Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-25T20:42:50.299Z Has data issue: false hasContentIssue false

Animal Minds

Published online by Cambridge University Press:  07 March 2024

Marta Halina
Affiliation:
University of Cambridge

Summary

Animal minds are complex and diverse, making them difficult to study. This Element focuses on a question that has received much attention in the field of comparative cognition: 'Do animals reason about unobservable variables like force and mental states?' The Element shows how researchers design studies and gather evidence to address this question. Despite the many virtues of current methods, hypotheses in comparative cognition are often underdetermined by the empirical evidence. Given this, philosophers and scientists have recently called for additional behavioral constraints on theorizing in the field. The Element endorses this proposal (known as 'signature testing'), while also arguing that studies on animal minds would benefit from drawing more heavily on neuroscience and biology.
Get access
Type
Element
Information
Online ISBN: 9781009119962
Publisher: Cambridge University Press
Print publication: 04 April 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. (1992). Mental content. The British Journal for the Philosophy of Science, 43(4), 537553.CrossRefGoogle Scholar
Allen, C., & Bekoff, M. (1997). Species of Mind: The Philosophy and Biology of Cognitive Ethology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Amiez, C., Sallet, J., Novek, J., et al. (2021). Chimpanzee histology and functional brain imaging show that the paracingulate sulcus is not human-specific. Communications Biology, 4, 112.CrossRefGoogle Scholar
Amodio, P., Boeckle, M., Schnell, A. K. et al. (2019). Grow smart and die young: Why did cephalopods evolve intelligence? Trends in Ecology & Evolution, 34(1), 4556.CrossRefGoogle ScholarPubMed
Andrews, K. (2005). Chimpanzee theory of mind: Looking in all the wrong places? Mind and Language, 20(5), 521536.CrossRefGoogle Scholar
Andrews, K. (2012). Do Apes Read Minds? Toward a New Folk Psychology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Andrews, K. (2017). Chimpanzee mind reading: Don’t stop believing. Philosophy Compass, 12(1), e12394.CrossRefGoogle Scholar
Andrews, K. (2020). How to Study Animal Minds. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Arbib, M. A., Liebal, K., & Pika, S. (2008). Primate vocalization, gesture, and the evolution of human language. Current Anthropology, 49(6), 10531076.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 3746.CrossRefGoogle ScholarPubMed
Barron, A. B., Halina, M., & Klein, C. (2023). Transitions in cognitive evolution. Proceedings of the Royal Society B, 290(2002), 20230671.CrossRefGoogle ScholarPubMed
Bausman, W., & Halina, M. (2018). Not null enough: Pseudo-null hypotheses in community ecology and comparative psychology. Biology & Philosophy, 33(3–4), 120.CrossRefGoogle Scholar
Bechtel, W. (2008). Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience. New York: Routledge.Google Scholar
Bechtel, W. (2009). Generalization and discovery by assuming conserved mechanisms: Cross-species research on circadian oscillators. Philosophy of Science, 76(5), 762773.CrossRefGoogle Scholar
Bechtel, W. (2016a). Investigating neural representations: The tale of place cells. Synthese, 193, 12871321.CrossRefGoogle Scholar
Bechtel, W. (2016b). Using computational models to discover and understand mechanisms. Studies in History and Philosophy of Science Part A, 56, 113121.CrossRefGoogle ScholarPubMed
Bechtel, W. (forthcoming). The epistemology of evidence in cognitive neuroscience. In Skipper, R. Jr., Allen, C., Ankeny, R. A., et al., eds., Philosophy and the Life Sciences: A Reader. Cambridge, MA: MIT Press.Google Scholar
Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41(3), 321333.CrossRefGoogle ScholarPubMed
