Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T13:16:40.904Z Has data issue: false hasContentIssue false

6 - Does Stress Damage the Brain?

Published online by Cambridge University Press:  27 July 2009

J. Douglas Bremner
Affiliation:
Director Emory Center for Positron Emission Tomography (PET), Atlanta, GA
Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Robert Lemelson
Affiliation:
University of California, Los Angeles
Mark Barad
Affiliation:
University of California, Los Angeles
Get access

Summary

INTRODUCTION

In 1980 the American Psychiatric Association (APA) classified posttraumatic stress disorder (PTSD) as a psychiatric disorder for the first time, and listed criteria for inclusion in the Diagnostic and Statistical Manual III (Saigh & Bremner, 1999). This is often hailed in the field of psychiatry as a historic time point, when it was first recognized that psychological trauma, that is, things that happen to you when there is no physical injury, can cause changes in your brain and physiological responding. This version of history, enthusiastically passed along as an oral tradition by clinicians and researchers who specialize in PTSD, with no discussion of the history of stress before 1980 or anywhere outside of the United States, is not entirely correct. As discussed elsewhere in this volume, there is a longer history of medical approaches to psychological trauma that stretches back 200 hundred years and includes Europe as well as the United States.

In 1988, the U.S. government allocated funding for research and treatment of PTSD in Vietnam veterans. This was in response to political pressure from Vietnam veterans and led to the establishment of the National Center for PTSD in 1988. The concentration of resources and expertise gave a boost to research in the field of PTSD. At that time, there was no general consensus in American culture that traumatic stress led to real psychiatric disorders. Clinical practices reflected this view.

Type
Chapter
Information
Understanding Trauma
Integrating Biological, Clinical, and Cultural Perspectives
, pp. 118 - 141
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, E. D., & Jacobs, B. L. (1987). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats, II: Adaptation to chronically presented stressful stimuli. Journal of Neuroscience, 7, 2844–2848.CrossRefGoogle ScholarPubMed
Arborelius, L., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. Journal of Endocrinology, 160, 1–12.CrossRefGoogle ScholarPubMed
Baker, D. B., West, S. A., Nicholson, W. E., Ekhator, N. N., Kasckow, J. W., Hill, K. K. et al. (1999). Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. American Journal of Psychiatry, 156, 585–588.Google ScholarPubMed
Barrett, D. H., Green, M. L., Morris, R., Giles, W. H., & Croft, J. B. (1996). Cognitive functioning and posttraumatic stress disorder. American Journal of Psychiatry, 153(11), 1492–1494.Google ScholarPubMed
Bonne, O., Brandes, D., Gilboa, A., Gomori, J. M., Shenton, M. E., Pitman, R. K. et al. (2001). Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. American Journal of Psychiatry, 158, 1248–1251.CrossRefGoogle ScholarPubMed
Bremner, J. D. (2002). Does stress damage the brain? Understanding trauma-related disorders from a mind-body perspective. New York: W. W. Norton.Google Scholar
Bremner, J. D. (2003a). Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacology Bulletin, 37(2), 6–25.Google Scholar
Bremner, J. D. (2003b). Long-term effects of childhood abuse on brain and neurobiology. Child and Adolescent Psychiatric Clinics of North America, 12(2), 271–292.CrossRefGoogle Scholar
