myr. Geochim. Cosmochim. Acta 175, 239251.CrossRefGoogle Scholar
Markovic, S., Paytan, A., and Wortmann, U. G. (2015) Pleistocene sediment offloading and the global sulfur cycle. Biogeoscience 12, 30433060.CrossRefGoogle Scholar
Martin, E. E., Macdougall, J. D., Herbert, T. D., Paytan, A., and Kastner, M. (1995) Strontium and neodymium isotopic analyses of marine barite separates. Geochim. Cosmochim. Acta 59, 13531361.CrossRefGoogle Scholar
Masterson, A. L., Wing, B. A., Paytan, A., Farquhar, J., and Johnston, D. T. (2016) The minor sulfur isotope composition of Cretaceous and Cenozoic seawater sulfate. Paleoceanography 31, 779788.CrossRefGoogle Scholar
McArthur, J. M., Howarth, R. J., and Shields, G. A. (2012) Strontium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), The Geologic Time Scale 2012, pp. 127144. Philadelphia: Elsevier.CrossRefGoogle Scholar
Mearon, S., Paytan, A., and Bralower, T. J. (2003) Cretaceous strontium isotope stratigraphy using marine barite. Geology 31, 1518.2.0.CO;2>CrossRefGoogle Scholar
Moles, N. R., Boyce, A. J., and Fallick, A. E. (2014) Abundant sulphate in the Neoproterozoic ocean: Implications of constant δ34S barite in the Aberfeldy SEDEX deposits, Scottish Dalradian. In Jenkin, G. R. T., Lusty, P. A. J., McDonald, I., Smith, M. P., Boyce, A. J., and Wilkinson, J. J. (eds.), Ore Deposits in an Evolving Earth, Vol. 393, pp. 189212. Special Publication. London: Geological Society.Google Scholar
Monnin, C., and Cividini, D. (2006) The saturation state of the world’s ocean with respect to (Ba, Sr)SO4 solid solutions. Geochim. Cosmochim. Acta 70, 32903298.CrossRefGoogle Scholar
Nürnberg, C. C., Bohrmann, G., and Schlüter, M. (1997) Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000-year record. Paleoceanography 12, 574603.CrossRefGoogle Scholar
Olivarez Lyle, A., and Lyle, M. W. (2006) Missing organic carbon in Eocene marine sediments: Is the metabolism the biological feedback that maintains end-member climates? Paleoceanogr. Paleocl. 21, PA2007.Google Scholar
Palmer, M. R., and Edmond, J. M. (1989) The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92, 1126.CrossRefGoogle Scholar
Paytan, A., Eisenhauer, A., Wallmann, K. J. G., Griffith, E. M., and Ridgwell, A. (2017) Stable and radiogenic Sr isotopes in barite – Clues on the links between weathering, climate and the C cycle (invited). EOS Trans. AGU, Fall Meet. Suppl., Abstract PP14A-01.Google Scholar
Paytan, A., and Kastner, M. (1996) Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth Planet. Sci. Lett. 142, 439450.CrossRefGoogle Scholar
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H. (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282, 14591462.CrossRefGoogle ScholarPubMed
Paytan, A., Kastner, M., and Chavez, F. P. (1996a) Glacial to interglacial fluctuations in productivity in the Equatorial Pacific as indicated by marine barite. Science 274, 13551357.CrossRefGoogle ScholarPubMed
Paytan, A., Mearon, S., Cobb, K., and Kastner, M. (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30, 747750.2.0.CO;2>CrossRefGoogle Scholar
Paytan, A., Moore, W. S., and Kastner, M. (1996b) Sedimentation rate as determined by 266Ra activity in marine barite. Geochim. Cosmochim. Acta 60, 41314319.CrossRefGoogle Scholar
Pearce, C. R., Parkinson, I. J., Gaillardet, J., Charlier, B. L. A., Mokadem, F., and Burton, K. W. (2015) Reassessing the stable (δ88/86Sr) and radiogenic (δ87/86Sr) strontium isotopic composition of marine inputs. Geochim. Cosmochim. Acta 157, 125146.CrossRefGoogle Scholar
Rees, C. E., Jenkins, W. J., and Monster, J. (1978) The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta 42, 377381.CrossRefGoogle Scholar