Bechtel, W., & Mundale, J. (1999). Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science, 66(2), 175207.CrossRefGoogle Scholar
Bechtel, W., & Richardson, R. C. (2010). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Bender, A., Beller, S., & Medin, D. L. (2017). Causal Cognition and Culture. In Waldmann, M. R., ed., The Oxford Handbook of Causal Reasoning. Oxford: Oxford University Press, pp. 717738.Google Scholar
Bermúdez, J. L. (2003). The Domain of Folk Psychology. Royal Institute of Philosophy Supplement, 53, 2548.CrossRefGoogle Scholar
Bermúdez, J. L. (2008). The reinterpretation hypothesis: Explanation or redescription? Behavioral and Brain Sciences, 31, 131132.CrossRefGoogle Scholar
Berthet, V., & de Gardelle, V. (2023). The heuristics-and-biases inventory: An open-source tool to explore individual differences in rationality. Frontiers in Psychology, 14, 19.CrossRefGoogle ScholarPubMed
Birch, J. (2022). The search for invertebrate consciousness. Noûs, 56, 133153.CrossRefGoogle ScholarPubMed
Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006). Causal reasoning in rats. Science, 311(5763), 10201022.CrossRefGoogle ScholarPubMed
Boesch, C. (2007). What makes us human (Homo sapiens)? The challenge of cognitive cross-species comparison. Journal of Comparative Psychology, 121(3), 227240.CrossRefGoogle ScholarPubMed
Boone, W., & Piccinini, G. (2016a). The cognitive neuroscience revolution. Synthese, 193, 15091534.CrossRefGoogle Scholar
Boone, W., & Piccinini, G. (2016b). Mechanistic abstraction. Philosophy of Science, 83(5), 686697.CrossRefGoogle Scholar
Boyle, A. (2019). Mapping the minds of others. Review of Philosophy and Psychology, 10(4), 747767.CrossRefGoogle Scholar
Boyle, A. (2020). The impure phenomenology of episodic memory. Mind & Language, 35(5), 641660.CrossRefGoogle Scholar
Boyle, A. (2021). Replication, uncertainty and progress in comparative cognition. Animal Behavior and Cognition, 8(2), 296304.CrossRefGoogle Scholar
Bräuer, J., Call, J., & Tomasello, M. (2007). Chimpanzees really know what others can see in a competitive situation. Animal Cognition, 10(4), 439448.CrossRefGoogle Scholar
Brembs, B. (2003). Operant conditioning in invertebrates. Current Opinion in Neurobiology, 13(6), 710717.CrossRefGoogle ScholarPubMed
Brown, R. L. (2022). Mapping out the landscape: A multi-dimensional approach to behavioural innovation. Philosophy of Science, 89(5), 11761185.CrossRefGoogle Scholar
Buckner, C. (2011). Two approaches to the distinction between cognition and “mere association.” International Journal of Comparative Psychology, 24(4), 314348.CrossRefGoogle Scholar
Buckner, C. (2013). Morgan’s Canon, meet Hume’s Dictum: Avoiding anthropofabulation in cross-species comparisons. Biology & Philosophy, 28(5), 853871.CrossRefGoogle Scholar
Buckner, C. (2014). The semantic problem(s) with research on animal mind-reading. Mind & Language, 29(5), 566589.CrossRefGoogle Scholar
Burnston, D., Sheredos, B., & Bechtel, W. (2011). HIT on the psychometric approach. Psychological Inquiry, 22(2), 108114.CrossRefGoogle Scholar
Cao, R. (2022). Multiple realizability and the spirit of functionalism. Synthese, 200(6), 506.CrossRefGoogle Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187192.CrossRefGoogle ScholarPubMed
Chang, H. (2004). Inventing Temperature: Measurement and Scientific Progress. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cheke, L. G., Loissel, E., & Clayton, N. S. (2012). How do children solve Aesop’s Fable? PloS One, 7(7), e40574.CrossRefGoogle ScholarPubMed
Civelek, Z., Call, J., & Seed, A. M. (2020). Inferring unseen causes: Developmental and rvolutionary origins. Frontiers in Psychology, 11, 872.CrossRefGoogle ScholarPubMed
Clatterbuck, H. (2018). The logical problem and the theoretician’s dilemma. Philosophy and Phenomenological Research, 97(2), 322350.CrossRefGoogle Scholar