Bremner, J. D., Hoffman, M., Vaccarino, V., Afzal, N., Cheema, F. A., Novik, O., et al. (2003, Oct.) Memory and the hippocampus in Vietnam twins with PTSD. In E. Vermetten (Chair), New research from brain imaging studies in PTSD. Symposium conducted at the Annual Meeting of the International Society for Traumatic Stress Studies, Chicago infralimbic cortex.Google Scholar
Bremner, J. D., Innis, R. B., Ng, C. K., Staib, L., Duncan, J., Bronen, R.. (1997). positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in posttraumatic stress disorder. Archives of General Psychiatry, 54, 246–256.CrossRefGoogle ScholarPubMed
Bremner, J. D., Innis, R. B., Southwick, S. M., Staib, L. H., Zoghbi, S., & Charney, D. S. (2000). Decreased benzodiazepine receptor binding in frontal cortex in combat-related posttraumatic stress disorder. American Journal of Psychiatry, 157, 1120–1126.CrossRefGoogle ScholarPubMed
Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S. (1995). Functional neuroanatomical correlates of the effects of stress on memory. Journal of Traumatic Stress, 8, 527–554.CrossRefGoogle ScholarPubMed
Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S. (1996a). Noradrenergic mechanisms in stress and anxiety, I: Preclinical studies. Synapse, 23, 28–38.3.0.CO;2-J>CrossRefGoogle Scholar
Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S. (1996b). Noradrenergic mechanisms in stress and anxiety, II: Clinical studies. Synapse, 23, 39–51.3.0.CO;2-I>CrossRefGoogle Scholar
Bremner, J. D., Licinio, J., Darnell, A., Krystal, J. H., Owens, M., Southwick, S. M. et al. (1997). Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. American Journal of Psychiatry, 154, 624–629.Google ScholarPubMed
Bremner, J. D., Narayan, M., Staib, L. H., Southwick, S. M., McGlashan, T., & Charney, D. S. (1999). Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. American Journal of Psychiatry, 156, 1787–1795.Google ScholarPubMed
Bremner, J. D., Randall, P. R., Capelli, S., Scott, T. M., McCarthy, G., & Charney, D. S. (1995).Deficits in short-term memory in adult survivors of childhood abuse. Psychiatry Research, 59, 97–107.CrossRefGoogle ScholarPubMed
Bremner, J. D., Randall, P. R., Scott, T. M., Bronen, R. A., Delaney, R. C., Seibyl, J. P. et al. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry, 152, 973–981.Google ScholarPubMed
Bremner, J. D., Randall, P. R., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C. M. et al. (1997). MRI-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse: A preliminary report. Biological Psychiatry, 41, 23–32.CrossRefGoogle Scholar
Bremner, J. D., Scott, T. M., Delaney, R. C., Southwick, S. M., Mason, J. W., Johnson, D. R.. (1993). Deficits in short-term memory in post-traumatic stress disorder. American Journal of Psychiatry, 150, 1015–1019.Google Scholar
Bremner, J. D., Soufer, R., McCarthy, G., Delaney, R. C., Staib, L. H., Duncan, J. S. et al. (2001). Gender differences in cognitive and neural correlates of remembrance of emotional words. Psychopharmacology Bulletin, 35, 55–87.Google ScholarPubMed
Bremner, J. D., Southwick, S. M., Darnell, A., & Charney, D. S. (1996). Chronic PTSD in Vietnam combat veterans: Course of illness and substance abuse. American Journal of Psychiatry, 153, 369–375.Google ScholarPubMed
Bremner, J. D., Staib, L., Kaloupek, D., Southwick, S. M., Soufer, R., & Charney, D. S. (1999).Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45, 806–816.CrossRefGoogle ScholarPubMed
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13, 473–489.CrossRefGoogle Scholar
Bremner, J. D., Vermetten, E., & Kelley, M. E. (in press). Cortisol, dehydroepiandro–sterone (dihydroepiandosterone (DHEA)), and estradiol measured over 24 hours in women with childhood sexual abuse–related postraumatic stress disorder. Journal of Nervous and Mental Disease.
