We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present several applications of the weak specification property and certain topological Markov properties, recently introduced by Barbieri, García-Ramos, and Li [Markovian properties of continuous group actions: algebraic actions, entropy and the homoclinic group. Adv. Math.397 (2022), 52], and implied by the pseudo-orbit tracing property, for general expansive group actions on compact spaces. First we show that any expansive action of a countable amenable group on a compact metrizable space satisfying the weak specification and strong topological Markov properties satisfies the Moore property, that is, every surjective endomorphism of such dynamical system is pre-injective. This together with an earlier result of Li (where the strong topological Markov property is not needed) of the Myhill property [Garden of Eden and specification. Ergod. Th. & Dynam. Sys.39 (2019), 3075–3088], which we also re-prove here, establishes the Garden of Eden theorem for all expansive actions of countable amenable groups on compact metrizable spaces satisfying the weak specification and strong topological Markov properties. We hint how to easily generalize this result even for uncountable amenable groups and general compact, not necessarily metrizable, spaces. Second, we generalize the recent result of Cohen [The large scale geometry of strongly aperiodic subshifts of finite type. Adv. Math.308 (2017), 599–626] that any subshift of finite type of a finitely generated group having at least two ends has weakly periodic points. We show that every expansive action of such a group having a certain Markov topological property, again implied by the pseudo-orbit tracing property, has a weakly periodic point. If it has additionally the weak specification property, the set of such points is dense.
We show that the complete positive entropy (CPE) class
$\alpha $
of Barbieri and García-Ramos contains a one-dimensional subshift for all countable ordinals
$\alpha $
, that is, the process of alternating topological and transitive closure on the entropy pairs relation of a subshift can end on an arbitrary ordinal. This is the composition of three constructions. We first realize every ordinal as the length of an abstract ‘close-up’ process on a countable compact space. Next, we realize any abstract process on a compact zero-dimensional metrizable space as the process started from a shift-invariant relation on a subshift, the crucial construction being the implementation of every compact metrizable zero-dimensional space as an open invariant quotient of a subshift. Finally, we realize any shift-invariant relation E on a subshift X as the entropy pair relation of a supershift
$Y \supset X$
, and under strong technical assumptions, we can make the CPE process on Y end on the same ordinal as the close-up process of E.
Given $\beta \in (1,2]$, let $T_{\beta }$ be the $\beta $-transformation on the unit circle $[0,1)$ such that $T_{\beta }(x)=\beta x\pmod 1$. For each $t\in [0,1)$, let $K_{\beta }(t)$ be the survivor set consisting of all $x\in [0,1)$ whose orbit $\{T^{n}_{\beta }(x): n\ge 0\}$ never hits the open interval $(0,t)$. Kalle et al [Ergod. Th. & Dynam. Sys.40(9) (2020) 2482–2514] proved that the Hausdorff dimension function $t\mapsto \dim _{H} K_{\beta }(t)$ is a non-increasing Devil’s staircase. So there exists a critical value $\tau (\beta )$ such that $\dim _{H} K_{\beta }(t)>0$ if and only if $t<\tau (\beta )$. In this paper, we determine the critical value $\tau (\beta )$ for all $\beta \in (1,2]$, answering a question of Kalle et al (2020). For example, we find that for the Komornik–Loreti constant$\beta \approx 1.78723$, we have $\tau (\beta )=(2-\beta )/(\beta -1)$. Furthermore, we show that (i) the function $\tau : \beta \mapsto \tau (\beta )$ is left continuous on $(1,2]$ with right-hand limits everywhere, but has countably infinitely many discontinuities; (ii) $\tau $ has no downward jumps, with $\tau (1+)=0$ and $\tau (2)=1/2$; and (iii) there exists an open set $O\subset (1,2]$, whose complement $(1,2]\setminus O$ has zero Hausdorff dimension, such that $\tau $ is real-analytic, convex, and strictly decreasing on each connected component of O. Consequently, the dimension $\dim _{H} K_{\beta }(t)$ is not jointly continuous in $\beta $ and t. Our strategy to find the critical value $\tau (\beta )$ depends on certain substitutions of Farey words and a renormalization scheme from dynamical systems.
We present a new sufficient criterion to prove that a non-sofic half-synchronized subshift is direct prime. The criterion is based on conjugacy invariant properties of Fischer graphs of half-synchronized shifts. We use this criterion to show as a new result that all n-Dyck shifts are direct prime, and we also give new proofs of direct primeness of non-sofic beta-shifts and non-sofic S-gap shifts. We also construct a class of non-sofic synchronized direct prime subshifts which additionally admit reversible cellular automata with all directions sensitive.
