Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: October 2019

Chapter 17 - Neuroimaging in Epilepsy


The use of neuroimaging in the evaluation of epilepsy dates back to X-ray radiography, which was obtained in the early temporal lobe surgical evaluations.1,2 In the 1940s the first temporal lobectomy was performed and skull X-ray, along with air encephalography, was obtained to detect findings such as dilatation of the horns of the lateral ventricles, as well as changes in the middle cranial fossa curvature.2,3 Although with further evaluations these findings were not substantiated, dilatation of the temporal horns on brain magnetic resonance imaging (MRI) can be a finding in mesial temporal sclerosis (MTS).4

Related content

Powered by UNSILO
1.Chugani, HT, Kumar, A. Historical perspectives of neuroimaging in epilepsy. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:37.
2.Shorvon, S. The surgical therapy of epilepsy. In: Shorvon, S, ed., Handbook of Epilepsy Treatment. 3rd edn. Oxford: Wiley-Blackwell; 2010:314364.
3.Falconer, MA. Place of surgery for temporal lobe epilepsy during childhood. Br Med J. 1972;2(5814):631635.
4.Cendes, F. Neuroimaging in investigation of patients with epilepsy. Continuum (Minneap Minn). 2013;19(3 Epilepsy):623642.
5.Luedke, MW, Gallentine, WB. Structural neuroimaging. In: Husain, AM, ed., Practical Epilepsy. New York: Demos Medical Publishing; 2016:200218.
6.Sostman, HD, Spencer, DD, Gore, JC, et al. Preliminary observations on magnetic resonance imaging in refractory epilepsy. Magn Reson Imaging. 1984;2(4):301306.
7.Commission on Neuroimaging of the International League Against Epilepsy. Recommendations for neuroimaging of patients with epilepsy. Epilepsia. 1997;38(11):12551256.
8.Budde, J, Shajan, G, Hoffmann, J, Ugurbil, K, Pohmann, R. Human imaging at 9.4 T using T(2) *-, phase-, and susceptibility-weighted contrast. Magn Reson Med. 2011;65(2):544550.
9.van der Kolk, AG, Hendrikse, J, Zwanenburg, JJ, Visser, F, Luijten, PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013;82(5):708718.
10.Moosa, ANV, Ruggieri, PM. Magnetic resonance imaging in evaluation for epilepsy surgery. In: Wyllie, E, ed., Wyllie’s Treatment of Epilepsy: Principles and Practice. 6th edn. Philadelphia: Wolters Kluwer; 2015:794809.
11.Jack, CR Jr., Rydberg, CH, Krecke, KN, et al. Mesial temporal sclerosis: diagnosis with fluid-attenuated inversion-recovery versus spin-echo MR imaging. Radiology. 1996;199(2):367373.
12.Diehl, B, Najm, I, Ruggieri, P, et al. Periictal diffusion-weighted imaging in a case of lesional epilepsy. Epilepsia. 1999;40(11):16671671.
13.Katramados, AM, Burdette, D, Patel, SC, et al. Periictal diffusion abnormalities of the thalamus in partial status epilepticus. Epilepsia. 2009;50(2):265275.
14.Hufnagel, A, Weber, J, Marks, S, et al. Brain diffusion after single seizures. Epilepsia. 2003;44(1):5463.
15.Muhlhofer, W, Tan, YL, Mueller, SG, Knowlton, R. MRI-negative temporal lobe epilepsy-what do we know? Epilepsia. 2017;58(5):727742.
16.So, EL, Ryvlin, P. Scope and implications of MRI-negative refractory focal epilepsy. In: So, EL, Ryvlin, P, eds., MRI-Negative Epilepsy: Evaluation and Surgical Management. Cambridge: Cambridge University Press; 2015:15.
17.Hauptman, JS, Mathern, GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia. 2012;53(Suppl 4):98104.
18.Knake, S, Triantafyllou, C, Wald, LL, et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology. 2005;65(7):10261031.
19.Tatum, WO IV. Mesial temporal lobe epilepsy. J Clin Neurophysiol. 2012;29(5):356365.
20.Cendes, F, Theodore, WH, Brinkmann, BH, Sulc, V, Cascino, GD. Neuroimaging of epilepsy. Handb Clin Neurol. 2016;136:9851014.
21.Kuzniecky, RI, Bilir, E, Gilliam, F, et al. Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity. Neurology. 1997;49(3):774778.
22.Mischel, PS, Nguyen, LP, Vinters, HV. Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol. 1995;54(2):137153.
23.Palmini, A, Najm, I, Avanzini, G, et al. Terminology and classification of the cortical dysplasias. Neurology. 2004;62(6 Suppl 3):S2–8.
