Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:54:41.426Z Has data issue: false hasContentIssue false

4 - Introduction to Polariton Condensation

from Part I - Introduction

Published online by Cambridge University Press:  18 May 2017

P. B. Littlewood
Affiliation:
University of Chicago, USA
A. Edelman
Affiliation:
James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Agranovich, V. M. 1957. On the influence of reabsorption on the decay of fluorescence in molecular crystals. Optika i Spektroskopiya, 3, 84.Google Scholar
[2] Hopfield, J. J. 1958. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1556.Google Scholar
[3] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. 1992. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314.Google Scholar
[4] Jacob, Zubin. 2014. Nanophotonics: hyperbolic phonon-polaritons. Nat Mater, 13(12), 1081–1083.Google Scholar
[5] High, Alexander, A., Devlin, Robert, C., Dibos, Alan, Polking, Mark, Wild, Dominik, S., Perczel, Janos, de, Leon, Nathalie, P., Lukin, Mikhail, D., and Park, Hongkun. 2015. Visible-frequency hyperbolic metasurface. Nature, 522(7555), 192–196.Google Scholar
[6] Keeling, J., Marchetti, F. M., Szymanska, M. H., and Littlewood, P. B. 2007. Topical review: collective coherence in planar semiconductor microcavities. Semiconductor Science Technology, 22, 1.Google Scholar
[7] Yamamoto, Y., Tassone, F., and Cao, H. 2000. Semiconductor Cavity Quantum Electrodynamics.Berlin: Springer-Verlag.
[8] Kavokin, A., and Malpuech, G. 2003. Cavity Polaritons, Vol. 32, Thin Films and Nanostructures. New York: Elsevier.
[9] Littlewood, P. B., Eastham, P. R., Keeling, J.M.J., Marchetti, F. M., Simons, B. D., and Szymanska, M. H. 2004. Models of coherent exciton condensation. Journal of Physics Condensed Matter, 16, 3597.Google Scholar
[10] Deng, Hui, Haug, Hartmut, and Yamamoto, Yoshihisa. 2010. Exciton-polariton Bose- Einstein condensation. Rev. Mod. Phys., 82, 1489–1537.Google Scholar
[11] Keeling, J., Szymańska, M. H., and Littlewood, P. B. 2010. Keldysh Green's function approach to coherence in a non-equilibrium steady state: connecting Bose- Einstein condensation and lasing. Pages 293–329 of: Nanosscience and Technology, vol. 0: Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. Edited by Slavcheva, Gabriela, and Roussignol, Philippe. Berlin, Heidelburg: Springer. Page 293.
[12] Richard, Maxime, Kasprzak, Jacek, Baas, Augustin, Kundermann, Stefan, Lagoudakis, Konstantinos, Wouters, Michiel, Carusotto, Iacopo, Andre, Regis, Deveaud-Pledran, Benoit, and Dang, Le. 2010. Exciton-polariton Bose-Einstein condensation: advances and issues. International Journal of Nanotechnology, 7(4–8), 668–685.Google Scholar
[13] Szymańska, M. H., Keeling, J., and Littlewood, P. B. 2013. Non-equilibrium Bose- Einstein condensation in a dissipative environment. Pages 447–459 of: Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics.Edited by Proukakis, Nick, et al. World Scientific Publishing.
[14] Byrnes, T., Kim, N. Y., and Yamamoto, Y. 2014. Exciton-polariton condensates. Nature Physics, 10, 803–813.Google Scholar
[15] Carusotto, Iacopo, and Ciuti, Cristiano. 2013. Quantum fluids of light. Rev. Mod. Phys., 85, 299–366.Google Scholar
[16] Kamide, Kenji, and Ogawa, Tetsuo. 2010. What determines the wave function of electron–hole pairs in polariton condensates? Phys. Rev. Lett., 105, 056401.Google Scholar
[17] Dang, Le, Si, Heger, D., André, R., Boeuf, F., and Romestain, R. 1998. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett., 81, 3920–3923.Google Scholar
[18] Senellart, P., and Bloch, J. 1999. Nonlinear emission of microcavity polaritons in the low density regime. Phys. Rev. Lett., 82, 1233–1236.Google Scholar
[19] Dasbach, G., Baars, T., Bayer, M., Larionov, A., and Forchel, A. 2000. Coherent and incoherent polaritonic gain in a planar semiconductor microcavity. Phys. Rev. B, 62, 13076–13083.Google Scholar
[20] Deng, Hui, Weihs, Gregor, Santori, Charles, Bloch, Jacqueline, and Yamamoto, Yoshihisa. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298(5591), 199–202.