Claudio, Tennie, C., Völter, C. J., Vonau, V., Hanus, D., Call, J., & Tomasello, M. (2019). Chimpanzees use observed temporal directionality to learn novel causal relations. Primates, 60, 517524.Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274.CrossRefGoogle ScholarPubMed
Clayton, N. S., Griffiths, D. P., Emery, N. J., & Dickinson, A. (2001). Elements of episodic–like memory in animals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1413), 14831491.CrossRefGoogle ScholarPubMed
Colaço, D. (2020). Recharacterizing scientific phenomena. European Journal for Philosophy of Science, 10(14), 119.CrossRefGoogle Scholar
Colaço, D. (2022). What counts as a memory? Definitions, hypotheses, and “kinding in progress.” Philosophy of Science, 89(1), 89106.CrossRefGoogle Scholar
Craver, C. F. (2002). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science, 69(S3), S83S97.CrossRefGoogle Scholar
Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
Craver, C. F., & Darden, L. (2013). In Search of Mechanisms: Discoveries Across the Life Sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Craver, C. F., Kwan, D., Steindam, C., & Rosenbaum, R. S. (2014). Individuals with episodic amnesia are not stuck in time. Neuropsychologia, 57, 191195.CrossRefGoogle Scholar
Crystal, J. D. (2018). Animal models of episodic memory. Comparative Cognition & Behavior Reviews, 13, 105122.CrossRefGoogle Scholar
Cummins, D. D. (2003). The evolution of reasoning. In Leighton, J. P. & Sternberg, R. J., eds., The Nature of Reasoning, 1st ed., Cambridge: Cambridge University Press, pp. 339374.CrossRefGoogle Scholar
Currie, A. (2021). Comparative Thinking in Biology, 1st ed., Cambridge: Cambridge University Press. http://doi.org/10.1017/9781108616683.CrossRefGoogle Scholar
Dacey, M. (2016). Rethinking associations in psychology. Synthese, 193(12), 37633786.CrossRefGoogle Scholar
Dacey, M. (2023). Evidence in default: Rejecting default models of animal minds. The British Journal for the Philosophy of Science, 74(2), 291532.CrossRefGoogle Scholar
Dalla Barba, G., & La Corte, V. (2013). The hippocampus, a time machine that makes errors. Trends in Cognitive Sciences, 17(3), 102104.CrossRefGoogle ScholarPubMed
Darwin, C. (1875). The Descent of Man, and Selection in Relation to Sex. New York: D. Appleton.Google Scholar
de Waal, F. B. M., & Ferrari, P. F. (2010). Towards a bottom-up perspective on animal and human cognition. Trends in Cognitive Sciences, 14(5), 201207.CrossRefGoogle ScholarPubMed
De Regt, H. W. (2017). Understanding Scientific Understanding. Oxford: Oxford University Press.CrossRefGoogle Scholar
Dennett, D. C. (1978). Brainstorms. Montgomery: Bradford Books.Google Scholar
Devine, R. T., & Hughes, C. (2014). Relations between false belief understanding and executive function in early childhood: A meta-analysis. Child Development, 85(5), 17771794.CrossRefGoogle ScholarPubMed
Douglas, H. E. (2009). Reintroducing prediction to explanation. Philosophy of Science, 76(4), 444463.CrossRefGoogle Scholar
Douglas, H., & Magnus, P. D. (2013). State of the field: Why novel prediction matters. Studies in History and Philosophy of Science Part A, 44(4), 580589.CrossRefGoogle Scholar
Emery, N. J., & Clayton, N. S. (2008). Imaginative scrub-jays, causal rooks, and a liberal application of Occam’s aftershave. Behavioral and Brain Sciences, 31, 134135.CrossRefGoogle Scholar
Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 9197.CrossRefGoogle ScholarPubMed
Fletcher, L., & Carruthers, P. (2013). Behavior-reading versus mentalizing in animals. In Metcalfe, J. & Terrace, H. S., eds., Agency and Joint Attention. Oxford: Oxford University Press, pp. 8299.CrossRefGoogle Scholar
Foglia, L., & Wilson, R. A. (2013). Embodied cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 4(3), 319325.Google ScholarPubMed
