Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:20:15.180Z Has data issue: false hasContentIssue false

Chapter 1 - Immunopathology of Organ Transplantation

Published online by Cambridge University Press:  17 March 2018

Phillip Ruiz
Affiliation:
University of Miami School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rinaldi, E. The First Homoplastic Limb Transplant According to the Legend of Saint Cosmas and Saint Damian. Italian Journal of Orthopedics and Traumatology. 1987;13(3):393406.Google Scholar
Dutkowski, P, De Rougemont, O, Clavien, PA. Alexis Carrel: Genius, Innovator and Ideologist. American Journal of Transplantation. 2008;8(10):19982003.Google Scholar
Billingham, RE, Brent, L, Medawar, PB. Actively Acquired Tolerance of Foreign Cells. Nature. 1953 Oct 3;172(4379):603–6. PubMed PMID: 13099277.Google Scholar
Snell, GD. The Genetics of Transplantation. Ann N Y Acad Sci. 1957 Dec 16;69(4):555–60. PubMed PMID: 13488312.Google Scholar
Gorer, PA, Boyse, EA. Pathological Changes in F1 Hybrid Mice Following Transplantation of Spleen Cells from Donors of the Parental Strains. Immunology. 1959 Apr;2(2):182–93. PubMed PMID: 13653737.Google Scholar
Dausset, J, Rapaport, FT, Colombani, J, Feingold, N. A Leucocyte Group and Its Relationship to Tissue Histocompatibility in Man. Transplantation. 1965 Nov;3(6):701–5. PubMed PMID: 5324831.Google Scholar
Doherty, PC, Zinkernagel, RM. A Biological Role for the Major Histocompatibility Antigens. Lancet. 1975 Jun 28;1(7922):1406–9. PubMed PMID: 49564.Google Scholar
Petersdorf, E. The HLA Complex in Biology and Medicine: A Resource Book. Bone Marrow Transplant. 2011 04//print;46(4):625.Google Scholar
Marsh, SGE, Albert, ED, Bodmer, WF, Bontrop, RE, Dupont, B, Erlich, HA, et al. Nomenclature for Factors of the HLA System, 2010. Tissue Antigens. 2010;75(4):291455.CrossRefGoogle ScholarPubMed
Hennecke, J, Wiley, DC. T Cell Receptor-MHC Interactions up Close. Cell. 2001 Jan 12;104(1):14. PubMed PMID: 11163234.CrossRefGoogle ScholarPubMed
Burgdorf, S, Kautz, A, Bohnert, V, Knolle, PA, Kurts, C. Distinct Pathways of Antigen Uptake and Intracellular Routing in CD4 and CD8 T Cell Activation. Science. 2007 Apr 27;316(5824):612–6. PubMed PMID: 17463291.Google Scholar
Cresswell, P, Ackerman, AL, Giodini, A, Peaper, DR, Wearsch, PA. Mechanisms of MHC Class I-restricted Antigen Processing and Cross-presentation. Immunol Rev. 2005 Oct;207:145–57. PubMed PMID: 16181333. Epub 2005/09/27. English.Google ScholarPubMed
Goulmy, E. Human Minor Histocompatibility Antigens. Current Opinion in Immunology. 1996 Feb;8(1):7581. PubMed PMID: 8729449.CrossRefGoogle ScholarPubMed
Goulmy, E. Minor Histocompatibility Antigens: From Transplantation Problems to Therapy of Cancer. Human Immunology. 2006 Jun;67(6):433–8. PubMed PMID: 16728266.Google Scholar
Nielsen, HS. Secondary Recurrent Miscarriage and H-Y Immunity. Human Reproduction Update. 2011 July 1, 2011;17(4):558–74.Google Scholar
Dierselhuis, M, Goulmy, E. The Relevance of Minor Histocompatibility Antigens in Solid Organ Transplantation. Curr Opin Organ Transplant. 2009 Aug;14(4):419–25. PubMed PMID: 19444105. Epub 2009/05/16. English.Google Scholar
Mutis, T, Gillespie, G, Schrama, E, Falkenburg, JH, Moss, P, Goulmy, E. Tetrameric HLA Class I-minor Histocompatibility Antigen Peptide Complexes Demonstrate Minor Histocompatibility Antigen-specific Cytotoxic T Lymphocytes in Patients with Graft-versus-Host Disease. Nat Med. 1999 Jul;5(7):839–42. PubMed PMID: 10395333. Epub 1999/07/08. English.Google Scholar