[21] Savvidis, P. G., Baumberg, J. J., Stevenson, R. M., Skolnick, M. S., Whittaker, D. M., and Roberts, J. S. 2000. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett., 84, 1547–1550.Google Scholar
[22] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M., Marchetti, F. M., Szymanska, M. H., André, R, Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, Le, Si. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443(7110), 409–414.Google Scholar
[23] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316(5827), 1007–1010.Google Scholar
[24] Kna-Cohen, S., and Forrest, S. R. 2010. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 4, 371–375.Google Scholar
[25] Nelsen, B., Balili, R., Snoke, D. W., Pfeiffer, L., and West, K. 2009. Lasing and polariton condensation: two distinct transitions in GaAs microcavities with stress traps. Journal of Applied Physics, 105, 122414.Google Scholar
[26] Yamaguchi, M., Kamide, K., Nii, R., Ogawa, T., and Yamamoto, Y. 2013. Second thresholds in BEC-BCS-laser crossover of exciton–polariton systems. Phys. Rev. Lett., 111, 026404.Google Scholar
[27] Shelykh, I. A., Rubo, Yuri, G., Malpuech, G., Solnyshkov, D. D., and Kavokin, A. 2006. Polarization and propagation of polariton condensates. Phys. Rev. Lett., 97, 066402.Google Scholar
[28] Laussy, Fabrice P., Shelykh, Ivan, A., Malpuech, Guillaume, and Kavokin, Alexey. 2006. Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light. Phys. Rev. B, 73, 035315.Google Scholar
[29] Roumpo, Georgios, Lohs, Michael, Nitsche, Wolfgang, H., Jonathan, Keeling, Marzena, Szymaska, Littlewood, Peter, B., Löffler, Andreas, Höfling, Sven, Worschech, Lukas Forchel, Alfred, and Yamamoto, Yoshihisa. 2012. Power-law decay of the spatial correlation function in exciton–polariton condensates. PNAS, 109, 6467–6472.Google Scholar
[30] Nitsche, W.H., Kim, N.Y., Roumpos, G., Schneider, C., Kamp, M., Höfling, S., Forchel, A., and Yamamoto, Y. 2014. Algebraic order and the Berezinskii-Kosterlitz- Thouless transition in an exciton–polariton gas. Phys. Rev. B, 90, 205430.Google Scholar
[31] Liu, Gangqiang, Snoke, David W., Daley, Andrew, Pfeiffer, Loren|N., and West, Ken. 2015. A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. Proceedings of the National Academy of Sciences, 112(9), 2676–2681.Google Scholar
[32] Utsunomiya, S., Tian, L., Roumpos, G., Lai1, C.W., Kumada, N., Fujisawa, T., Kuwata-Gonokami, M., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2008. Observation of Bogoliubov excitations in exciton–polariton condensates. Nature Physics, 4, 700–705.Google Scholar
[33] Rubo, Yuri, G. 2007. Half vortices in exciton polariton condensates. Phys. Rev. Lett., 99, 106401.Google Scholar
[34] Lagoudakis, K.G., Ostatnický, T., Kavokin, A.V., Rubo, Y.G., André, R., and Deveaud-Plédran, B. 2009. Observation of half-quantum vortices in an exciton– polariton condensate. Science, 326(Nov.), 974.Google Scholar
[35] Amo, Alberto, Lefrère, Jérôme, Pigeon, Simon, Adrados, Claire, Ciuti, Cristiano, Carusotto, Iacopo, Houdr, Romuald, Giacobino, Elisabeth, and Bramati, Alberto. 2009. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5, 805–810.Google Scholar
[36] Steger, M., Liu, G., Nelsen, B., Gautham, C., Snoke, D.W., Balili, R., Pfeiffer, L., and West, K. 2013. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B, 88, 235314.Google Scholar
[37] Dicke, R.H. 1954. Coherence in spontaneous radiation processes. Phys. Rev., 93, 99–110.Google Scholar
[38] Garraway Barry, M. 2011. The Dicke model in quantum optics: Dickemodel revisited. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1939), 1137–1155.Google Scholar
[39] Ćwik, J.A., Reja, S., Littlewood, P.B., and Keeling, J. 2014. Polariton condensation with saturable molecules dressed by vibrational modes. EPL (Europhysics Letters), 105(Feb.), 47009.Google Scholar
[40] Marchetti, F.M., Keeling, J., Szymańska, M.H., and Littlewood, P.B. 2006. Thermodynamics and excitations of condensed polaritons in disordered microcavities. Phys. Rev. Lett., 96, 066405.Google Scholar
[41] Eastham, P.R., and Littlewood, P.B. 2000. Bose condensation in a model microcavity. Solid State Communications, 116, 357–361.Google Scholar
[42] Eastham, P.R., and Littlewood, P.B. 2001. Bose condensation of cavity polaritons beyond the linear regime: the thermal equilibrium of a model microcavity. Phys. Rev. B, 64, 235101.Google Scholar
[43] Keeling, J., Eastham, P.R., Szymanska, M.H., and Littlewood, P.B. 2005. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B, 72, 115320.Google Scholar
[44] Szymańska, M.H., Keeling, J., and Littlewood, P.B. 2006. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett., 96, 230602.Google Scholar
[45] Wouters, Michiel, and Carusotto, Iacopo. 2007. Excitations in a nonequilibrium Bose- Einstein condensate of exciton polaritons. Phys. Rev. Lett., 99, 140402.
