Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T14:36:00.143Z Has data issue: false hasContentIssue false

Chapter 17 - Neuroimaging in Epilepsy

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

The use of neuroimaging in the evaluation of epilepsy dates back to X-ray radiography, which was obtained in the early temporal lobe surgical evaluations.1,2 In the 1940s the first temporal lobectomy was performed and skull X-ray, along with air encephalography, was obtained to detect findings such as dilatation of the horns of the lateral ventricles, as well as changes in the middle cranial fossa curvature.2,3 Although with further evaluations these findings were not substantiated, dilatation of the temporal horns on brain magnetic resonance imaging (MRI) can be a finding in mesial temporal sclerosis (MTS).4

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 326 - 345
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chugani, HT, Kumar, A. Historical perspectives of neuroimaging in epilepsy. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:37.Google Scholar
Shorvon, S. The surgical therapy of epilepsy. In: Shorvon, S, ed., Handbook of Epilepsy Treatment. 3rd edn. Oxford: Wiley-Blackwell; 2010:314364.Google Scholar
Falconer, MA. Place of surgery for temporal lobe epilepsy during childhood. Br Med J. 1972;2(5814):631635.CrossRefGoogle ScholarPubMed
Cendes, F. Neuroimaging in investigation of patients with epilepsy. Continuum (Minneap Minn). 2013;19(3 Epilepsy):623642.Google Scholar
Luedke, MW, Gallentine, WB. Structural neuroimaging. In: Husain, AM, ed., Practical Epilepsy. New York: Demos Medical Publishing; 2016:200218.Google Scholar
Sostman, HD, Spencer, DD, Gore, JC, et al. Preliminary observations on magnetic resonance imaging in refractory epilepsy. Magn Reson Imaging. 1984;2(4):301306.Google Scholar
Commission on Neuroimaging of the International League Against Epilepsy. Recommendations for neuroimaging of patients with epilepsy. Epilepsia. 1997;38(11):12551256.Google Scholar
Budde, J, Shajan, G, Hoffmann, J, Ugurbil, K, Pohmann, R. Human imaging at 9.4 T using T(2) *-, phase-, and susceptibility-weighted contrast. Magn Reson Med. 2011;65(2):544550.Google Scholar
van der Kolk, AG, Hendrikse, J, Zwanenburg, JJ, Visser, F, Luijten, PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013;82(5):708718.CrossRefGoogle ScholarPubMed
Moosa, ANV, Ruggieri, PM. Magnetic resonance imaging in evaluation for epilepsy surgery. In: Wyllie, E, ed., Wyllie’s Treatment of Epilepsy: Principles and Practice. 6th edn. Philadelphia: Wolters Kluwer; 2015:794809.Google Scholar
Jack, CR Jr., Rydberg, CH, Krecke, KN, et al. Mesial temporal sclerosis: diagnosis with fluid-attenuated inversion-recovery versus spin-echo MR imaging. Radiology. 1996;199(2):367373.Google Scholar
Diehl, B, Najm, I, Ruggieri, P, et al. Periictal diffusion-weighted imaging in a case of lesional epilepsy. Epilepsia. 1999;40(11):16671671.Google Scholar
Katramados, AM, Burdette, D, Patel, SC, et al. Periictal diffusion abnormalities of the thalamus in partial status epilepticus. Epilepsia. 2009;50(2):265275.Google Scholar
Hufnagel, A, Weber, J, Marks, S, et al. Brain diffusion after single seizures. Epilepsia. 2003;44(1):5463.Google Scholar
Muhlhofer, W, Tan, YL, Mueller, SG, Knowlton, R. MRI-negative temporal lobe epilepsy-what do we know? Epilepsia. 2017;58(5):727742.Google Scholar
So, EL, Ryvlin, P. Scope and implications of MRI-negative refractory focal epilepsy. In: So, EL, Ryvlin, P, eds., MRI-Negative Epilepsy: Evaluation and Surgical Management. Cambridge: Cambridge University Press; 2015:15.Google Scholar
Hauptman, JS, Mathern, GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia. 2012;53(Suppl 4):98104.CrossRefGoogle Scholar