Bremner, J. D., Vermetten, E., Nafzal, N., & Vythilingam, M. (2004). Deficits in verbal declarative memory function in women with childhood sexual abuse-related posttraumatic stress disorder (PTSD). Journal of Nervous and Mental Disease, 192(10), 643–649.CrossRefGoogle Scholar
Bremner, J. D., Vermetten, E., Schmahl, C., Vaccarino, V., Vythilingam, M., Afzal, N.. (2005). Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual abuse-related posttraumatic stress disorder. Psychological Medicine, 35(6), 791–806.CrossRefGoogle Scholar
Bremner, J. D., Vermetten, E., Vythilingam, M., Afzal, N., Schmahl, C., Elzinga, B., & Charney, D. (2004). Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder. Biological Psychiatry, 55(6), 612–620.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Adil, J., Khan, S., Nazeer, A. et al. (2003).Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology, 28, 733–750.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A. et al. (2003). MRI and positron emission tomography study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder (PTSD). American Journal of Psychiatry, 160, 924–932.CrossRefGoogle Scholar
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Staib, L. et al. (2003). Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder (PTSD) related to early childhood sexual abuse. Biological Psychiatry, 53, 289–299.CrossRefGoogle ScholarPubMed
Brewin, C. R. (2001). A cognitive neuroscience account of post-traumatic stress disorder and its treatment. Behaviour Research and Therapy, 39, 373–393.CrossRefGoogle ScholarPubMed
Buckley, T. C., Blanchard, E. B., & Neill, W. T. (2000). Information processing and PTSD: A review of the empirical literature. Clinical Psychology Reviews, 28(8), 1041–1065.CrossRefGoogle Scholar
Carrion, V. G., Weems, C. F., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D. et al. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50, 943–951.CrossRefGoogle ScholarPubMed
Czeh, B., Michaelis, T., Watanabe, T., Frahm, J., Biurrun, G., Kampen, M. et al. (2001). Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proceedings of the National Academy of Sciences of the United States of America, 98, 12796–12801.CrossRefGoogle ScholarPubMed
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.CrossRefGoogle ScholarPubMed
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.CrossRefGoogle ScholarPubMed
Bellis, M. D., Hall, J., Boring, A. M., Frustaci, K., & Moritz, G. (2001). A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 50, 305–309.CrossRefGoogle ScholarPubMed
Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M.. (1999). A. E. Bennett Research Award: Developmental traumatology, partII: Brain development. Biological Psychiatry, 45, 1271–1284.Google Scholar
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate to behavior. Brain, 118, 279–306.CrossRefGoogle Scholar
Diamond, D. M., Fleshner, M., Ingersoll, N., & Rose, G. M. (1996). Psychological stress impairs spatial working memory: Relevance to electrophysiological studies of hippocampal function. Behavioral Neuroscience, 110, 661–672.CrossRefGoogle ScholarPubMed
Driessen, M., Herrmann, J., Stahl, K., Zwaan, M., Meier, S., Hill, A. et al. (2000). Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Archives of General Psychiatry, 57, 1115–1122.CrossRefGoogle ScholarPubMed
D'Sa, C., & Duman, R. S. (2002). Antidepressants and neuroplasticity. Bipolar Disorders, 4, 183–194.CrossRefGoogle ScholarPubMed
Duman, R. S. (2004). Depression: A case of neuronal life and death?Biological Psychiatry, 56, 140–145.CrossRefGoogle ScholarPubMed
Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.CrossRefGoogle Scholar
Duman, R. S., Malberg, J. E., & Nakagawa, S. (2001). Regulation of adult neurogenesis by psychotropic drugs and stress. Journal of Pharmacology and Experimental Therapeutics, 299, 401–407.Google Scholar
Elzinga, B. M., & Bremner, J. D. (2002). Are the neural substrates of memory the final common pathway in PTSD?Journal of Affective Disorders, 70, 1–17.CrossRefGoogle ScholarPubMed
Elzinga, B. M., Schmahl, C. S., Vermetten, E., Dyck, R., & Bremner, J. D. (2003). Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology, 28(9), 1656–1665.CrossRefGoogle ScholarPubMed