Gallagher, S. (2023). Embodied and Enactive Approaches to Cognition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gallagher, S., & Povinelli, D. J. (2012). Enactive and behavioral abstraction accounts of social understanding in chimpanzees, infants, and adults. Review of Philosophy and Psychology, 3, 145169.CrossRefGoogle Scholar
Ginsburg, S., & Jablonka, E. (2019). The Evolution of The Sensitive Soul: Learning and The Origins of Consciousness. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Gopnik, A. (2013). Causality. In Zelazo, P. D., ed., The Oxford Handbook of Developmental Psychology, Vol. 1. Oxford: Oxford University Press, pp. 627650.Google Scholar
Halina, M., Rossano, F., & Tomasello, M. (2013). The ontogenetic ritualization of bonobo gestures. Animal Cognition, 16, 653666.CrossRefGoogle ScholarPubMed
Halina, M. (2015). There is no special problem of mindreading in nonhuman animals. Philosophy of Science, 82(3), 473490.CrossRefGoogle Scholar
Halina, M. (2017a). What apes know about seeing. In Andrews, K. & Beck, J., eds., The Routledge Handbook of Philosophy of Animal Minds. New York: Routledge, pp. 238246.CrossRefGoogle Scholar
Halina, M. (2017b). Mechanistic explanation and its limits. In Glennan, S. & Illari, P., eds., The Routledge Handbook of Mechanisms and Mechanical Philosophy. New York: Routledge, pp. 213224.CrossRefGoogle Scholar
Halina, M. (2021). Replications in comparative psychology. Animal Behavior and Cognition, 8(2), 263272.CrossRefGoogle Scholar
Halina, M. (2022). Unlimited associative learning as a null hypothesis. Philosophy of Science, 89(5), 11861195.CrossRefGoogle Scholar
Halina, M. (2023). Methods in comparative cognition. In E. N. Zalta & U. Nodelman, eds., The Stanford Encyclopedia of Philosophy (Fall 2023 Edition). https://plato.stanford.edu/archives/fall2023/entries/comparative-cognition/.Google Scholar
Halina, M., & Bechtel, W. (2013). Mechanism, conserved. In Dubitzky, W., Wolkenhauer, O., Cho, K.-H., & Yokota, H., eds., Encyclopedia of Systems Biology, New York: Springer, pp. 12011204.CrossRefGoogle Scholar
Hanus, D. (2016). Causal reasoning versus associative learning: A useful dichotomy or a strawman battle in comparative psychology? Journal of Comparative Psychology, 130(3), 241248.CrossRefGoogle ScholarPubMed
Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59(4), 771785.CrossRefGoogle Scholar
Haugeland, J. (1991). Representational genera. In Ramsey, W., Stich, S., & Rumelhart, D., eds., Philosophy and Connectionist Theory. Hillsdale, NJ: Lawrence Erlbaum, pp. 6189.Google Scholar
Healy, S., & Braithwaite, V. (2000). Cognitive ecology: A field of substance? Trends in Ecology & Evolution, 15(1), 2226.CrossRefGoogle ScholarPubMed
Healy, S. D., & Andrew Hurly, T. (2003). Cognitive ecology: Foraging in hummingbirds as a model system. In Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T. & Roper, T. J., eds., Advances in the Study of Behavior. San Diego, CA: Elsevier Science, pp. 325359.Google Scholar
Healy, S. D., Bacon, I. E., Haggis, O., Harris, A. P., & Kelley, L. A. (2009). Explanations for variation in cognitive ability: Behavioural ecology meets comparative cognition. Behavioural Processes, 80(3), 288294.CrossRefGoogle ScholarPubMed
Healy, S. D., & Jones, C. M. (2002). Animal learning and memory: An integration of cognition and ecology. Zoology, 105(4), 321327.CrossRefGoogle ScholarPubMed
Hedenström, A., Johansson, L. C., & Spedding, G. R. (2009). Bird or bat: Comparing airframe design and flight performance. Bioinspiration & Biomimetics, 4(1), 113.CrossRefGoogle ScholarPubMed
Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 13601366.CrossRefGoogle ScholarPubMed
Herschbach, M. (2012). Mirroring versus simulation: On the representational function of simulation. Synthese, 189(3), 483513.CrossRefGoogle Scholar