Knake, S, Triantafyllou, C, Wald, LL, et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology. 2005;65(7):10261031.CrossRefGoogle ScholarPubMed
Tatum, WO IV. Mesial temporal lobe epilepsy. J Clin Neurophysiol. 2012;29(5):356365.Google Scholar
Cendes, F, Theodore, WH, Brinkmann, BH, Sulc, V, Cascino, GD. Neuroimaging of epilepsy. Handb Clin Neurol. 2016;136:9851014.Google Scholar
Kuzniecky, RI, Bilir, E, Gilliam, F, et al. Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity. Neurology. 1997;49(3):774778.CrossRefGoogle ScholarPubMed
Mischel, PS, Nguyen, LP, Vinters, HV. Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol. 1995;54(2):137153.Google Scholar
Palmini, A, Najm, I, Avanzini, G, et al. Terminology and classification of the cortical dysplasias. Neurology. 2004;62(6 Suppl 3):S2–8.Google Scholar
Blumcke, I, Thom, M, Aronica, E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52(1):158174.Google Scholar
Lapalme-Remis, S, Cascino, GD. Imaging for adults with seizures and epilepsy. Continuum (Minneap Minn). 2016;22(5, Neuroimaging):14511479.Google Scholar
Barkovich, AJ, Kuzniecky, RI, Bollen, AW, Grant, PE. Focal transmantle dysplasia: a specific malformation of cortical development. Neurology. 1997;49(4):11481152.CrossRefGoogle ScholarPubMed
Leventer, RJ, Guerrini, R, Dobyns, WB. Malformations of cortical development and epilepsy. Dialogues Clin Neurosci. 2008;10(1):4762.Google Scholar
DiMario, FJ Jr., Sahin, M, Ebrahimi-Fakhari, D. Tuberous sclerosis complex. Pediatr Clin North Am. 2015;62(3):633648.Google Scholar
Gallagher, A, Grant, EP, Madan, N, et al. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol. 2010;257(8):13731381.CrossRefGoogle ScholarPubMed
Yogi, A, Hirata, Y, Karavaeva, E, et al. DTI of tuber and perituberal tissue can predict epileptogenicity in tuberous sclerosis complex. Neurology. 2015;85(23):20112015.Google Scholar
Chugani, DC, Chugani, HT, Muzik, O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858866.CrossRefGoogle Scholar
Batista, CEA, Chugani, DC, Chugani, HT. Alpha-[11C]methyl-L-tryptophan positron emission tomography. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:186198.CrossRefGoogle Scholar
Chugani, DC. Alpha-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med. 2011;5(5):567575.Google Scholar
Wu, JY, Sutherling, WW, Koh, S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66(8):12701272.Google Scholar
Shukla, G, Kazutaka, J, Gupta, A, et al. Magnetoencephalographic identification of epileptic focus in children with generalized electroencephalographic (EEG) features but focal imaging abnormalities. J Child Neurol. 2017;32(12):981995.Google Scholar
Rosenow, F, Alonso-Vanegas, MA, Baumgartner, C, et al. Cavernoma-related epilepsy: review and recommendations for management – report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2013;54(12):20252035.Google Scholar
Quek, AM, Britton, JW, McKeon, A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012;69(5):582593.Google Scholar
Hoftberger, R, van Sonderen, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology. 2015;84(24):24032412.Google Scholar
Camfield, PR. Definition and natural history of Lennox-Gastaut syndrome. Epilepsia. 2011;52(Suppl 5):39.Google Scholar
Betting, LE, Mory, SB, Lopes-Cendes, I, et al. MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy. Neurology. 2006;67(5):848852.Google Scholar
Meencke, HJ. Neuron density in the molecular layer of the frontal cortex in primary generalized epilepsy. Epilepsia. 1985;26(5):450454.Google Scholar
Meencke, HJ, Janz, D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia. 1984;25(1):821.Google Scholar
Benuzzi, F, Mirandola, L, Pugnaghi, M, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622630.Google Scholar
Benuzzi, F, Ballotta, D, Mirandola, L, et al. An EEG-fMRI study on the termination of generalized spike-and-wave discharges in absence epilepsy. PLoS One. 2015;10(7):e0130943.Google Scholar
