We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Doyle–Fuller–Newman (DFN) model for the charge and discharge of nano-structured lithium iron phosphate (LFP) cathodes is formulated on the basis that lithium transport within the nanoscale LFP electrode particles is much faster than cell discharge, and is therefore not rate limiting. We present some numerical solutions to the model and show that for relevant parameter values, and a variety of C-rates, it is possible for sharp discharge fronts to form and intrude into the electrode from its outer edge(s). These discharge fronts separate regions of fully utilised LFP electrode particles from those that are not. Motivated by this observation an asymptotic solution to the model is sought. The results of the asymptotic analysis of the DFN model lead to a reduced order model, which we term the reaction front model (or RFM). Favourable agreement is shown between solutions to the RFM and the full DFN model in appropriate parameter regimes. The RFM is significantly cheaper to solve than the DFN model, and therefore has the potential to be used in scenarios where computational costs are prohibitive, e.g. in optimisation and parameter estimation problems or in engineering control systems.
We consider a model for the evolution of damage in elastic materials originally proposed by Michel Frémond. For the corresponding PDE system, we prove existence and uniqueness of a local in time strong solution. The main novelty of our result stands in the fact that, differently from previous contributions, we assume no occurrence of any type of regularising terms.
The paper is devoted to the existence and rigorous homogenisation of the generalised Poisson–Nernst–Planck problem describing the transport of charged species in a two-phase domain. By this, inhomogeneous conditions are supposed at the interface between the pore and solid phases. The solution of the doubly non-linear cross-diffusion model is discontinuous and allows a jump across the phase interface. To prove an averaged problem, the two-scale convergence method over periodic cells is applied and formulated simultaneously in the two phases and at the interface. In the limit, we obtain a non-linear system of equations with averaged matrices of the coefficients, which are based on cell problems due to diffusivity, permittivity and interface electric flux. The first-order corrector due to the inhomogeneous interface condition is derived as the solution to a non-local problem.
This work, motivated by the rapid developments in Micro-Electro-Mechanical Systems (MEMS) structures, especially actuators and grippers, analyses the dynamics of a thermo-mechanical system consisting of a horizontal beam joined at one end to a vertical rod. As a result of thermal expansion or vibration of the rod, the other end may come into contact with another part of the MEMS device and that closes an electrical circuit, which is the actuating or switching function of such a beam–rod system. The interaction between the rod's contacting end and the supporting device is described by a normal compliance contact law for the displacements and by an inclusion-type Barber's heat exchange condition for the temperature. The heat-exchange coefficient is a multi-function taking into account the air resistance in the gap when there is no contact and the contact pressure when contact occurs. The model consists of a nonlinear variational inclusion for the temperature coupled with a nonlinear variational equation for the displacements. The existence of a weak solution to the problem is proved by using the Galerkin method, a regularization of Barber's condition with the Yosida approximation of a maximal monotone operator, and a priori estimates.
We consider the coupled chemotaxis-fluid model for periodic pattern formation on two- and three-dimensional domains with mixed nonhomogeneous boundary value conditions, and prove the existence of nontrivial time periodic solutions. It is worth noticing that this system admits more than one periodic solution. In fact, it is not difficult to verify that (0, c, 0, 0) is a time periodic solution. Our purpose is to obtain a time periodic solution with nonconstant bacterial density.
In this article, the existence of heteroclinic solution of a class of generalized Hamiltonian system with potential $V : {\open R}^{n} \longmapsto {\open R}$ having a finite or infinite number of global minima is studied. Examples include systems involving the p-Laplacian operator, the curvature operator and the relativistic operator. Generalized conservation of energy is established, which leads to the property of equipartition of energy enjoyed by heteroclinic solutions. The existence problem of heteroclinic solution is studied using both variational method and the metric method. The variational approach is classical, while the metric method represents a more geometrical point of view where the existence problem of heteroclinic solution is reduced to that of geodesic in a proper length metric space. Regularities of the heteroclinic solutions are discussed. The results here not only provide alternative solution methods for Φ-Laplacian systems, but also improve existing results for the classical Hamiltonian system. In particular, the conditions imposed upon the potential are very mild and new proof for the compactness is given. Finally in ℝ2, heteroclinic solutions are explicitly written down in closed form by using complex function theory.
Explicit solutions are rarely available for water wave scattering problems. An analytical procedure is presented here to solve the boundary value problem associated with wave scattering by a complete vertical porous barrier with two gaps in it. The original problem is decomposed into four problems involving vertical solid barriers. The decomposed problems are solved analytically by using a weakly singular integral equation. Explicit expressions are obtained for the scattering amplitudes and numerical results are presented. The results obtained can be used as a benchmark for other wave scattering problems involving complex geometrical structures.
We consider the unique solvability of an inverse-source problem with integral transmitting condition for a time-fractional mixed type equation in rectangular domain where the unknown source term depends only on the space variable. The solution is based on a series expansion using a bi-orthogonal basis in space, corresponding to a non-self-adjoint boundary value problem. Under certain regularity conditions on the given data, we prove the uniqueness and existence of the solution for the given problem. The influence of the transmitting condition on the solvability of the problem is also demonstrated. Two different transmitting conditions are considered — viz. a full integral form and a special case. In order to simplify the bulky expressions appearing in the proof of our main result, we establish a new property of the recently introduced Mittag-Leffler type function in two variables.
We consider a mathematical model which describes the quasi-static evolution of a thermo-viscoelastic linear body with taking into account the effects of internal forces which generate a non linear viscous dissipative function. We derive a variational formulation of the system of equilibrium equation and energy equation. An existence result of weak solutions was obtained in an appropriate function space.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is elliptic form equation for the pressure and the other is parabolic form equation for the concentration of one of the fluids. Since only the velocity and not the pressure appears explicitly in the concentration equation, we use a mixed finite element method for the approximation of the pressure equation and mixed finite element method with characteristics for the concentration equation. To linearize the mixed-method equations, we use a two-grid algorithm based on the Newton iteration method for this full discrete scheme problems. First, we solve the original nonlinear equations on the coarse grid, then, we solve the linearized problem on the fine grid used Newton iteration once. It is shown that the coarse grid can be much coarser than the fine grid and achieve asymptotically optimal approximation as long as the mesh sizes satisfy h = H2 in this paper. Finally, numerical experiment indicates that two-grid algorithm is very effective.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.