Heyes, C. (2008). Beast machines? Questions of animal consciousness. In Weiskrantz, L & Davies, M., eds., Frontiers of Consciousness: Chichele Lectures. Oxford: Oxford University Press, pp. 259274.CrossRefGoogle Scholar
Heyes, C. (2014a). False belief in infancy: A fresh look. Developmental Science, 17(5), 647659.CrossRefGoogle ScholarPubMed
Heyes, C. (2014b). Submentalizing: I am not really reading your mind. Perspectives on Psychological Science, 9(2), 131143.CrossRefGoogle Scholar
Heyes, C. (2015). Animal mindreading: What’s the problem? Psychonomic Bulletin & Review, 22(2), 313327.CrossRefGoogle ScholarPubMed
Heyes, C. (2017). Apes submentalise. Trends in Cognitive Sciences, 21(1), 12.CrossRefGoogle ScholarPubMed
Heyes, C. M., & Frith, C. D. (2014). The cultural evolution of mind reading. Science, 344(6190), 1243091.CrossRefGoogle ScholarPubMed
Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360(6393), 11241126.CrossRefGoogle ScholarPubMed
Huebner, B., & Schulkin, J. (2022). Biological Cognition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Illari, P. M., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for Philosophy of Science, 2, 119135.CrossRefGoogle Scholar
Jacobs, I. F., & Osvath, M. (2015). The string-pulling paradigm in comparative psychology. Journal of Comparative Psychology, 129(2), 89120.CrossRefGoogle ScholarPubMed
Jelbert, S. A., Taylor, A. H., & Gray, R. D. (2015). Investigating animal cognition with the Aesop’s Fable paradigm: Current understanding and future directions. Communicative & Integrative Biology, 8(4), e1035846.CrossRefGoogle ScholarPubMed
Jelbert, S. A., Miller, R., Schiestl, M., Boeckle, M., Cheke, L. G., Gray, R. D. et al. (2019). New Caledonian crows infer the weight of objects from observing their movements in a breeze. Proceedings of the Royal Society B, 286(1894), 20182332.Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23(23), R1033R1035.CrossRefGoogle ScholarPubMed
Karin-D’Arcy, R. M., & Povinelli, D. J. (2002). Do chimpanzees know what each other see? A closer look. International Journal of Comparative Psychology, 15(1), 2154.Google Scholar
Kaminski, J. (2015). Theory of mind: A primatological perspective. In Henke, W. & Tattersall, I., eds., Handbook of Paleoanthropology, Berlin: Springer, pp. 17411757.CrossRefGoogle Scholar
Kaminski, J., Call, J., & Tomasello, M. (2004). Body orientation and face orientation: Two factors controlling apes’ begging behavior from humans. Animal Cognition, 7(4), 216223.CrossRefGoogle Scholar
Kampis, D., Kármán, P., Csibra, G., Southgate, V., & Hernik, M. (2021). A two-lab direct replication attempt of Southgate, Senju and Csibra (2007). Royal Society Open Science, 8(8), 210190.CrossRefGoogle ScholarPubMed
Kano, F., Krupenye, C., Hirata, S., Call, J., & Tomasello, M. (2017). Submentalizing cannot explain belief-based action anticipation in apes. Trends in Cognitive Sciences, 21(9), 633634.CrossRefGoogle ScholarPubMed
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110114.CrossRefGoogle ScholarPubMed
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2017). A test of the submentalizing hypothesis: Apes’ performance in a false belief task inanimate control. Communicative & Integrative Biology, 10(4), e1343771.CrossRefGoogle Scholar
Krupenye, C., & Call, J. (2019). Theory of mind in animals: Current and future directions. WIREs Cognitive Science, 10(6), e1503.CrossRefGoogle ScholarPubMed
Kulke, L., Reiß, M., Krist, H., & Rakoczy, H. (2018a). How robust are anticipatory looking measures of theory of mind? Replication attempts across the life span. Cognitive Development, 46, 97111.CrossRefGoogle Scholar
Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241261.CrossRefGoogle Scholar
Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264R265.CrossRefGoogle ScholarPubMed
