We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Necklaces are the equivalence classes of words under the action of the cyclic group. Let a transition in a word be any change between two adjacent letters modulo the word’s length. We present a closed-form solution for the enumeration of necklaces in n beads, k colours and t transitions. We show that our result provides a more general solution to the problem of counting alternating (proper) colourings of the vertices of a regular n-gon.
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.
Morgan and Parker proved that if G is a group with ${\textbf{Z}(G)} = 1$, then the connected components of the commuting graph of G have diameter at most $10$. Parker proved that if, in addition, G is solvable, then the commuting graph of G is disconnected if and only if G is a Frobenius group or a $2$-Frobenius group, and if the commuting graph of G is connected, then its diameter is at most $8$. We prove that the hypothesis $Z (G) = 1$ in these results can be replaced with $G' \cap {\textbf{Z}(G)} = 1$. We also prove that if G is solvable and $G/{\textbf{Z}(G)}$ is either a Frobenius group or a $2$-Frobenius group, then the commuting graph of G is disconnected.
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs of the van der Waerden lower bound for permanents of doubly stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of results are often proven by giving bounds on how much a particular differential operator can change the capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower matching conjecture.
We determine the metric dimension of the annihilating-ideal graph of a local finite commutative principal ring and a finite commutative principal ring with two maximal ideals. We also find bounds for the metric dimension of the annihilating-ideal graph of an arbitrary finite commutative principal ring.
The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.
An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.
Erdős asked if, for every pair of positive integers g and k, there exists a graph H having girth (H) = k and the property that every r-colouring of the edges of H yields a monochromatic cycle Ck. The existence of such graphs H was confirmed by the third author and Ruciński.
We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k. We show that there exists a graph H on R10k2; k15k3 vertices (where R = R(Ck; r) is the r-colour Ramsey number for the cycle Ck) having girth (H) = k and the Ramsey property that every r-colouring of the edges of H yields a monochromatic Ck Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.
We investigate the location of zeros for the partition function of the anti-ferromagnetic Ising model, focusing on the zeros lying on the unit circle. We give a precise characterization for the class of rooted Cayley trees, showing that the zeros are nowhere dense on the most interesting circular arcs. In contrast, we prove that when considering all graphs with a given degree bound, the zeros are dense in a circular sub-arc, implying that Cayley trees are in this sense not extremal. The proofs rely on describing the rational dynamical systems arising when considering ratios of partition functions on recursively defined trees.
We explore the tree limits recently defined by Elek and Tardos. In particular, we find tree limits for many classes of random trees. We give general theorems for three classes of conditional Galton–Watson trees and simply generated trees, for split trees and generalized split trees (as defined here), and for trees defined by a continuous-time branching process. These general results include, for example, random labelled trees, ordered trees, random recursive trees, preferential attachment trees, and binary search trees.
In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k=2, showing that there is always a square of a directed path of length , which is best possible.
It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.
A shared ledger is a record of transactions that can be updated by any member of a group of users. The notion of independent and consistent record-keeping in a shared ledger is important for blockchain and more generally for distributed ledger technologies. In this paper we analyze a stochastic model for the shared ledger known as the tangle, which was devised as the basis for the IOTA cryptocurrency. The model is a random directed acyclic graph, and its growth is described by a non-Markovian stochastic process. We first prove ergodicity of the stochastic process, and then derive a delay differential equation for the fluid model which describes the tangle at high arrival rate. We prove convergence in probability of the tangle process to the fluid model, and also prove global stability of the fluid model. The convergence proof relies on martingale techniques.
A spectral sequence is established whose $E_{2}$ page is Bar-Natan's variant of Khovanov homology and which abuts to a deformation of instanton homology for knots and links. This spectral sequence arises as a specialization of a spectral sequence whose $E_{2}$ page is a characteristic-2 version of $F_{5}$ homology in Khovanov's classification.
The peeling process, which describes a step-by-step exploration of a planar map, has been instrumental in addressing percolation problems on random infinite planar maps. Bond and face percolations on maps with faces of arbitrary degree are conveniently studied via so-called lazy-peeling explorations. During such explorations, distinct vertices on the exploration contour may, at latter stage, be identified, making the process less suited to the study of site percolation. To tackle this situation and to explicitly identify site-percolation thresholds, we come back to the alternative “simple” peeling exploration of Angel and uncover deep relations with the lazy-peeling process. Along the way, we define and study the random Boltzmann map of the half-plane with a simple boundary for an arbitrary critical weight sequence. Its construction is nontrivial especially in the “dense regime,” where the half-planar random Boltzmann map does not possess an infinite simple core.