Vollmar, C, O’Muircheartaigh, J, Symms, MR, et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology. 2012;78(20):15551559.Google Scholar
Wandschneider, B, Thompson, PJ, Vollmar, C, Koepp, MJ. Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia. 2012;53(12):20912098.Google Scholar
Zhang, CH, Sha, Z, Mundahl, J, et al. Thalamocortical relationship in epileptic patients with generalized spike and wave discharges – a multimodal neuroimaging study. Neuroimage Clin. 2015;9:117127.Google Scholar
Stefan, H, Paulini-Ruf, A, Hopfengartner, R, Rampp, S. Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res. 2009;85(2–3):187198.Google Scholar
Elshahabi, A, Klamer, S, Sahib, AK, Lerche, H, Braun, C, Focke, NK. Magnetoencephalography reveals a widespread increase in network connectivity in idiopathic/genetic generalized epilepsy. PLoS One. 2015;10(9):e0138119.Google Scholar
de Leon, SC, Niso, G, Canuet, L, et al. Praxis-induced seizures in a patient with juvenile myoclonic epilepsy: MEG-EEG coregistration study. Epilepsy Behav Case Rep. 2016;5:15.Google Scholar
Spanaki, MV, Kopylev, L, DeCarli, C, et al. Postoperative changes in cerebral metabolism in temporal lobe epilepsy. Arch Neurol. 2000;57(10):14471452.Google Scholar
Oldan, J, Wong, T, Petrella, J. Functional neuroimaging. In: Husain, AM, ed., Practical epilepsy. New York: Demos Medical Publishing; 2016:219228.Google Scholar
Jeong, JW, Asano, E, Juhasz, C, Chugani, HT. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Epilepsia. 2015;56(1):4957.Google Scholar
Ellmore, TM, Beauchamp, MS, Breier, JI, et al. Temporal lobe white matter asymmetry and language laterality in epilepsy patients. Neuroimage. 2010;49(3):20332044.Google Scholar
Khoo, HM, Hao, Y, von Ellenrieder, N, et al. The hemodynamic response to interictal epileptic discharges localizes the seizure-onset zone. Epilepsia. 2017;58(5):811823.Google Scholar
Papanicolaou, AC. Basic concepts. In: Papanicolaou, AC, ed. Clinical Magnetoencephalography and Magnetic Source Imaging. New York: Cambridge University Press; 2009:36.Google Scholar
Stefan, H, Hummel, C, Scheler, G, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain. 2003;126(Pt 11):23962405.Google Scholar
Fischer, MJ, Scheler, G, Stefan, H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain. 2005;128(Pt 1):153157.Google Scholar
Knowlton, RC, Elgavish, R, Howell, J, et al. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol. 2006;59(5):835842.Google Scholar
Almubarak, S, Alexopoulos, A, Von-Podewils, F, et al. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res. 2014;108(9):15811590.Google Scholar
Englot, DJ, Nagarajan, SS, Imber, BS, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia. 2015;56(6):949958.Google Scholar
Murakami, H, Wang, ZI, Marashly, A, et al. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain. 2016;139(11):29352947.Google Scholar
Burgess, RC, Funke, ME, Bowyer, SM, et al. American Clinical Magnetoencephalography Society clinical practice guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol. 2011;28(4):355361.Google Scholar
Nakasato, N, Seki, K, Fujita, S, et al. Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng. 1996;7(4):275283.Google Scholar
Simos, PG, Breier, JI, Zouridakis, G, Papanicolaou, AC. Identification of language-specific brain activity using magnetoencephalography. J Clin Exp Neuropsychol. 1998;20(5):706722.Google Scholar
Bowyer, SM, Moran, JE, Mason, KM, et al. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology. 2004;62(12):22472255.CrossRefGoogle ScholarPubMed
Baumgartner, C, Doppelbauer, A, Deecke, L, et al. Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res. 1991;87(3):641648.Google Scholar