Longo, M. R., & Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 45(7), 14001407.CrossRefGoogle ScholarPubMed
Lurz, R. W. (2011). Mindreading Animals: The Debate Over What Animals Know About Other Minds. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Lurz, R. W., Krachun, C., Mareno, M. C., & Hopkins, W. D. (2022). Do chimpanzees predict others’ behavior by simulating their beliefs? Animal Behavior and Cognition, 9(2), 153175.CrossRefGoogle Scholar
Lycan, W. (1981). Form, function, and feel. The Journal of Philosophy, 78(1), 2450.CrossRefGoogle Scholar
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 125.CrossRefGoogle Scholar
MacLean, E. L., Matthews, L. J., Hare, B. A., et al. (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal Cognition, 15(2), 223238.CrossRefGoogle ScholarPubMed
Meketa, I. (2014). A critique of the principle of cognitive simplicity in comparative cognition. Biology & Philosophy, 29(5), 731745.CrossRefGoogle Scholar
Munton, J. (2022). How to see invisible objects. Noûs, 56(2), 343365.CrossRefGoogle Scholar
Nichols, S., & Stich, S. P. (2003). Mindreading: An Integrated Account of Pretence, Self-awareness, and Understanding Other Minds. Oxford: Oxford University Press.CrossRefGoogle Scholar
Novick, A., & Scholl, R. (2020). Presume it not: True causes in the search for the basis of heredity. The British Journal for the Philosophy of Science, 71(1), 5986.CrossRefGoogle Scholar
Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308(5719), 255258.CrossRefGoogle ScholarPubMed
Operskalski, J. T., & Barbey, A. K. (2017). Cognitive neuroscience of causal reasoning. In Waldmann, M., ed., The Oxford Handbook of Causal Reasoning. Oxford: Oxford University Press, pp. 217242.Google Scholar
Panoz-Brown, D., Iyer, V., Carey, L. M., et al. (2018). Replay of episodic memories in the rat. Current Biology, 28(10), 16281634.CrossRefGoogle ScholarPubMed
Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31(2), 109130.CrossRefGoogle ScholarPubMed
Penn, D. C., & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “theory of mind.” Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 731744.CrossRefGoogle ScholarPubMed
Pfungst, O. (1911/2010). Clever Hans (the Horse of Mr. Von Osten): A Contribution to Experimental Animal and Human Psychology. New York: Henry Holt.Google Scholar
Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283311.CrossRefGoogle Scholar
Pika, S., Liebal, K., Call, J., & Tomasello, M. (2007). The gestural communication of apes. In Liebal, K., Müller, C., & Pika, S., eds., Benjamins Current Topics. Amsterdam: John Benjamins, pp. 3549.Google Scholar
Pollick, A. S., & de Waal, F. B. M. (2007). Ape gestures and language evolution. Proceedings of the National Academy of Sciences, 104(19), 81848189.CrossRefGoogle ScholarPubMed
Povinelli, D. J. (2020). Can comparative psychology crack its toughest nut? Animal Behavior and Cognition, 7(4), 589652.CrossRefGoogle Scholar
Povinelli, D. J., & Eddy, T. J. (1996a). Chimpanzees: Joint visual attention. Psychological Science, 7(3), 129135.CrossRefGoogle Scholar
Povinelli, D. J., & Eddy, T. J. (1996b). What young chimpanzees know about seeing. Monographs of the Society for Research in Child Development, 61(3), vvi, 1191.CrossRefGoogle ScholarPubMed
Povinelli, D. J., & Henley, T. (2020). More rope tricks reveal why more task variants will never lead to strong inferences about higher-order causal reasoning in chimpanzees. Animal Behavior and Cognition, 7(3), 392418.CrossRefGoogle Scholar
Povinelli, D. J., & Penn, D. C. (2011). Through a floppy tool darkly. In McCormack, T., Hoerl, C., & Butterfill, S., eds., Tool Use and Causal Cognition. Oxford: Oxford University Press, pp. 6988.CrossRefGoogle Scholar
Povinelli, D. J., & Vonk, J. (2004). We don’t need a microscope to explore the chimpanzee’s mind. Mind and Language, 19(1), 128.CrossRefGoogle Scholar