Spatial random graphs capture several important properties of real-world networks. We prove quenched results for the continuous-space version of scale-free percolation introduced in [14]. This is an undirected inhomogeneous random graph whose vertices are given by a Poisson point process in $\mathbb{R}^d$. Each vertex is equipped with a random weight, and the probability that two vertices are connected by an edge depends on their weights and on their distance. Under suitable conditions on the parameters of the model, we show that, for almost all realizations of the point process, the degree distributions of all the nodes of the graph follow a power law with the same tail at infinity. We also show that the averaged clustering coefficient of the graph is self-averaging. In particular, it is almost surely equal to the annealed clustering coefficient of one point, which is a strictly positive quantity.
It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph $G_n$ with n vertices is asymptotically bounded from below by $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$. Such a bound is obtained by comparing the walk on $G_n$ to the walk on d-regular tree $\mathcal{T} _d$. If one can map another transitive graph $\mathcal{G} $ onto $G_n$, then we can improve the strategy by using a comparison with the random walk on $\mathcal{G} $ (instead of that of $\mathcal{T} _d$), and we obtain a lower bound of the form $\frac {1}{\mathfrak{h} }\log n$, where $\mathfrak{h} $ is the entropy rate associated with $\mathcal{G} $. We call this the entropic lower bound.
It was recently proved that in the case $\mathcal{G} =\mathcal{T} _d$, this entropic lower bound (in that case $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$) is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient condition on the spectra of the random walks on $G_n$ under which the random walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to random walks on random n-lifts of a base graph (including nonreversible walks).
Let G be a finite group, let
${\text{Irr}}(G)$ be the set of all irreducible complex characters of G and let
$\chi \in {\text{Irr}}(G)$. Define the codegrees,
${\text{cod}}(\chi ) = |G: {\text{ker}}\chi |/\chi (1)$ and
${\text{cod}}(G) = \{{\text{cod}}(\chi ) \mid \chi \in {\text{Irr}}(G)\} $. We show that the simple group
${\text{PSL}}(2,q)$, for a prime power
$q>3$, is uniquely determined by the set of its codegrees.
Vertex-primitive self-complementary graphs were proved to be affine or in product action by Guralnick et al. [‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc.356 (2004), 4857–4872]. The product action type is known in some sense. In this paper, we provide a generic construction for the affine case and several families of new self-complementary Cayley graphs are constructed.
A graph $\Gamma $ is called $(G, s)$-arc-transitive if $G \le \text{Aut} (\Gamma )$ is transitive on the set of vertices of $\Gamma $ and the set of s-arcs of $\Gamma $, where for an integer $s \ge 1$ an s-arc of $\Gamma $ is a sequence of $s+1$ vertices $(v_0,v_1,\ldots ,v_s)$ of $\Gamma $ such that $v_{i-1}$ and $v_i$ are adjacent for $1 \le i \le s$ and $v_{i-1}\ne v_{i+1}$ for $1 \le i \le s-1$. A graph $\Gamma $ is called 2-transitive if it is $(\text{Aut} (\Gamma ), 2)$-arc-transitive but not $(\text{Aut} (\Gamma ), 3)$-arc-transitive. A Cayley graph $\Gamma $ of a group G is called normal if G is normal in $\text{Aut} (\Gamma )$ and nonnormal otherwise. Fang et al. [‘On edge transitive Cayley graphs of valency four’, European J. Combin.25 (2004), 1103–1116] proved that if $\Gamma $ is a tetravalent 2-transitive Cayley graph of a finite simple group G, then either $\Gamma $ is normal or G is one of the groups $\text{PSL}_2(11)$, $\text{M} _{11}$, $\text{M} _{23}$ and $A_{11}$. However, it was unknown whether $\Gamma $ is normal when G is one of these four groups. We answer this question by proving that among these four groups only $\text{M} _{11}$ produces connected tetravalent 2-transitive nonnormal Cayley graphs. We prove further that there are exactly two such graphs which are nonisomorphic and both are determined in the paper. As a consequence, the automorphism group of any connected tetravalent 2-transitive Cayley graph of any finite simple group is determined.