Finlay, J. M., Zigmond, M. J., & Abercrombie, E. D. (1995). Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam. Neuroscience, 64, 619–628.CrossRefGoogle ScholarPubMed
Foa, E. B., Feske, U., Murdock, T. B., Kozak, M. J., & McCarthy, P. R. (1991). Processing of threat-related information in rape victims. Journal of Abnormal Psychology, 100, 156–162.CrossRefGoogle ScholarPubMed
Foote, S. L., Bloom, F. E., & Aston-Jones, G. (1983). Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiology & Behavior, 63, 844–914.Google ScholarPubMed
Fowler, C. D., Liu, Y., Ouimet, C., & Wang, Z. (2001). The effects of social environment on adult neurogenesis in the female prairie vole. Journal of Neurobiology, 51, 115–128.CrossRefGoogle Scholar
Freeman, T. W., Cardwell, D., Karson, C. N., & Komoroski, R. A. (1998). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combat-related posttraumatic stress disorder. Magnetic Resonance in Medicine, 40, 66–71.CrossRefGoogle ScholarPubMed
Garcia, R. (2002). Stress, metaplasticity, and antidepressants. Current Molecular Medicine, 2, 629–638.CrossRefGoogle ScholarPubMed
Gil, T., Calev, A., Greenberg, D., Kugelmas, S., & Lerer, B. (1990). Cognitive functioning in posttraumatic stress disorder. Journal of Traumatic Stress, 3, 29–45.CrossRefGoogle Scholar
Gilbertson, M. W., Gurvits, T. V., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2001). Multivariate assessment of explicit memory function in combat veterans with posttraumatic stress disorder. Journal of Traumatic Stress, 14, 413–420.CrossRefGoogle ScholarPubMed
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P. et al. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5(11), 1242–1247.CrossRefGoogle ScholarPubMed
Golier, J., & Yehuda, R. (1998). Neuroendocrine activity and memory-related impairments in posttraumatic stress disorder. Development and Psychopathology, 10(4), 857–869.CrossRefGoogle ScholarPubMed
Golier, J., Yehuda, R., Cornblatt, B., Harvey, P., Gerber, D., & Levengood, R. (1997). Sustained attention in combat-related posttraumatic stress disorder. Integrative Physiological & Behavioral Science, 32(1), 52–61.CrossRefGoogle ScholarPubMed
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. M., & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and N-methyl d-aspartate (receptors) receptor activation. Journal of Neuroscience, 17, 2492–2498.CrossRefGoogle ScholarPubMed
Gurvits, T. G., Shenton, M. R., Hokama, H., Ohta, H., Lasko, N. B., Gilbertson, M. B. et al. (1996). Magnetic resonance imaging study of hippocampal volume in chronic combat-related posttraumatic stress disorder. Biological Psychiatry, 40, 192–199.CrossRefGoogle ScholarPubMed
Henn, F. A., & Vollmayr, B. (2004). Neurogenesis and depression: Etiology or epiphenomenon?Biological Psychiatry, 56, 146–150.CrossRefGoogle ScholarPubMed
Jenkins, M. A., Langlais, P. J., Delis, D., & Cohen, R. (1998). Learning and memory in rape victims with posttraumatic stress disorder. American Journal of Psychiatry, 155, 278–279.Google ScholarPubMed
Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by positron emission tomography. Nature, 363, 623–625.CrossRefGoogle Scholar
Lanius, R. A., Williamson, P. C., Boksman, K., Densmore, M., Gupta, M. A., Neufeld, R. W. J.. (2002). Brain activation during script-driven imagery induced dissociative responses in PTSD: A functional magnetic resonance imaging investigation. Biological Psychiatry, 52(4), 305–311.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R. W.. (2001). Neural correlates of traumatic memories in posttraumatic stress disorder: A functional MRI investigation. American Journal of Psychiatry, 158, 1920–1922.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Hopper, J., Densmore, M., Boksman, K., Gupta, M. A.. (2003). Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biological Psychiatry, 53(3), 204–210.CrossRefGoogle Scholar
Lawrence, M. S., & Sapolsky, R. M. (1994). Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Research, 646, 303–306.CrossRefGoogle ScholarPubMed
LeDoux, J. L. (1993). In search of systems and synapses. Annals of the New York Academy of Sciences, 149–157.CrossRefGoogle ScholarPubMed