We prove that for any transitive subshift X with word complexity function $c_n(X)$, if $\liminf ({\log (c_n(X)/n)}/({\log \log \log n})) = 0$, then the quotient group ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ of the automorphism group of X by the subgroup generated by the shift $\sigma $ is locally finite. We prove that significantly weaker upper bounds on $c_n(X)$ imply the same conclusion if the gap conjecture from geometric group theory is true. Our proofs rely on a general upper bound for the number of automorphisms of X of range n in terms of word complexity, which may be of independent interest. As an application, we are also able to prove that for any subshift X, if ${c_n(X)}/{n^2 (\log n)^{-1}} \rightarrow 0$, then $\mathrm {Aut}(X,\sigma )$ is amenable, improving a result of Cyr and Kra. In the opposite direction, we show that for any countable infinite locally finite group G and any unbounded increasing $f: \mathbb {N} \rightarrow \mathbb {N}$, there exists a minimal subshift X with ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ isomorphic to G and ${c_n(X)}/{nf(n)} \rightarrow 0$.
We investigate quantitative aspects of the locally embeddable into finite groups (LEF) property for subgroups of the topological full group of a two-sided minimal subshift over a finite alphabet, measured via the LEF growth function. We show that the LEF growth of may be bounded from above and below in terms of the recurrence function and the complexity function of the subshift, respectively. As an application, we construct groups of previously unseen LEF growth types, and exhibit a continuum of finitely generated LEF groups which may be distinguished from one another by their LEF growth.
In this paper, we show that each element in the convex hull of the rotation set of a compact invariant chain transitive set is realized by a Birkhoff solution, which is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations. Math. Z.297 (2021), 1673–1692] in the study of rotation sets for monotone recurrence relations. We then investigate the properties of rotation sets assuming the system has zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton and the forward and backward rotation numbers are identical for each solution in the same Birkhoff recurrence class. We also show the continuity of rotation numbers on the set of non-wandering points. If the rotation set is upper-stable, then we show that each boundary point is a rational number, and we also obtain a result of bounded deviation.
A blender for a surface endomorphism is a hyperbolic basic set for which the union of the local unstable manifolds robustly contains an open set. Introduced by Bonatti and Díaz in the 1990s, blenders turned out to have many powerful applications to differentiable dynamics. In particular, a generalization in terms of jets, called parablenders, allowed Berger to prove the existence of generic families displaying robustly infinitely many sinks. In this paper we introduce analogous notions in a measurable setting. We define an almost blender as a hyperbolic basic set for which a prevalent perturbation has a local unstable set having positive Lebesgue measure. Almost parablenders are defined similarly in terms of jets. We study families of endomorphisms of
$\mathbb {R}^2$
leaving invariant the continuation of a hyperbolic basic set. When an inequality involving the entropy and the maximal contraction along stable manifolds is satisfied, we obtain an almost blender or parablender. This answers partially a conjecture of Berger, and complements previous works on the construction of blenders by Avila, Crovisier, and Wilkinson or by Moreira and Silva. The proof is based on thermodynamic formalism: following works of Mihailescu, Simon, Solomyak, and Urbański, we study families of skew-products and we give conditions under which these maps have limit sets of positive measure inside their fibers.
We consider a subshift of finite type on q symbols with a union of t cylinders based at words of identical length p as the hole. We explore the relationship between the escape rate into the hole and a rational function,
$r(z)$
, of correlations between forbidden words in the subshift with the hole. In particular, we prove that there exists a constant
$D(t,p)$
such that if
$q>D(t,p)$
, then the escape rate is faster into the hole when the value of the corresponding rational function
$r(z)$
evaluated at
$D(t,p)$
is larger. Further, we consider holes which are unions of cylinders based at words of identical length, having zero cross-correlations, and prove that the escape rate is faster into the hole with larger Poincaré recurrence time. Our results are more general than the existing ones known for maps conjugate to a full shift with a single cylinder as the hole.
This paper studies several aspects of symbolic (i.e. subshift) factors of $\mathcal {S}$-adic subshifts of finite alphabet rank. First, we address a problem raised by Donoso et al [Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and their complexity. Trans. Amer. Math. Soc.374(5) (2021), 3453–3489] about the topological rank of symbolic factors of $\mathcal {S}$-adic subshifts and prove that this rank is at most the one of the extension system, improving on the previous results [B. Espinoza. On symbolic factors of S-adic subshifts of finite alphabet rank. Preprint, 2022, arXiv:2008.13689v2; N. Golestani and M. Hosseini. On topological rank of factors of Cantor minimal systems. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.62. Published online 8 June 2021]. As a consequence of our methods, we prove that finite topological rank systems are coalescent. Second, we investigate the structure of fibers $\pi ^{-1}(y)$ of factor maps $\pi \colon (X,T)\to (Y,S)$ between minimal ${\mathcal S}$-adic subshifts of finite alphabet rank and show that they have the same finite cardinality for all y in a residual subset of Y. Finally, we prove that the number of symbolic factors (up to conjugacy) of a fixed subshift of finite topological rank is finite, thus extending Durand’s similar theorem on linearly recurrent subshifts [F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys.20(4) (2000), 1061–1078].