[46] Rodriguez, S.R.K., Chen, Y.T., Steinbusch, T.P., Verschuuren, M.A., Koenderink, A.F., and Rivas, J.G. 2014. From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab. Phys. Rev. B, 90, 235406.Google Scholar
[47] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D.D., Malpuech, G., Galopin, E., Lemaêtre, A., Bloch, J., and Amo, A. 2014. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett., 112, 116402.Google Scholar
[48] Sala, V.G., Solnyshkov, D.D., Carusotto, I., Jacqmin, T., Lemaître, A., TerÇas, H., Nalitov, A., Abbarchi, M., Galopin, E., Sagnes, I., Bloch, J., Malpuech, G., and Amo, A. 2015. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X, 5, 011034.Google Scholar
[49] Xing, G.N., Mathews, S.S., Lim, N., Yantara, X., Liu, D., Sabba, M., Gratzel, S., Mhaisalkar, S. and, Sum, T.Z. 2014. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13, 476–480.Google Scholar
[50] Fei, Z., Scott, M., Gosztola, D.J., Foley, J.J., Yan, J., Mandrus, D.G., Wen, H., Zhou, P., Zhang, D.W., Sun, Y., Guest, J.R., Gray, S.K., Bao, W., Wiederrecht, G.P., and Xu, X. 2016. Nano-optical imaging of exciton polaritons inside WSe2 waveguides. Phys. Rev. B 94, 081402(R).Google Scholar
[51] Dai, S., Ma, Q., Liu, M.K., Andersen, T., Fei, Z., Goldflam, M.D., Wagner, M., Watanabe, K., Taniguchi, T., Thiemens, M., Keilmann, F., Janssen, G. C. A, M., Zhu, S-E., Jarillo-Herrero, P., Fogler, M.M., and Basov, D.N. 2015. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nano, 10(8), 682–686.Google Scholar
[52] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468(Nov), 545–548.Google Scholar
[53] Schmitt, Julian, Damm, Tobias, Dung, David, Vewinger, Frank, Klaers, Jan, and Weitz, Martin. 2014. Observation of grand-canonical number statistics in a photon Bose-Einstein condensate. Phys. Rev. Lett., 112, 030401.Google Scholar
[54] Kirton, P., and Keeling, J. 2013. Nonequilibrium model of photon condensation. Phys. Rev. Lett., 111, 100404.Google Scholar
[55] Kirton, P., and Keeling, J. 2015. Thermalization and breakdown of thermalization in photon condensates. Phys. Rev. A, 91, 033826.Google Scholar
[56] Ningyuan, J., Georgakopoulos, A., Ryou, A., Schine, N., Sommer, A., and Simon, J. 2016. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802(R).Google Scholar
[57] Edelman, A., and Littlewood, P.B. 2015. Physica B – Condensed Matter, 460, 260– 263.Google Scholar
[58] Sommer, A., Büchler H, P. and Simon, J. 2015. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. arXiv:1506.00341.
[59] Abbarchi, M., Amo, A., Sala, V.G., Solnyshkov, D.D., Flayac, H., Ferrier, L., Sagnes, I., Galopin, E., Lemaitre, A., Malpuech, G., and Bloch, J. 2013. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat Phys, 9(5), 275–279.Google Scholar
[60] Tosi, G., Christmann, G., Berloff, N.G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P.G., and Baumberg, J.J. 2012. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat Commun, 3(12), 1243.Google Scholar
[61] Dreismann, Alexander, Cristofolini, Peter, Balili, Ryan, Christmann, Gabriel, Pinsker, Florian, Berloff, Natasha, G., Hatzopoulos, Zacharias, Savvidis, Pavlos, G., and Baumberg, Jeremy, J. 2014. Coupled counterrotating polariton condensates in optically defined annular potentials. Proceedings of the National Academy of Sciences, 111(24), 8770–8775.Google Scholar
[62] Berloff, N.G., and Keeling, J. 2013. Universality in modelling non-equilibrium pattern formation in polariton condensates. ArXiv e-prints, arXiv:1303.6195.
[63] Eastham, P.R., and Phillips, R.T. 2009. Quantum condensation from a tailored exciton population in a microcavity. Phys. Rev. B, 79, 165303.Google Scholar
[64] Brierley, R.T., Littlewood, P.B., and Eastham, P.R. 2011. Amplitude-mode dynamics of polariton condensates. Phys. Rev. Lett., 107, 040401.Google Scholar
[65] Keeling, J. 2011. Superfluid density of an open dissipative condensate. Phys. Rev. Lett., 107, 080402.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×