Pravosudov, V. V., & Roth, T. C. II (2013). Cognitive ecology of food hoarding: The evolution of spatial memory and the hippocampus. Annual Review of Ecology, Evolution, and Systematics, 44(1), 173193.CrossRefGoogle Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515526.CrossRefGoogle Scholar
Putnam, H. (1967). Psychological Predicates. In Capitan, W. H. and Merrill, D. D., eds., Art, Mind, and Religion. Pittsburgh: University of Pittsburgh Press, pp. 3748.CrossRefGoogle Scholar
Quine, W. V. O. (1951). Two dogmas of empiricism. Reprinted in a Logical Point of View, 2nd ed., Cambridge, MA: Harvard University Press, pp. 2046.Google Scholar
Ramsey, W. M. (2007). Representation Reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Reiss, J. (2015). A pragmatist theory of evidence. Philosophy of Science, 82(3), 341362.CrossRefGoogle Scholar
Reiss, J. (2019). Against external validity. Synthese, 196(8), 31033121.CrossRefGoogle Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534536.CrossRefGoogle ScholarPubMed
Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021a). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162178.CrossRefGoogle ScholarPubMed
Schnell, A. K., Clayton, N. S., Hanlon, R. T., & Jozet-Alves, C. (2021b). Episodic-like memory is preserved with age in cuttlefish. Proceedings of the Royal Society B: Biological Sciences, 288(1957), 20211052.CrossRefGoogle ScholarPubMed
Scholl, R. (2020). Unwarranted assumptions: Claude Bernard and the growth of the vera causa standard. Studies in History and Philosophy of Science Part A, 82, 120130.CrossRefGoogle Scholar
Seed, A. M., Tebbich, S., Emery, N. J., & Clayton, N. S. (2006). Investigating physical cognition in rooks, Corvus frugilegus. Current Biology, 16(7), 697701.CrossRefGoogle ScholarPubMed
Seed, A., Hanus, D., & Call, J. (2011). Causal knowledge in corvids, primates, and children. In McCormack, T., Hoerl, C., & Butterfill, S., eds., Tool Use and Causal Cognition. Oxford: Oxford University Press, pp. 89110.CrossRefGoogle Scholar
Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M., & Güntürkün, O. (2013). Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Frontiers in Computational Neuroscience, 7(89), 117.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2010). Clever animals and killjoy explanations in comparative psychology. Trends in Cognitive Sciences, 14(11), 477481.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2012). Fundamentals of Comparative Cognition. Oxford: Oxford University Press.Google Scholar
Shevlin, H. (2021). Non‐human consciousness and the specificity problem: A modest theoretical proposal. Mind & Language, 36(2), 297314.CrossRefGoogle Scholar
Silva, F. J., & Silva, K. M. (2006). Humans’ folk physics is not enough to explain variations in their tool-using behavior. Psychonomic Bulletin & Review, 13(4), 689693.CrossRefGoogle Scholar
Silva, F. J., Silva, K. M., Cover, K. R., Leslie, A. L., & Rubalcaba, M. A. (2008). Humans’ folk physics is sensitive to physical connection and contact between a tool and reward. Behavioural Processes, 77(3), 327333.CrossRefGoogle ScholarPubMed
Sober, E. (2012). Anthropomorphism, parsimony, and common ancestry. Mind & Language, 27(3), 229238.CrossRefGoogle Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18(7), 587592.CrossRefGoogle ScholarPubMed
Stanford, P. K. (2006). Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives. Oxford: Oxford University Press.CrossRefGoogle Scholar
Stanford, K. (2023). Underdetermination of scientific theory. In E. N. Zalta & U. Nodelman, eds., The Stanford Encyclopedia of Philosophy (Summer 2023 Edition). https://plato.stanford.edu/archives/sum2023/entries/scientific-underdetermination/.Google Scholar
Starzak, T. B., & Gray, R. D. (2021). Towards ending the animal cognition war: A three-dimensional model of causal cognition. Biology & Philosophy, 36(2), 124.CrossRefGoogle Scholar