Koepp, MJ. [11C]flumazenil positron emission tomography. In: Chugani, HT, ed., Neuroimaging in Epilepsy. Oxford: Oxford University Press; 2010:174185.Google Scholar
Burdette, DE, Sakurai, SY, Henry, TR, et al. Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy. Neurology. 1995;45(5):934941.Google Scholar
Spencer, SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219227.Google Scholar
Horky, LL, Treves, ST. PET and SPECT in brain tumors and epilepsy. Neurosurg Clin N Am. 2011;22(2):169184, viii.Google Scholar
Moore, KR, Funke, ME, Constantino, T, Katzman, GL, Lewine, JD. Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology. 2002;225(3):880887.Google Scholar
Funke, ME, Moore, K, Orrison, WW Jr., Lewine, JD. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia. 2011;52(Suppl 4):1014.Google Scholar
Salamon, N, Kung, J, Shaw, SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):15941601.Google Scholar
Chugani, HT, Kumar, A, Kupsky, W, et al. Clinical and histopathologic correlates of 11C-alpha-methyl-L-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia. 2011;52(9):16921698.Google Scholar
Perissinotti, A, Setoain, X, Aparicio, J, et al. Clinical role of subtraction ictal SPECT coregistered to MR imaging and (18)F-FDG PET in pediatric epilepsy. J Nucl Med. 2014;55(7):10991105.Google Scholar
Wang, ZI, Jones, SE, Bernasconi, A. MRI postprocessing techniques and clinical applications. In: Wyllie, E, ed., Wyllie’s Treatment of Epilepsy: Principles and Practice. New York: Wolters Kluwer; 2015:848854.Google Scholar
Brinkmann, BH, Sulc, V. Multimodality image coregistration for MRI-negative epilepsy surgery. In: So, EL, Ryvlin, P, eds., MRI-Negative Epilepsy: Evaluation and Surgical Management. Cambridge: Cambridge University Press; 2015:8089.Google Scholar
Chugani, DC, Muzik, O. Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20(1):29.Google Scholar
Chugani, HT, Luat, AF, Kumar, A, et al. Alpha-[11C]-Methyl-L-tryptophan – PET in 191 patients with tuberous sclerosis complex. Neurology. 2013;81(7):674680.Google Scholar
Chugani, HT, Ilyas, M, Kumar, A, et al. Surgical treatment for refractory epileptic spasms: the Detroit series. Epilepsia. 2015;56(12):19411949.Google Scholar
Bargallo Alabart, N, Setoain Parego, X. [Imaging in epilepsy: functional studies]. Radiologia (Roma). 2012;54(2):124136.Google Scholar
O’Brien, TJ, So, EL, Cascino, GD, et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia. 2004;45(4):367376.Google Scholar
Chen, T, Guo, L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure. 2016;41:4350.Google Scholar
Watanabe, S, Dubeau, F, Zazubovits, N, Gotman, J. Temporal lobe spikes: EEG-fMRI contributions to the “mesial vs. lateral” debate. Clin Neurophysiol. 2017;128(6):986991.Google Scholar
Coan, AC, Campos, BM, Beltramini, GC, et al. Distinct functional and structural MRI abnormalities in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia. 2014;55(8):11871196.Google Scholar
An, D, Fahoum, F, Hall, J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia. 2013;54(12):21842194.Google Scholar
Kay, B, Szaflarski, JP. EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy Behav. 2014;34:129135.Google Scholar
Wiebe, S, Jette, N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669677.Google Scholar
Sherman, EM, Wiebe, S, Fay-McClymont, TB, et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia. 2011;52(5):857869.Google Scholar
Dym, RJ, Burns, J, Freeman, K, Lipton, ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011;261(2):446455.Google Scholar
Massot-Tarrus, A, Mousavi, SR, Mirsattari, SM. Comparing the intracarotid amobarbital test and functional MRI for the presurgical evaluation of language in epilepsy. Curr Neurol Neurosci Rep. 2017;17(7):54.Google Scholar
Cohen, D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 1968;161(3843):784786.Google Scholar