24.Blumcke, I, Thom, M, Aronica, E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52(1):158174.
25.Lapalme-Remis, S, Cascino, GD. Imaging for adults with seizures and epilepsy. Continuum (Minneap Minn). 2016;22(5, Neuroimaging):14511479.
26.Barkovich, AJ, Kuzniecky, RI, Bollen, AW, Grant, PE. Focal transmantle dysplasia: a specific malformation of cortical development. Neurology. 1997;49(4):11481152.
27.Leventer, RJ, Guerrini, R, Dobyns, WB. Malformations of cortical development and epilepsy. Dialogues Clin Neurosci. 2008;10(1):4762.
28.DiMario, FJ Jr., Sahin, M, Ebrahimi-Fakhari, D. Tuberous sclerosis complex. Pediatr Clin North Am. 2015;62(3):633648.
29.Gallagher, A, Grant, EP, Madan, N, et al. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol. 2010;257(8):13731381.
30.Yogi, A, Hirata, Y, Karavaeva, E, et al. DTI of tuber and perituberal tissue can predict epileptogenicity in tuberous sclerosis complex. Neurology. 2015;85(23):20112015.
31.Chugani, DC, Chugani, HT, Muzik, O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858866.
32.Batista, CEA, Chugani, DC, Chugani, HT. Alpha-[11C]methyl-L-tryptophan positron emission tomography. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:186198.
33.Chugani, DC. Alpha-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med. 2011;5(5):567575.
34.Wu, JY, Sutherling, WW, Koh, S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66(8):12701272.
35.Shukla, G, Kazutaka, J, Gupta, A, et al. Magnetoencephalographic identification of epileptic focus in children with generalized electroencephalographic (EEG) features but focal imaging abnormalities. J Child Neurol. 2017;32(12):981995.
36.Rosenow, F, Alonso-Vanegas, MA, Baumgartner, C, et al. Cavernoma-related epilepsy: review and recommendations for management – report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2013;54(12):20252035.
37.Quek, AM, Britton, JW, McKeon, A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012;69(5):582593.
38.Hoftberger, R, van Sonderen, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology. 2015;84(24):24032412.
39.Camfield, PR. Definition and natural history of Lennox-Gastaut syndrome. Epilepsia. 2011;52(Suppl 5):39.
40.Betting, LE, Mory, SB, Lopes-Cendes, I, et al. MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy. Neurology. 2006;67(5):848852.
41.Meencke, HJ. Neuron density in the molecular layer of the frontal cortex in primary generalized epilepsy. Epilepsia. 1985;26(5):450454.
42.Meencke, HJ, Janz, D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia. 1984;25(1):821.
43.Benuzzi, F, Mirandola, L, Pugnaghi, M, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622630.
44.Benuzzi, F, Ballotta, D, Mirandola, L, et al. An EEG-fMRI study on the termination of generalized spike-and-wave discharges in absence epilepsy. PLoS One. 2015;10(7):e0130943.
45.Vollmar, C, O’Muircheartaigh, J, Symms, MR, et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology. 2012;78(20):15551559.
46.Wandschneider, B, Thompson, PJ, Vollmar, C, Koepp, MJ. Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia. 2012;53(12):20912098.
47.Zhang, CH, Sha, Z, Mundahl, J, et al. Thalamocortical relationship in epileptic patients with generalized spike and wave discharges – a multimodal neuroimaging study. Neuroimage Clin. 2015;9:117127.
48.Stefan, H, Paulini-Ruf, A, Hopfengartner, R, Rampp, S. Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res. 2009;85(2–3):187198.
49.Elshahabi, A, Klamer, S, Sahib, AK, Lerche, H, Braun, C, Focke, NK. Magnetoencephalography reveals a widespread increase in network connectivity in idiopathic/genetic generalized epilepsy. PLoS One. 2015;10(9):e0138119. Leon, SC, Niso, G, Canuet, L, et al. Praxis-induced seizures in a patient with juvenile myoclonic epilepsy: MEG-EEG coregistration study. Epilepsy Behav Case Rep. 2016;5:15.
51.Spanaki, MV, Kopylev, L, DeCarli, C, et al. Postoperative changes in cerebral metabolism in temporal lobe epilepsy. Arch Neurol. 2000;57(10):14471452.
52.Oldan, J, Wong, T, Petrella, J. Functional neuroimaging. In: Husain, AM, ed., Practical epilepsy. New York: Demos Medical Publishing; 2016:219228.
53.Jeong, JW, Asano, E, Juhasz, C, Chugani, HT. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Epilepsia. 2015;56(1):4957.
