Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: October 2019

Chapter 11 - EEG Instrumentation and Basics

Summary

The scalp electroencephalogram (EEG) signals detect the extracellular electrical field generated by the columns underneath the electrodes closer to the cortical surface and represent near-synchronous summated potentials (excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potential (IPSP)) generated by these columns of the cerebral cortex.14

Related content

Powered by UNSILO
1.Ebersole, JS. Cortical generators and EEG voltage fields. In: Ebersole, JS, Pedley, TA, eds. Current Practice of Clinical Electroencephalography. 3rd edn. Philadelphia: Lippincott Williams & Wilkins; 2003:1231.
2.Li, CL, Jasper, H. Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol. 1953;121(1):117140.
3.Humphrey, DR. Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr Clin Neurophysiol. 1968;25(5):421442.
4.Purpura, DP, Grundfest, H. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J Neurophysiol. 1956;19(6):573595.
5.Abraham, K, Marsan, CA. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr Clin Neurophysiol. 1958;10(3):447461.
6.Tao, JX, Ray, A, Hawes-Ebersole, S, Ebersole, JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia. 2005;46(5):669676.
7.Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol. 1965;18:217228.
8.Tao, JX, Baldwin, M, Ray, A, Hawes-Ebersole, S, Ebersole, JS. The impact of cerebral source area and synchrony on recording scalp electroencephalography ictal patterns. Epilepsia. 2007;48(11):21672176.
9.Ray, A, Tao, JX, Hawes-Ebersole, SM, Ebersole, JS. Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. Clin Neurophysiol. 2007;118(1):6979.
10.Haueisen, J, Funke, M, Gullmar, D, Eichardt, R. Tangential and radial epileptic spike activity: different sensitivity in EEG and MEG. J Clin Neurophysiol. 2012;29(4):327332.
11.Hunold, A, Funke, ME, Eichardt, R, Stenroos, M, Haueisen, J. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth. Physiol Meas. 2016;37(7):11461162.
12.Cohen, D, Cuffin, BN. EEG versus MEG localization accuracy: theory and experiment. Brain Topogr. 1991;4(2):95103.
13.van den Broek, SP, Reinders, F, Donderwinkel, M, Peters, MJ. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106(6):522534.
14.Holsheimer, J, Feenstra, BW. Volume conduction and EEG measurements within the brain: a quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations. Electroencephalogr Clin Neurophysiol. 1977;43(1):5258.
15.Gloor, P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985;2(4):327354.
16.Alarcon, G, Guy, CN, Binnie, CD, et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry. 1994;57(4):435449.
17.Delucchi, MR, Garoutte, B, Aird, RB. The scalp as an electroencephalographic averager. Electroencephalogr Clin Neurophysiol. 1962;14:191196.
18.Pacia, SV, Ebersole, JS. Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia. 1997;38(6):642654.
19.Pacia, SV, Ebersole, JS. Intracranial EEG in temporal lobe epilepsy. J Clin Neurophysiol. 1999;16(5):399407.
20.Bach, Justesen A, Eskelund, Johansen AB, Martinussen, NI, et al. Added clinical value of the inferior temporal EEG electrode chain. Clin Neurophysiol. 2018;129(1):291295.
21.Ebersole, JS. EEG dipole modeling in complex partial epilepsy. Brain Topogr. 1991;4(2):113123.
22.Jasper, HH. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol. 1958;10(2):370375.
23.Acharya, JN, Hani, A, Cheek, J, Thirumala, P, Tsuchida, TN. American Clinical Neurophysiology Society Guideline 2: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2016;33(4):308311.
24.Chatrian, GE, Lettich, E, Nelson, PL. Modified nomenclature for the “10%” electrode system. J Clin Neurophysiol. 1988;5(2):183186.
25.Spitzer, AR, Cohen, LG, Fabrikant, J, Hallett, M. A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr Clin Neurophysiol. 1989;72(4):355361.
26.Sohrabpour, A, Lu, Y, Kankirawatana, P, et al. Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol. 2015;126(3):472480.
27.Lascano, AM, Perneger, T, Vulliemoz, S, et al. Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol. 2016;127(1):150155.
28.Lantz, G, Grave de Peralta, R, Spinelli, L, Seeck, M, Michel, CM. Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol. 2003;114(1):6369.
29.Seeck, M, Koessler, L, Bast, T, et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol. 2017;128(10):20702077.
30.Laarne, PH, Tenhunen-Eskelinen, ML, Hyttinen, JK, Eskola, HJ. Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topogr. 2000;12(4):249254.
31.Jurcak, V, Tsuzuki, D, Dan, I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):16001611.
32.Rosenzweig, I, Fogarasi, A, Johnsen, B, et al. Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG. J Clin Neurophysiol. 2014;31(1):19.
33.Knott, JR. Further thoughts on polarity, montages, and localization. J Clin Neurophysiol. 1985;2(1):6375.
34.Jayakar, P, Duchowny, M, Resnick, TJ, Alvarez, LA. Localization of seizure foci: pitfalls and caveats. J Clin Neurophysiol. 1991;8(4):414431.
35.Nyquist, H. Certain factors affecting telegraph speed. Bell System Technical Journal. 1924;3(2):324346.
36.Nyquist, H. Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers. 1928;47(2):617644.
37.Linkenkaer-Hansen, K, Nikouline, VV, Palva, JM, Ilmoniemi, RJ. Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci. 2001;21(4):13701377.
38.Greenwood, P, Ward, L. 1/f noise. Scholarpedia. 2007;2(12):1537.
39.Zhang, Y, van Drongelen, W, He, B. Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett. 2006;89(22):2239032239033.
40.Lai, Y, van Drongelen, W, Ding, L, et al. Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol. 2005;116(2):456465.
41.Tyner, FS, Knott, JR, Mayer, WB. Fundamentals of EEG Technology: Basic Concepts and Methods. Philadelphia: Raven Press; 1983.
42.Electrical safety Q&A: a reference guide for the clinical engineer. Health Devices. 2005;34(2):5775.
43.Walczak, TS, Chokroverty, S. Electroencephalography, electromyography, and electro-oculography. In: Sleep Disorders Medicine: Elsevier; 2009:157181.
44.Schwartz, JJ. Electrical safety. In: Atlee, JL, ed. Complications in Anesthesia. 2nd edn. Philadelphia: Elsevier; 2007:560561.
45.Grimnes, S, Martinsen, OG. Selected applications. In: Bioimpedance and Bioelectricity Basics. 3rd edn. London: Elsevier; 2015:405494.
46.Backes, J. Safety testing of medical devices: IEC 62353 explained. Med Device Technol. 2007;18(7):4647.