Spierings, E, Vermeulen, CJ, Vogt, MH, Doerner, LEE, Falkenburg, JHF, Mutis, T, et al. Identification of HLA Class II-restricted H-Y-specific T-helper Epitope Evoking CD4+ T-helper Cells in H-Y-mismatched Transplantation. Lancet. 2003 Aug 23;362(9384):610–5. PubMed PMID: 12944060.Google Scholar
van Els, CA, Zantvoort, E, Jacobs, N, Bakker, A, van Rood, JJ, Goulmy, E. Graft-versus-Host Disease Associated T Helper Cell Responses Specific for Minor Histocompatibility Antigens Are Mainly Restricted by HLA-DR Molecules. Bone Marrow Transplantation. 1990 Jun;5(6):365–72. PubMed PMID: 2142441.Google Scholar
Anderson, MS, Su, MA. Aire and T Cell Development. Current Opinion in Immunology. 2011;23(2):198206. PubMed PMID: 21163636. Pubmed Central PMCID: NIHMS259332 PMC3073725.Google Scholar
Boros, P, Bromberg, JS. De Novo Autoimmunity after Organ Transplantation: Targets and Possible Pathways. Human Immunology. 2008;69(7):383–8. PubMed PMID: 18638653.CrossRefGoogle ScholarPubMed
Veillette, GR, Sahara, H, Meltzer, AJ, Weiss, MJ, Iwamoto, Y, Kim, KM, et al. Autoimmune Sensitization to Cardiac Myosin Leads to Acute Rejection of Cardiac Allografts in Miniature Swine. Transplantation. 2011;91(11):1187–91. PubMed PMID: 21512437. Pubmed Central PMCID: NIHMS339140 PMC3232060.CrossRefGoogle ScholarPubMed
Takase, H, Yu, CR, Mahdi, RM, Douek, DC, Dirusso, GB, Midgley, FM, et al. Thymic Expression of Peripheral Tissue Antigens in Humans: A Remarkable Variability among Individuals. International Immunology. 2005;17(8):1131–40. PubMed PMID: 16030131. PubMed Central PMCID: NIHMS44922 PMC2366090.CrossRefGoogle ScholarPubMed
Suthanthiran, M, Strom, TB. Renal Transplantation. New England Journal of Medicine. 1994 Aug 11;331(6):365–76. PubMed PMID: 7832839.Google Scholar
Krensky, AM. The HLA System, Antigen Processing and Presentation. Kidney International – Supplement. 1997 Mar;58:S27. PubMed PMID: 9067934.Google Scholar
Jiang, S, Herrera, O, Lechler, RI. New Spectrum of Allorecognition Pathways: Implications for Graft Rejection and Transplantation Tolerance. Current Opinion in Immunology. 2004 Oct;16(5):550–7. PubMed PMID: 15341998.Google Scholar
Brown, K, Sacks, SH, Wong, W. Coexpression of Donor Peptide/Recipient MHC Complex and Intact Donor MHC: Evidence for a Link between the Direct and Indirect Pathways. Am J Transplant. 2011 Apr;11(4):826–31. PubMed PMID: 21401861. Epub 2011/03/16. English.CrossRefGoogle ScholarPubMed
Hsu, KC, Chida, S, Geraghty, DE, Dupont, B. The Killer Cell Immunoglobulin-like Receptor (KIR) Genomic Region: Gene-order, Haplotypes and Allelic Polymorphism. Immunol Rev. 2002 Dec;190:4052. PubMed PMID: 12493005. Epub 2002/12/21. English.CrossRefGoogle ScholarPubMed
Beksac, M, Dalva, K. Role of Killer Immunoglobulin-like Receptor and Ligand Matching in Donor Selection. Bone Marrow Research. 2012;2012:271695. PubMed PMID: 23193479. PubMed Central PMCID: PMC3502759. Epub 2012/11/30. English.Google Scholar
Nowak, I, Magott-Procelewska, M, Kowal, A, Miazga, M, Wagner, M, Niepieklo-Miniewska, W, et al. Killer Immunoglobulin-like Receptor (KIR) and HLA Genotypes Affect the Outcome of Allogeneic Kidney Transplantation. PLoS One. 2012;7(9):e44718. PubMed PMID: 23028591. PubMed Central PMCID: PMC3441441. Epub 2012/10/03. English.Google Scholar
Zhang, Y, Ruiz, P. Solid Organ Transplant-associated Acute Graft-versus-Host Disease. Arch Pathol Lab Med. 2010 Aug;134(8):1220–4. PubMed PMID: 20670147. Epub 2010/07/31. English.Google Scholar
Burdick, JF, Vogelsang, GB, Smith, WJ, Farmer, ER, Bias, WB, Kaufmann, SH, et al. Severe Graft-versus-Host Disease in a Liver-transplant Recipient. New England Journal of Medicine. 1988 Mar 17;318(11):689–91. PubMed PMID: 3278235.Google Scholar