Leverenz, J. B., Wilkinson, C. W., Wamble, M., Corbin, S., Grabber, J. E., Raskind, M. A. et al. (1999). Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged nonhuman primate. Journal of Neuroscience, 19, 2356–2361.CrossRefGoogle Scholar
Levine, E. S., Litto, W. J., & Jacobs, B. L. (1990). Activity of cat locus coeruleus noradrenergic neurons during the defense reaction. Brain Research, 531, 189–195.CrossRefGoogle ScholarPubMed
Levine, S., Weiner, S. G., & Coe, C. L. (1993). Temporal and social factors influencing behavioral and hormonal responses to separation in mother and infant squirrel monkeys. Psychoneuroendocrinology, 4, 297–306.CrossRefGoogle Scholar
Liberzon, I., Taylor, S. F., Amdur, R., Jung, T. D., Chamberlain, K. R., Minoshima, S. et al. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biological Psychiatry, 45, 817–826.CrossRefGoogle ScholarPubMed
Lucassen, P. J., Fuchs, E., & Czeh, B. (2004). Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. European Journal of Neuroscience, 14, 161–166.CrossRefGoogle Scholar
Luine, V., Villages, M., Martinex, C., & McEwen, B. S. (1994). Repeated stress causes reversible impairments of spatial memory performance. Brain Research, 639, 167–170.CrossRefGoogle ScholarPubMed
Maddock, R. J., & Buonocore, M. H. (1997). Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: An fMRI study. Psychiatry Research, 75, 1–14.CrossRefGoogle Scholar
Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.CrossRefGoogle ScholarPubMed
McEwen, B. S., Angulo, J., Cameron, H., Chao, H. M., Daniels, D., Gannon, M. N. et al. (1992). Paradoxical effects of adrenal steroids on the brain: Protection versus degeneration. Biological Psychiatry, 31, 177–199.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Chattarji, S. (2004). Molecular mechanisms of neuroplasticity and pharmacological implications: The example of tianeptine. European Neuropsychopharmacology, 14(Suppl. 5), S497–502.CrossRefGoogle ScholarPubMed
McFall, M. E., Murburg, M. M., Ko, G. N., & Veith, R. C. (1990). Autonomic responses to stress in Vietnam combat veterans with posttraumatic stress disorder. Biological Psychiatry, 27, 1165–1175.CrossRefGoogle ScholarPubMed
Melia, K. R., & Duman, R. S. (1991). Involvement of corticotropin-releasing factor in chronic stress regulation of the brain noradrenergic system. Proceedings of the National Academy of Sciences of the United States of America, 88, 8382–8386.CrossRefGoogle ScholarPubMed
Moradi, A. R., Doost, H. T., Taghavi, M. R., Yule, W., & Dalgleish, T. (1999). Everyday memory deficits in children and adolescents with PTSD: Performance on the Rivermead Behavioural Memory Test. Journal of Child Psychology and Psychiatry, 40, 357–361.CrossRefGoogle ScholarPubMed
Morgan, C. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience, 109, 681–688.CrossRefGoogle ScholarPubMed
Morgan, C. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109–113.CrossRefGoogle ScholarPubMed
Nibuya, M., Morinobu, S., & Duman, R. S. (1995). Regulation of brain-derived neurotrophic factor and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. Journal of Neuroscience, 15, 7539–7547.CrossRefGoogle ScholarPubMed
Nisenbaum, L. K., Zigmond, M. J., Sved, A. F., & Abercrombie, E. D. (1991). Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. Journal of Neuroscience, 11, 1478–1484.CrossRefGoogle ScholarPubMed
Notestine, C. F., Stein, M. B., Kennedy, C. M., Archibald, S. L., & Jernigan, T. L. (2002). Brain morphometry in female victims of intimate partner violence with and without posttraumatic stress disorder. Biological Psychiatry, 51, 1089–1101.CrossRefGoogle Scholar
Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–64.CrossRefGoogle ScholarPubMed
Pitman, R. K. (2001). Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. Journal of Clinical Psychiatry, 62, 47–54.Google ScholarPubMed
Pitman, R. K., Orr, S. P., Forgus, D. F., Jong, J. B., & Claiborn, J. M. (1987). Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Archives of General Psychiatry, 44, 970–975.CrossRefGoogle ScholarPubMed
Quirk, G. J. (2002). Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learning & Memory, 9, 402–407.CrossRefGoogle ScholarPubMed
Radley, J. J., Sisti, H. M., Hao, J., Rocher, A. B., McCall, T., Hof, P. R. et al. (2004). Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience, 125(1), 1–6.CrossRefGoogle ScholarPubMed