Sterelny, K. (2010). Minds: Extended or scaffolded? Phenomenology and the Cognitive Sciences, 9(4), 465481.CrossRefGoogle Scholar
Sterling, P., & Laughlin, S. (2015). Principles of Neural Design. Cambridge, MA: MIT Press.Google Scholar
Suddendorf, T., & Busby, J. (2003). Mental time travel in animals? Trends in Cognitive Sciences, 7(9), 391396.CrossRefGoogle ScholarPubMed
Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs by 13-month-old infants. Psychological Science, 18(7), 580586.CrossRefGoogle ScholarPubMed
Taylor, A. H. (2020). Folk physics for crows? Animal Behavior and Cognition, 7(3), 452456.CrossRefGoogle Scholar
Taylor, A. H., Bastos, A. P., Brown, R. L., & Allen, C. (2022). The signature-testing approach to mapping biological and artificial intelligences. Trends in Cognitive Sciences, 26(9), 738750.CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1911). Animal Intelligence: Experimental Studies. New York: The MacMillan.Google Scholar
Tomasello, M., & Call, J. (2008). Assessing the validity of ape-human comparisons: A reply to Boesch (2007). Journal of Comparative Psychology, 122(4), 449452.CrossRefGoogle ScholarPubMed
Tomasello, M., & Call, J. (2019). Thirty years of great ape gestures. Animal Cognition, 22(4), 461469.CrossRefGoogle ScholarPubMed
Trestman, M. (2015). Clever Hans, Alex the parrot, and Kanzi: What can exceptional animal learning teach us about human cognitive evolution? Biological Theory, 10(1), 8699.CrossRefGoogle Scholar
Veit, L., & Nieder, A. (2013). Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nature Communications, 4(1), 2878.CrossRefGoogle ScholarPubMed
Versace, E., Martinho-Truswell, A., Kacelnik, A., & Vallortigara, G. (2018). Priors in animal and artificial intelligence: Where does learning begin? Trends in Cognitive Sciences, 22(11), 963965.CrossRefGoogle ScholarPubMed
Visalberghi, E., & Limongelli, L. (1994). Lack of comprehension of cause-effect relations in tool-using capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 108(1), 1522.CrossRefGoogle ScholarPubMed
Visalberghi, E., & Tomasello, M. (1998). Primate causal understanding in the physical and psychological domains. Behavioural Processes, 42, 189203.CrossRefGoogle ScholarPubMed
Völter, C. J., Sentís, I., & Call, J. (2016). Great apes and children infer causal relations from patterns of variation and covariation. Cognition, 155, 3043.CrossRefGoogle ScholarPubMed
von Bayern, A. M. P., Heathcote, R. J. P., Rutz, C., & Kacelnik, A. (2009). The role of experience in problem solving and innovative tool use in crows. Current Biology, 19(22), 19651968.CrossRefGoogle ScholarPubMed
von Bayern, A. M. P., von, Danel, S., Auersperg, A. M. I., Mioduszewska, B., & Kacelnik, A. (2018). Compound tool construction by New Caledonian crows. Scientific Reports, 8(1), 15676.CrossRefGoogle Scholar
Vonk, J. (2020). Sticks and stones: Associative learning alone? Learning & Behavior, 48(3), 277278.CrossRefGoogle ScholarPubMed
Vonk, J., & Povinelli, D. J. (2012). Similarity and difference in the conceptual systems of primates: The unobservability hypothesis. In Zentall, T. R. & Wasserman, E. A., eds., The Oxford Handbook of Comparative Cognition. Oxford: Oxford University Press, pp. 552576.Google Scholar
Wellman, H. M. (2018). Theory of mind: The state of the art. European Journal of Developmental Psychology, 15(6), 728755.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Animal Minds
  • Marta Halina, University of Cambridge
  • Online ISBN: 9781009119962
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Animal Minds
  • Marta Halina, University of Cambridge
  • Online ISBN: 9781009119962
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Animal Minds
  • Marta Halina, University of Cambridge
  • Online ISBN: 9781009119962
Available formats
×