Chan, EY, Larson, AM, Gernsheimer, TB, Kowdley, KV, Carithers, RL Jr., Reyes, JD, et al. Recipient and Donor Factors Influence the Incidence of Graft-vs.-Host Disease in Liver Transplant Patients. Liver Transplantation. 2007 Apr;13(4):516–22. PubMed PMID: 17394149.Google Scholar
Ghali, MP, Talwalkar, JA, Moore, SB, Hogan, WJ, Menon, KVN, Rosen, CB. Acute Graft-versus-Host Disease after Liver Transplantation. Transplantation. 2007 Feb 15;83(3):365–6. PubMed PMID: 17297417.Google Scholar
Olszewski, WL. Donor DNA Is Present in Recipient Tissues after Grafting also in Graft-versus-Host Disease-free Individuals. Transplantation. 2007 Jan 15;83(1):107–8. PubMed PMID: 17220809.Google Scholar
Perri, R, Assi, M, Talwalkar, J, Heimbach, J, Hogan, W, Moore, SB, et al. Graft vs. Host Disease after Liver Transplantation: A New Approach Is Needed. Liver Transplantation. 2007 Aug;13(8):1092–9. PubMed PMID: 17663410.Google Scholar
Assi, MA, Pulido, JS, Peters, SG, McCannel, CA, Razonable, RR. Graft-vs.-Host Disease in Lung and Other Solid Organ Transplant Recipients. Clinical Transplantation. 2007 Jan–Feb;21(1):16. PubMed PMID: 17302584.CrossRefGoogle ScholarPubMed
Wu, G, Selvaggi, G, Nishida, S, Moon, J, Island, E, Ruiz, P, et al. Graft-versus-Host Disease after Intestinal and Multivisceral Transplantation. Transplantation. 2011 Jan 27;91(2):219–24. PubMed PMID: 21076376. Epub 2010/11/16. English.Google Scholar
Klingebiel, T, Schlegel, PG. GVHD: Overview on Pathophysiology, Incidence, Clinical and Biological Features. Bone Marrow Transplantation. 1998 Apr;21 Suppl 2:S459. PubMed PMID: 9630325.Google Scholar
Triulzi, DJ, Nalesnik, MA. Microchimerism, GVHD, and Tolerance in Solid Organ Transplantation. Transfusion. 2001 Mar;41(3):419–26. PubMed PMID: 11274601.Google Scholar
Flesland, O, Pfeffer, PF, Solheim, BG, Mellbye, OJ. Donor Lymphocytes Transferred with the Graft to Kidney Recipients. Potential for Establishing Microchimerism. Transfusion & Apheresis Science. 2003;28(2):125–8. PubMed PMID: 12679115.Google Scholar
Wiebe, BM, Mortensen, SA, Petterson, G, Svendsen, UG, Andersen, CB. Macrophage and Lymphocyte Chimerism in Bronchoalveolar Lavage Cells from Human Lung Allograft Recipients. APMIS. 2001;109(6):435–40. PubMed PMID: 11506475.Google Scholar
Petersdorf, EW, Malkki, M. Genetics of Risk Factors for Graft-versus-Host Disease. Seminars in Hematology. 2006 Jan;43(1):1123. PubMed PMID: 16412785.Google Scholar
Fraser, CJ, Scott Baker, K. The Management and Outcome of Chronic Graft-versus-Host Disease. British Journal of Haematology. 2007 Jul;138(2):131–45. PubMed PMID: 17593020.Google Scholar
Holler, E. Progress in Acute Graft versus Host Disease. Current Opinion in Hematology. 2007 Nov;14(6):625–31. PubMed PMID: 17898566.Google Scholar
Rodriguez, V, Anderson, PM, Trotz, BA, Arndt, CAS, Allen, JA, Khan, SP. Use of Infliximab-Daclizumab Combination for the Treatment of Acute and Chronic Graft-versus-Host Disease of the Liver and Gut. Pediatric Blood & Cancer. 2007 Aug;49(2):212–5. PubMed PMID: 16261610.Google Scholar
Ferrara, JLM, Reddy, P. Pathophysiology of Graft-versus-Host Disease. Seminars in Hematology. 2006 Jan;43(1):310. PubMed PMID: 16412784.Google Scholar
Blazar, BR, Murphy, WJ, Abedi, M. Advances in Graft-versus-Host Disease Biology and Therapy. Nature Reviews Immunology. 2012;12(6):443–58. PubMed PMID: 22576252.CrossRefGoogle ScholarPubMed
Copelan, EA. Hematopoietic Stem-cell Transplantation. New England Journal of Medicine. 2006 Apr 27;354(17):1813–26. PubMed PMID: 16641398.Google Scholar