Rauch, S. L., Kolk, B. A., Fisler, R. E., Alpert, N. M., Orr, S. P., Savage, C. R. et al. (1996). A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychiatry, 53, 380–387.CrossRefGoogle ScholarPubMed
Rauch, S. L., Whalen, P. J., Shin, L. M., McInerney, S. C., Macklin, M. L., Lasko, N. B. et al. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biological Psychiatry, 47(9), 769–776.CrossRefGoogle ScholarPubMed
Roca, V., & Freeman, T. W. (2001). Complaints of impaired memory in veterans with PTSD. American Journal of Psychiatry, 158, 1738.CrossRefGoogle ScholarPubMed
Roth, R. H., Tam, S. Y., Ida, Y., Yang, J. X., & Deutch, A. Y. (1988). Stress and the mesocorticolimbic dopamine systems. Annals of the New York Academy of Sciences, 537, 138–147.CrossRefGoogle ScholarPubMed
Sachinvala, N., Scotti, H., McGuire, M., Fairbanks, L., Bakst, K., McGuire, M. et al. (2000). Memory, attention, function, and mood among patients with chronic posttraumatic stress disorder. Journal of Nervous and Mental Disease, 188, 818–823.CrossRefGoogle ScholarPubMed
Saigh, P. A., & Bremner, J. D. (1999). The history of posttraumatic stress disorder. In Saigh, P. A. & Bremner, J. D. (Eds.), Posttraumatic stress disorder: A comprehensive text (pp. 1–17). Needham Heights, MA: Allyn & Bacon.Google Scholar
Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S. et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634), 805–809.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273, 749–750.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 2897–2902.CrossRefGoogle ScholarPubMed
Schmahl, C. G., Elzinga, B. M., & Bremner, J. D. (2002). Individual differences in psychophysiological reactivity in adults with childhood abuse. Clinical Psychology and Psychotherapy, 9, 271–276.CrossRefGoogle Scholar
Schmahl, C. G., Elzinga, B. M., Vermetten, E., Sanislow, C., McGlashan, T. H., & Bremner, J. D. (2003). Neural correlates of memories of abandonment in women with and without borderline personality disorder. Biological Psychiatry, 54, 42–51.CrossRefGoogle ScholarPubMed
Schmahl, C. G., McGlashan, T., & Bremner, J. D. (2002). Neurobiological correlates of borderline personality disorder. Psychopharmacology Bulletin, 36, 69–87.Google ScholarPubMed
Schmahl, C. G., Vermetten, E., Elzinga, B. M., & Bremner, J. D. (2003). Magnetic resonance imaging of hippocampal and amygdala volume in women with childhood abuse and borderline personality disorder. Psychiatry Research: Neuroimaging, 122, 193–198.CrossRefGoogle ScholarPubMed
Schuff, N., Neylan, T. C., Lenoci, M. A., Du, A. T., Weiss, D. S., Marmar, C. R. et al. (2001). Decreased hippocampal N-acetylaspartate in the absence of atrophy in posttraumatic stress disorder. Biological Psychiatry, 50, 952–959.CrossRefGoogle ScholarPubMed
Semple, W. E., Goyer, P., McCormick, R., Donovan, B., Muzic, R. F., Rugle, L. et al. (2000). Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared to controls. Psychiatry, 63, 65–74.CrossRefGoogle Scholar
Shin, L. H., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M. et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A positron emission tomography investigation. American Journal of Psychiatry, 156, 575–584.Google Scholar
Shin, L. M., Kosslyn, S. M., McNally, R. J., Alpert, N. M., Thompson, W. L., Rauch, S. L. et al. (1997). Visual imagery and perception in posttraumatic stress disorder: A positron emission tomographic investigation. Archives of General Psychiatry, 54, 233–237.CrossRefGoogle ScholarPubMed
Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., Lasko, N. B. et al. (2004). Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry, 61(2), 168–176.CrossRefGoogle ScholarPubMed
Shin, L. M., Shin, P. S., Heckers, S., Krangel, T. S., Macklin, M. L., Orr, S. P. et al. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus, 14(3), 292–300.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B. et al. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry, 50(12), 932–942.CrossRefGoogle ScholarPubMed
Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus. Journal of Neuroscience 15, 1768–1777.CrossRefGoogle ScholarPubMed
Southwick, S. M., Krystal, J. H., Morgan, C. A., Johnson, D. R., Nagy, L. M., Nicolaou, A. L.. (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry, 50(4), 295–305.CrossRefGoogle ScholarPubMed