For any
$r\in [0,1]$
we give an example of a rigid operator whose spectrum is the annulus
$\{\lambda\in \mathbb{C} : r \le |\lambda| \le 1 \} $
. In particular, when
$r=0$
this operator is rigid and non-invertible, and when
$r\in {\kern1pt}] 0,1 [ $
this operator is invertible but its inverse is not rigid. This answers two questions of Costakis, Manoussos and Parissis [Recurrent linear operators. Complex Anal. Oper. Theory8 (2014), 1601–1643].
In this paper we apply Conley index theory in a covering space of an invariant set S, possibly not isolated, in order to describe the dynamics in S. More specifically, we consider the action of the covering translation group in order to define a topological separation of S which distinguishes the connections between the Morse sets within a Morse decomposition of S. The theory developed herein generalizes the classical connection matrix theory, since one obtains enriched information on the connection maps for non-isolated invariant sets, as well as for isolated invariant sets. Moreover, in the case of an infinite cyclic covering induced by a circle-valued Morse function, one proves that the Novikov differential of f is a particular case of the p-connection matrix defined herein.
In this paper it is shown that for a minimal system
$(X,T)$
and
$d,k\in \mathbb {N}$
, if
$(x,x_{i})$
is regionally proximal of order d for
$1\leq i\leq k$
, then
$(x,x_{1},\ldots ,x_{k})$
is
$(k+1)$
-regionally proximal of order d. Meanwhile, we introduce the notion of
$\mathrm {IN}^{[d]}$
-pair: for a dynamical system
$(X,T)$
and
$d\in \mathbb {N}$
, a pair
$(x_{0},x_{1})\in X\times X$
is called an
$\mathrm {IN}^{[d]}$
-pair if for any
$k\in \mathbb {N}$
and any neighborhoods
$U_{0} ,U_{1} $
of
$x_{0}$
and
$x_{1}$
respectively, there exist different
$(p_{1}^{(i)},\ldots ,p_{d}^{(i)})\in \mathbb {N}^{d} , 1\leq i\leq k$
, such that
where
$\mathrm {Ind}(U_{0},U_{1})$
denotes the collection of all independence sets for
$(U_{0},U_{1})$
. It turns out that for a minimal system, if it does not contain any non-trivial
$\mathrm {IN}^{[d]}$
-pair, then it is an almost one-to-one extension of its maximal factor of order d.
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein’s
${\bar d}$
metric. This leads to a class of shift spaces we call
${\bar d}$
-approachable. A shift space is
${\bar d}$
-approachable when its canonical sequence of Markov approximations converges to it also in the
${\bar d}$
sense. We give a topological characterization of chain-mixing
${\bar d}$
-approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure
$\mu $
of such a shift space is the weak
$^*$
limit of a sequence
$\mu _n$
of ergodic measures with the corresponding sequence of entropies
$h(\mu _n)$
converging to
$h(\mu )$
. We prove ergodic measures are entropy-dense for every shift space that can be approximated in the
${\bar d}$
pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary
$\mathscr {B}$
-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.
Motivated by fractal geometry of self-affine carpets and sponges, Feng and Huang [J. Math. Pures Appl.106(9) (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems, and proved variational principles for them. We introduce a new approach to this theory. Our new definitions of weighted topological entropy and pressure are very different from the original definitions of Feng and Huang. The equivalence of the two definitions seems highly non-trivial. Their equivalence can be seen as a generalization of the dimension formula for the Bedford–McMullen carpet in purely topological terms.
We show that the universal minimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation-invariant Boolean algebras of subsets of the group satisfying a higher-order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.
For a locally compact metrisable group G, we study the action of
${\rm Aut}(G)$
on
${\rm Sub}_G$
, the set of closed subgroups of G endowed with the Chabauty topology. Given an automorphism T of G, we relate the distality of the T-action on
${\rm Sub}_G$
with that of the T-action on G under a certain condition. If G is a connected Lie group, we characterise the distality of the T-action on
${\rm Sub}_G$
in terms of compactness of the closed subgroup generated by T in
${\rm Aut}(G)$
under certain conditions on the center of G or on T as follows: G has no compact central subgroup of positive dimension or T is unipotent or T is contained in the connected component of the identity in
${\rm Aut}(G)$
. Moreover, we also show that a connected Lie group G acts distally on
${\rm Sub}_G$
if and only if G is either compact or it is isomorphic to a direct product of a compact group and a vector group. All the results on the Lie groups mentioned above hold for the action on
${\rm Sub}^a_G$
, a subset of
${\rm Sub}_G$
consisting of closed abelian subgroups of G.
We are interested in dendrites for which all invariant measures of zero-entropy mappings have discrete spectrum, and we prove that this holds when the closure of the endpoint set of the dendrites is countable. This solves an open question which has been around for awhile, and almost completes the characterization of dendrites with this property.
We show that a piecewise monotonic map with positive topological entropy satisfies the level-2 large deviation principle with respect to the unique measure of maximal entropy under the conditions that the corresponding Markov diagram is irreducible and that the periodic measures of the map are dense in the set of ergodic measures. This result can apply to a broad class of piecewise monotonic maps, such as monotonic mod one transformations and piecewise monotonic maps with two monotonic pieces.
We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities.