Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T02:50:53.961Z Has data issue: false hasContentIssue false

Chapter 11 - EEG Instrumentation and Basics

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

The scalp electroencephalogram (EEG) signals detect the extracellular electrical field generated by the columns underneath the electrodes closer to the cortical surface and represent near-synchronous summated potentials (excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potential (IPSP)) generated by these columns of the cerebral cortex.14

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 203 - 222
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ebersole, JS. Cortical generators and EEG voltage fields. In: Ebersole, JS, Pedley, TA, eds. Current Practice of Clinical Electroencephalography. 3rd edn. Philadelphia: Lippincott Williams & Wilkins; 2003:1231.Google Scholar
Li, CL, Jasper, H. Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol. 1953;121(1):117140.CrossRefGoogle ScholarPubMed
Humphrey, DR. Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr Clin Neurophysiol. 1968;25(5):421442.Google Scholar
Purpura, DP, Grundfest, H. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J Neurophysiol. 1956;19(6):573595.CrossRefGoogle Scholar
Abraham, K, Marsan, CA. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr Clin Neurophysiol. 1958;10(3):447461.CrossRefGoogle ScholarPubMed
Tao, JX, Ray, A, Hawes-Ebersole, S, Ebersole, JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia. 2005;46(5):669676.CrossRefGoogle ScholarPubMed
Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol. 1965;18:217228.Google Scholar
Tao, JX, Baldwin, M, Ray, A, Hawes-Ebersole, S, Ebersole, JS. The impact of cerebral source area and synchrony on recording scalp electroencephalography ictal patterns. Epilepsia. 2007;48(11):21672176.CrossRefGoogle ScholarPubMed
Ray, A, Tao, JX, Hawes-Ebersole, SM, Ebersole, JS. Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. Clin Neurophysiol. 2007;118(1):6979.CrossRefGoogle Scholar
Haueisen, J, Funke, M, Gullmar, D, Eichardt, R. Tangential and radial epileptic spike activity: different sensitivity in EEG and MEG. J Clin Neurophysiol. 2012;29(4):327332.CrossRefGoogle ScholarPubMed
Hunold, A, Funke, ME, Eichardt, R, Stenroos, M, Haueisen, J. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth. Physiol Meas. 2016;37(7):11461162.Google Scholar
Cohen, D, Cuffin, BN. EEG versus MEG localization accuracy: theory and experiment. Brain Topogr. 1991;4(2):95103.Google Scholar
van den Broek, SP, Reinders, F, Donderwinkel, M, Peters, MJ. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106(6):522534.Google Scholar
Holsheimer, J, Feenstra, BW. Volume conduction and EEG measurements within the brain: a quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations. Electroencephalogr Clin Neurophysiol. 1977;43(1):5258.Google Scholar
Gloor, P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985;2(4):327354.Google Scholar
Alarcon, G, Guy, CN, Binnie, CD, et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry. 1994;57(4):435449.Google Scholar
Delucchi, MR, Garoutte, B, Aird, RB. The scalp as an electroencephalographic averager. Electroencephalogr Clin Neurophysiol. 1962;14:191196.Google Scholar
Pacia, SV, Ebersole, JS. Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia. 1997;38(6):642654.Google Scholar
Pacia, SV, Ebersole, JS. Intracranial EEG in temporal lobe epilepsy. J Clin Neurophysiol. 1999;16(5):399407.Google Scholar
Bach, Justesen A, Eskelund, Johansen AB, Martinussen, NI, et al. Added clinical value of the inferior temporal EEG electrode chain. Clin Neurophysiol. 2018;129(1):291295.Google Scholar
Ebersole, JS. EEG dipole modeling in complex partial epilepsy. Brain Topogr. 1991;4(2):113123.Google Scholar
Jasper, HH. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol. 1958;10(2):370375.Google Scholar
Acharya, JN, Hani, A, Cheek, J, Thirumala, P, Tsuchida, TN. American Clinical Neurophysiology Society Guideline 2: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2016;33(4):308311.CrossRefGoogle ScholarPubMed
Chatrian, GE, Lettich, E, Nelson, PL. Modified nomenclature for the “10%” electrode system. J Clin Neurophysiol. 1988;5(2):183186.Google Scholar
Spitzer, AR, Cohen, LG, Fabrikant, J, Hallett, M. A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr Clin Neurophysiol. 1989;72(4):355361.Google Scholar
Sohrabpour, A, Lu, Y, Kankirawatana, P, et al. Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol. 2015;126(3):472480.CrossRefGoogle ScholarPubMed
Lascano, AM, Perneger, T, Vulliemoz, S, et al. Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol. 2016;127(1):150155.Google Scholar
Lantz, G, Grave de Peralta, R, Spinelli, L, Seeck, M, Michel, CM. Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol. 2003;114(1):6369.Google Scholar
Seeck, M, Koessler, L, Bast, T, et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol. 2017;128(10):20702077.CrossRefGoogle ScholarPubMed
Laarne, PH, Tenhunen-Eskelinen, ML, Hyttinen, JK, Eskola, HJ. Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topogr. 2000;12(4):249254.Google Scholar
Jurcak, V, Tsuzuki, D, Dan, I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):16001611.CrossRefGoogle ScholarPubMed
Rosenzweig, I, Fogarasi, A, Johnsen, B, et al. Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG. J Clin Neurophysiol. 2014;31(1):19.CrossRefGoogle ScholarPubMed
Knott, JR. Further thoughts on polarity, montages, and localization. J Clin Neurophysiol. 1985;2(1):6375.Google Scholar
Jayakar, P, Duchowny, M, Resnick, TJ, Alvarez, LA. Localization of seizure foci: pitfalls and caveats. J Clin Neurophysiol. 1991;8(4):414431.Google Scholar
Nyquist, H. Certain factors affecting telegraph speed. Bell System Technical Journal. 1924;3(2):324346.CrossRefGoogle Scholar
Nyquist, H. Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers. 1928;47(2):617644.CrossRefGoogle Scholar
Linkenkaer-Hansen, K, Nikouline, VV, Palva, JM, Ilmoniemi, RJ. Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci. 2001;21(4):13701377.CrossRefGoogle ScholarPubMed
Greenwood, P, Ward, L. 1/f noise. Scholarpedia. 2007;2(12):1537.Google Scholar
Zhang, Y, van Drongelen, W, He, B. Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett. 2006;89(22):2239032239033.Google Scholar
Lai, Y, van Drongelen, W, Ding, L, et al. Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol. 2005;116(2):456465.CrossRefGoogle ScholarPubMed
Tyner, FS, Knott, JR, Mayer, WB. Fundamentals of EEG Technology: Basic Concepts and Methods. Philadelphia: Raven Press; 1983.Google Scholar
Electrical safety Q&A: a reference guide for the clinical engineer. Health Devices. 2005;34(2):5775.Google Scholar
Walczak, TS, Chokroverty, S. Electroencephalography, electromyography, and electro-oculography. In: Sleep Disorders Medicine: Elsevier; 2009:157181.CrossRefGoogle Scholar
Schwartz, JJ. Electrical safety. In: Atlee, JL, ed. Complications in Anesthesia. 2nd edn. Philadelphia: Elsevier; 2007:560561.Google Scholar
Grimnes, S, Martinsen, OG. Selected applications. In: Bioimpedance and Bioelectricity Basics. 3rd edn. London: Elsevier; 2015:405494.CrossRefGoogle Scholar
Backes, J. Safety testing of medical devices: IEC 62353 explained. Med Device Technol. 2007;18(7):4647.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×