Rushdi, A., McManus, J., and Collier, R. (2000) Marine barite and celestite saturation in seawater. Mar. Chem. 69, 1931.CrossRefGoogle Scholar
Rutsch, H. J., Mangini, A., Bonai, G., Dittrich-Hannen, B., Kubik, P. W., Suter, M., and Segl, M. (1995) 10Be and Ba concentrations in West African sediments trace productivity in the past. Earth Planet. Sci. Lett. 133, 129143.CrossRefGoogle Scholar
Sakai, H., Casadevall, T. J., and Moore, J. G. (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim. Cosmochim. Acta 46, 729738.CrossRefGoogle Scholar
Schmitz, B. (1987) Barium, equatorial high productivity, and the wandering of the Indian continent. Paleoceanography 2, 6377.CrossRefGoogle Scholar
Sime, N. G., De La Rocha, C. L., and Galy, A. (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera. Earth Planet. Sci. Lett. 232, 5166.CrossRefGoogle Scholar
Skulan, J., DePaolo, D. J., and Owens, T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61, 25052510.CrossRefGoogle Scholar
Sternberg, E., Jeandel, C., Robin, E., and Souhaut, N. (2008) Seasonal cycle of suspended barite in the Mediterranean Sea. Geochim. Cosmochim. Acta 72, 40204034.CrossRefGoogle Scholar
Stevens, E. W. N., Bailey, J. V., Flood, B. E., et al. (2015) Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Geobiology 13, 588603.CrossRefGoogle Scholar
Strauss, H. (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Paleoecol. 132, 97118.CrossRefGoogle Scholar
Torres, M. E., Brumsack, H. J., Bohrmann, G., and Emeis, K. C. (1996) Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in authigenic fronts. Chem. Geol. 127, 125139.CrossRefGoogle Scholar
Turchyn, A. V., and Schrag, D. P. (2006) Cenozoic evolution of the sulfur cycle: Insight from oxygen isotopes in marine sulfate. Earth Planet. Sci. Lett. 241, 763779.CrossRefGoogle Scholar
van Beek, P., and Reyss, J. L. (2001) 226Ra in marine barite: New constraints on supported 226Ra. Earth Planet. Sci. Lett. 187, 147161.CrossRefGoogle Scholar
Van Stempvoort, D. R., and Krouse, H. R. (1994) Controls of d18O in sulfate: Review of experimental data and application to specific environments. In Alpers, N. and Blowes, D. W. (eds.), Environmental Geochemistry of Sulfide Oxidation, Vol. 550, pp. 446480. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Vollstaedt, H., Eisenhauer, A., Wallann, K., et al. (2014) The Phanerozoic δ88/86Sr record of seawater: New constrains on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249265.CrossRefGoogle Scholar
von Allmen, K., Böttcher, M. E., Samankassou, E., and Nägler, T. F. (2010) Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chem. Geol., 277, 7077.CrossRefGoogle Scholar
Widanagamage, I. H., Schauble, E. A., Scher, H. D., and Griffith, E. M. (2014) Stable Sr isotope fractionation in synthetic barite. Geochim. Cosmochim. Acta 147, 5874.CrossRefGoogle Scholar
Wortmann, U. G., and Paytan, A. (2012) Rapid variability of seawater chemistry over the past 130 million years. Science 337, 334336.CrossRefGoogle ScholarPubMed
Yao, W., Paytan, A., Griffith, E. M., Martinez-Ruiz, F., Markovic, S., and Wortmann, U.G. (2020) A revised seawater sulfate S-isotope curve for the Eocene. Chem. Geol. 532, 119382.CrossRefGoogle Scholar
Yao, W., Paytan, A., and Wortmann, U. G. (2018) Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 361, 804806.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pelagic Barite
Available formats

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Pelagic Barite
Available formats

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Pelagic Barite
Available formats