54.Ellmore, TM, Beauchamp, MS, Breier, JI, et al. Temporal lobe white matter asymmetry and language laterality in epilepsy patients. Neuroimage. 2010;49(3):20332044.
55.Khoo, HM, Hao, Y, von Ellenrieder, N, et al. The hemodynamic response to interictal epileptic discharges localizes the seizure-onset zone. Epilepsia. 2017;58(5):811823.
56.Papanicolaou, AC. Basic concepts. In: Papanicolaou, AC, ed. Clinical Magnetoencephalography and Magnetic Source Imaging. New York: Cambridge University Press; 2009:36.
57.Stefan, H, Hummel, C, Scheler, G, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain. 2003;126(Pt 11):23962405.
58.Fischer, MJ, Scheler, G, Stefan, H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain. 2005;128(Pt 1):153157.
59.Knowlton, RC, Elgavish, R, Howell, J, et al. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol. 2006;59(5):835842.
60.Almubarak, S, Alexopoulos, A, Von-Podewils, F, et al. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res. 2014;108(9):15811590.
61.Englot, DJ, Nagarajan, SS, Imber, BS, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia. 2015;56(6):949958.
62.Murakami, H, Wang, ZI, Marashly, A, et al. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain. 2016;139(11):29352947.
63.Burgess, RC, Funke, ME, Bowyer, SM, et al. American Clinical Magnetoencephalography Society clinical practice guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol. 2011;28(4):355361.
64.Nakasato, N, Seki, K, Fujita, S, et al. Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng. 1996;7(4):275283.
65.Simos, PG, Breier, JI, Zouridakis, G, Papanicolaou, AC. Identification of language-specific brain activity using magnetoencephalography. J Clin Exp Neuropsychol. 1998;20(5):706722.
66.Bowyer, SM, Moran, JE, Mason, KM, et al. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology. 2004;62(12):22472255.
67.Baumgartner, C, Doppelbauer, A, Deecke, L, et al. Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res. 1991;87(3):641648.
68.Koepp, MJ. [11C]flumazenil positron emission tomography. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:174185.
69.Burdette, DE, Sakurai, SY, Henry, TR, et al. Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy. Neurology. 1995;45(5):934941.
70.Spencer, SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219227.
71.Horky, LL, Treves, ST. PET and SPECT in brain tumors and epilepsy. Neurosurg Clin N Am. 2011;22(2):169184, viii.
72.Moore, KR, Funke, ME, Constantino, T, Katzman, GL, Lewine, JD. Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology. 2002;225(3):880887.
73.Funke, ME, Moore, K, Orrison, WW Jr., Lewine, JD. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia. 2011;52(Suppl 4):1014.
74.Salamon, N, Kung, J, Shaw, SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):15941601.
75.Chugani, HT, Kumar, A, Kupsky, W, et al. Clinical and histopathologic correlates of 11C-alpha-methyl-L-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia. 2011;52(9):16921698.
76.Perissinotti, A, Setoain, X, Aparicio, J, et al. Clinical role of subtraction ictal SPECT coregistered to MR imaging and (18)F-FDG PET in pediatric epilepsy. J Nucl Med. 2014;55(7):10991105.
77.Wang, ZI, Jones, SE, Bernasconi, A. MRI postprocessing techniques and clinical applications. In: Wyllie, E, ed., Wyllie’s Treatment of Epilepsy: Principles and Practice. New York: Wolters Kluwer; 2015:848854.
78.Brinkmann, BH, Sulc, V. Multimodality image coregistration for MRI-negative epilepsy surgery. In: So, EL, Ryvlin, P, eds., MRI-Negative Epilepsy: Evaluation and Surgical Management. Cambridge: Cambridge University Press; 2015:8089.
79.Chugani, DC, Muzik, O. Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20(1):29.
80.Chugani, HT, Luat, AF, Kumar, A, et al. Alpha-[11C]-Methyl-L-tryptophan – PET in 191 patients with tuberous sclerosis complex. Neurology. 2013;81(7):674680.
81.Chugani, HT, Ilyas, M, Kumar, A, et al. Surgical treatment for refractory epileptic spasms: the Detroit series. Epilepsia. 2015;56(12):19411949.
82.Bargallo Alabart, N, Setoain Parego, X. [Imaging in epilepsy: functional studies]. Radiologia (Roma). 2012;54(2):124136.
83.O’Brien, TJ, So, EL, Cascino, GD, et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia. 2004;45(4):367376.
84.Chen, T, Guo, L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure. 2016;41:4350.
85.Watanabe, S, Dubeau, F, Zazubovits, N, Gotman, J. Temporal lobe spikes: EEG-fMRI contributions to the “mesial vs. lateral” debate. Clin Neurophysiol. 2017;128(6):986991.