Stanton, M. E., Gutierrez, Y. R., & Levine, S. (1988). Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behavioral Neuroscience, 102, 692–700.CrossRefGoogle ScholarPubMed
Stein, M. B., Hanna, C., Vaerum, V., & Koverola, C. (1999). Memory functioning in adult women traumatized by childhood sexual abuse. Journal of Traumatic Stress, 12(3), 527–534.CrossRefGoogle ScholarPubMed
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27, 951–959.CrossRefGoogle ScholarPubMed
Sutker, P. B., Winstead, D. K., Galina, Z. H., & Allain, A. N. (1991). Cognitive deficits and psychopathology among former prisoners of war and combat veterans of the Korean conflict. American Journal of Psychiatry, 148, 67–72.Google ScholarPubMed
Thygesen, P., Hermann, K., & Willanger, R. (1970). Concentration camp survivors in Denmark: Persecution, disease, and compensation. Danish Medical Bulletin, 17, 65–108.Google ScholarPubMed
Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America, 91, 2016–2020.CrossRefGoogle ScholarPubMed
Uddo, M., Vasterling, J. J., Braily, K., & Sutker, P. B. (1993). Memory and attention in posttraumatic stress disorder. Journal of Psychopathology and Behavioral Assessment, 15, 43–52.CrossRefGoogle Scholar
Uno, H., Tarara, R., Else, J. G., Suleman, M. A., & Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9, 1705–1711.CrossRefGoogle ScholarPubMed
Vasterling, J. J., Brailey, K., Constans, J. I., & Sutker, P. B. (1998). Attention and memory dysfunction in posttraumatic stress disorder. Neuropsychology, 12, 125–133.CrossRefGoogle ScholarPubMed
Vasterling, J. J., Duke, L. M., Brailey, K., Constans, J. I., Allain, A. N. Jr., & Sutker, P. B. (2002). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16, 5–14.CrossRefGoogle ScholarPubMed
Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S., & Bremner, J. D. (2003). Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biological Psychiatry, 54(7), 693–702.CrossRefGoogle ScholarPubMed
Villareale, G., Hamilton, D. A., Petropoulos, H., Driscoll, I., Rowland, L. M., Griego, J. A. et al. (2002). Reduced hippocampal volume and total white matter in posttraumatic stress disorder. Biological Psychiatry, 15, 119–125.CrossRefGoogle Scholar
Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.Google ScholarPubMed
Vyas, A., Mitra, R., Rao, Shankaranarayana B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 6810–6818.CrossRefGoogle ScholarPubMed
Vyas, A., Pillai, A. G., & Chattarji, S. (2004). Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience, 128(4), 667–673.CrossRefGoogle ScholarPubMed
Watanabe, Y., Gould, E., Cameron, H. A., Daniels, D. C., & McEwen, B. S. (1992). Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus, 2, 431–436.CrossRefGoogle ScholarPubMed
Watanabe, Y., Gould, E., Daniels, D. C., Cameron, H., & McEwen, B. S. (1992). Tianeptine attenuates stress-induced morphological changes in the hippocampus. European Journal of Pharmacology, 222, 157–162.CrossRefGoogle ScholarPubMed
Yehuda, R., Keefe, R. S., Harvey, P. D., Levengood, R. A., Gerber, D. K., Geni, J. et al. (1995). Learning and memory in combat veterans with posttraumatic stress disorder. American Journal of Psychiatry, 152, 137–139.Google ScholarPubMed
Yehuda, R., Southwick, S. M., Krystal, J. H., Bremner, J. D., Charney, D. S., & Mason, J. (1993). Enhanced suppression of cortisol with low dose dexamethasone in posttraumatic stress disorder. American Journal of Psychiatry, 150, 83–86.Google ScholarPubMed
Yehuda, R., Teicher, M. H., Levengood, R. A., Trestman, R. L., & Siever, L. J. (1994). Circadian regulation of basal cortisol levels in posttraumatic stress disorder. Annals of the New York Academy of Sciences, 378–380.Google ScholarPubMed
Zalewski, C., Thompson, W., & Gottesman, I. (1994). Comparison of neuropsychological test performance in PTSD, generalized anxiety disorder, and control Vietnam veterans. Assessment, 1, 133–142.CrossRefGoogle ScholarPubMed
Zubieta, J.-K., Chinitz, J. A., Lombardi, U., Fig, L. M., Cameron, O. G., & Liberzon, I. (1999). Medial frontal cortex involvement in PTSD symptoms: A SPECT study. Journal of Psychiatry Research, 33, 259–264.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×