Cohen, D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science. 1972;175(4022):664666.Google Scholar
Rosenow, F, Luders, H. Presurgical evaluation of epilepsy. Brain. 2001;124(Pt 9):16831700.Google Scholar
ACMEGS Position Statement Committee: Bagic, A, Funke, ME, Ebersole, J. American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol. 2009;26(4):290293.Google Scholar
ACMEGS Clinical Practice Guideline Committee: Bagic, AI, Knowlton, RC, Rose, DF, Ebersole, JS. American Clinical Magnetoencephalography Society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol. 2011;28(4):348354.Google Scholar
ACMEGS Clinical Practice Guideline Committee: Bagic, AI, Barkley, GL, Rose, DF, Ebersole, JS. American Clinical Magnetoencephalography Society clinical practice guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol. 2011;28(4):364365.Google Scholar
ACMEGS Position Statement Committee: Bagic, AI, Bowyer, SM, Kirsch, HE, Funke, ME, Burgess, RC. American Clinical MEG Society (ACMEGS) position statement #2: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions. J Clin Neurophysiol. 2017;34(3):189195.Google Scholar
Krupa, K, Bekiesinska-Figatowska, M. Artifacts in magnetic resonance imaging. Pol J Radiol. 2015;80:93106.Google Scholar
Bowyer, SM, Mason, K, Tepley, N, Smith, B, Barkley, GL. Magnetoencephalographic validation parameters for clinical evaluation of interictal epileptic activity. J Clin Neurophysiol. 2003;20(2):8793.Google Scholar
Bagic, AI. Disparities in clinical magnetoencephalography practice in the United States: a survey-based appraisal. J Clin Neurophysiol. 2011;28(4):341347.Google Scholar
Grover, KM, Bowyer, SM, Rock, J, et al. Retrospective review of MEG visual evoked hemifield responses prior to resection of temporo-parieto-occipital lesions. J Neurooncol. 2006;77(2):161166.Google Scholar
Pang, EW, Chu, BH, Otsubo, H. Occipital lobe lesions result in a displacement of magnetoencephalography visual evoked field dipoles. J Clin Neurophysiol. 2014;31(5):456461.Google Scholar
Papanicolaou, AC, Simos, PG, Castillo, EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100(5):867876.Google Scholar
Bowyer, SM, Moran, JE, Weiland, BJ, et al. Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav. 2005;6(2):235241.Google Scholar
Pang, EW, Wang, F, Malone, M, Kadis, DS, Donner, EJ. Localization of Broca’s area using verb generation tasks in the MEG: validation against fMRI. Neurosci Lett. 2011;490(3):215219.Google Scholar
Stefan, H, Rampp, S, Knowlton, RC. Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav. 2011;20(2):172177.Google Scholar
Barkley, GL, Baumgartner, C. MEG and EEG in epilepsy. J Clin Neurophysiol. 2003;20(3):163178.Google Scholar
Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California. Human Connectome Project. http://www.humanconnectomeproject.org/. Accessed April 3, 2019.Google Scholar
National Institute of Health, US Department of Health and Human Services. The BRAIN initiative. https://www.braininitiative.nih.gov/. Accessed April 3, 2019.Google Scholar
Privitera, M. Epilepsy treatment: a futurist view. Epilepsy Curr. 2017;17(4):204213.Google Scholar
Wang, ZI, Jones, SE, Jaisani, Z, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77(6):10601075.Google Scholar
Wang, ZI, Jones, SE, Ristic, AJ, et al. Voxel-based morphometric MRI post-processing in MRI-negative focal cortical dysplasia followed by simultaneously recorded MEG and stereo-EEG. Epilepsy Res. 2012;100(1–2):188193.Google Scholar
Besson, P, Andermann, F, Dubeau, F, Bernasconi, A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;131(Pt 12):32463255.Google Scholar
Harvey, AS, Mandelstam, SA, Maixner, WJ, et al. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2015;84(20):20212028.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×