86.Coan, AC, Campos, BM, Beltramini, GC, et al. Distinct functional and structural MRI abnormalities in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia. 2014;55(8):11871196.
87.An, D, Fahoum, F, Hall, J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia. 2013;54(12):21842194.
88.Kay, B, Szaflarski, JP. EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy Behav. 2014;34:129135.
89.Wiebe, S, Jette, N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669677.
90.Sherman, EM, Wiebe, S, Fay-McClymont, TB, et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia. 2011;52(5):857869.
91.Dym, RJ, Burns, J, Freeman, K, Lipton, ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011;261(2):446455.
92.Massot-Tarrus, A, Mousavi, SR, Mirsattari, SM. Comparing the intracarotid amobarbital test and functional MRI for the presurgical evaluation of language in epilepsy. Curr Neurol Neurosci Rep. 2017;17(7):54.
93.Cohen, D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 1968;161(3843):784786.
94.Cohen, D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science. 1972;175(4022):664666.
95.Rosenow, F, Luders, H. Presurgical evaluation of epilepsy. Brain. 2001;124(Pt 9):16831700.
96.ACMEGS Position Statement Committee: Bagic, A, Funke, ME, Ebersole, J. American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol. 2009;26(4):290293.
97.ACMEGS Clinical Practice Guideline Committee: Bagic, AI, Knowlton, RC, Rose, DF, Ebersole, JS. American Clinical Magnetoencephalography Society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol. 2011;28(4):348354.
98.ACMEGS Clinical Practice Guideline Committee: Bagic, AI, Barkley, GL, Rose, DF, Ebersole, JS. American Clinical Magnetoencephalography Society clinical practice guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol. 2011;28(4):364365.
99.ACMEGS Position Statement Committee: Bagic, AI, Bowyer, SM, Kirsch, HE, Funke, ME, Burgess, RC. American Clinical MEG Society (ACMEGS) position statement #2: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions. J Clin Neurophysiol. 2017;34(3):189195.
100.Krupa, K, Bekiesinska-Figatowska, M. Artifacts in magnetic resonance imaging. Pol J Radiol. 2015;80:93106.
101.Bowyer, SM, Mason, K, Tepley, N, Smith, B, Barkley, GL. Magnetoencephalographic validation parameters for clinical evaluation of interictal epileptic activity. J Clin Neurophysiol. 2003;20(2):8793.
102.Bagic, AI. Disparities in clinical magnetoencephalography practice in the United States: a survey-based appraisal. J Clin Neurophysiol. 2011;28(4):341347.
103.Grover, KM, Bowyer, SM, Rock, J, et al. Retrospective review of MEG visual evoked hemifield responses prior to resection of temporo-parieto-occipital lesions. J Neurooncol. 2006;77(2):161166.
104.Pang, EW, Chu, BH, Otsubo, H. Occipital lobe lesions result in a displacement of magnetoencephalography visual evoked field dipoles. J Clin Neurophysiol. 2014;31(5):456461.
105.Papanicolaou, AC, Simos, PG, Castillo, EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100(5):867876.
106.Bowyer, SM, Moran, JE, Weiland, BJ, et al. Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav. 2005;6(2):235241.
107.Pang, EW, Wang, F, Malone, M, Kadis, DS, Donner, EJ. Localization of Broca’s area using verb generation tasks in the MEG: validation against fMRI. Neurosci Lett. 2011;490(3):215219.
108.Stefan, H, Rampp, S, Knowlton, RC. Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav. 2011;20(2):172177.
109.Barkley, GL, Baumgartner, C. MEG and EEG in epilepsy. J Clin Neurophysiol. 2003;20(3):163178.
110.Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California. Human Connectome Project. Accessed April 3, 2019.
111.National Institute of Health, US Department of Health and Human Services. The BRAIN initiative. Accessed April 3, 2019.
112.Privitera, M. Epilepsy treatment: a futurist view. Epilepsy Curr. 2017;17(4):204213.
113.Wang, ZI, Jones, SE, Jaisani, Z, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77(6):10601075.
114.Wang, ZI, Jones, SE, Ristic, AJ, et al. Voxel-based morphometric MRI post-processing in MRI-negative focal cortical dysplasia followed by simultaneously recorded MEG and stereo-EEG. Epilepsy Res. 2012;100(1–2):188193.
115.Besson, P, Andermann, F, Dubeau, F, Bernasconi, A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;131(Pt 12):32463255.
116.Harvey, AS, Mandelstam, SA, Maixner, WJ, et al. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2015;84(20):20212028.