Steinman, RM. Dendritic Cells: Understanding Immunogenicity. European Journal of Immunology. 2007 Nov;37 Suppl 1:S5360. PubMed PMID: 17972346.CrossRefGoogle ScholarPubMed
Ludajic, K, Balavarca, Y, Bickeboller, H, Rosenmayr, A, Fae, I, Fischer, GF, et al. KIR Genes and KIR Ligands Affect Occurrence of Acute GVHD after Unrelated, 12/12 HLA Matched, Hematopoietic Stem Cell Transplantation. Bone Marrow Transplant. 2009 01/26/online;44(2):97103.CrossRefGoogle ScholarPubMed
Chien, JW, Zhang, XC, Fan, W, Wang, H, Zhao, LP, Martin, PJ, et al. Evaluation of Published Single Nucleotide Polymorphisms Associated with Acute GVHD. Blood. 2012;119(22):5311–9. PubMed PMID: 22282500. PubMed Central PMCID: PMC3369619.CrossRefGoogle ScholarPubMed
Schwartz, RH. Historical Overview of Immunological Tolerance. Cold Spring Harbor Perspectives in Biology. 2012;4(4):a006908. PubMed PMID: 22395097.CrossRefGoogle ScholarPubMed
Szabolcs, P, Burlingham, WJ, Thomson, AW. Tolerance after Solid Organ and Hematopoietic Cell Transplantation. Biology of Blood & Marrow Transplantation. 2012;18(1 Suppl):S193200. PubMed PMID: 22226107. PubMed Central PMCID: NIHMS379899 PMC3374726.Google Scholar
Levitsky, J. Operational Tolerance: Past Lessons and Future Prospects. Liver Transplantation. 2011;17(3):222–32.Google Scholar
Bluestone, JA, Auchincloss, H, Nepom, GT, Rotrosen, D, St. Clair, EW, Turka, LA. The Immune Tolerance Network at 10 Years: Tolerance Research at the Bedside. Nat Rev Immunol. 2010 11//print;10(11):797803.Google Scholar
Sykes, M. Immune Tolerance: Mechanisms and Application in Clinical Transplantation. Journal of Internal Medicine. 2007 Sep;262(3):288310. PubMed PMID: 17697153.Google Scholar
Starzl, TE. Chimerism and Tolerance in Transplantation. Proceedings of the National Academy of Sciences of the United States of America. 2004;101 Suppl 2:14607–14. PubMed PMID: 15319473. PubMed Central PMCID: PMC521985.Google Scholar
Perales, MA, Blachere, NE, Engelhorn, ME, Ferrone, CR, Gold, JS, Gregor, PD, et al. Strategies to Overcome Immune Ignorance and Tolerance. Seminars in Cancer Biology. 2002;12(1):6371. PubMed PMID: 11926414.Google Scholar
Macian, F, Im, S-H, Garcia-Cozar, FJ, Rao, A. T-cell Anergy. Current Opinion in Immunology. 2004 Apr;16(2):209–16. PubMed PMID: 15023415.CrossRefGoogle ScholarPubMed
Brennan, PJ, Saouaf, SJ, Greene, MI, Shen, Y. Anergy and Suppression as Coexistent Mechanisms for the Maintenance of Peripheral T Cell Tolerance. Immunologic Research. 2003;27(2–3):295302. PubMed PMID: 12857976.CrossRefGoogle ScholarPubMed
Wood, KJ, Bushell, A, Hester, J. Regulatory Immune Cells in Transplantation. Nat Rev Immunol. 2012 06//print;12(6):417–30.Google Scholar
Shuiping, J. Recent Advances in Regulatory T Cells. Seminars in Immunology. 2011;23(6):399400.Google Scholar
Franck, E, Bonneau, C, Jean, L, Henry, J-P, Lacoume, Y, Salvetti, A, et al. Immunological Tolerance to Muscle Autoantigens Involves Peripheral Deletion of Autoreactive CD8+ T Cells. PLoS ONE. 2012;7(5):e36444.Google Scholar
Gurung, P, Kucaba, TA, Schoenberger, SP, Ferguson, TA, Griffith, TS. TRAIL-expressing CD8+ T Cells Mediate Tolerance Following Soluble Peptide-induced Peripheral T Cell Deletion. Journal of Leukocyte Biology. 2010;88(6):1217–25. PubMed PMID: 20807702. PubMed Central PMCID: PMC2996898.CrossRefGoogle ScholarPubMed
Cohen, JN, Guidi, CJ, Tewalt, EF, Qiao, H, Rouhani, SJ, Ruddell, A, et al. Lymph Node–Resident Lymphatic Endothelial Cells Mediate Peripheral Tolerance via Aire-independent Direct Antigen Presentation. The Journal of Experimental Medicine. 2010 April 12, 2010;207(4):681–8.Google Scholar
Gallegos, AM, Bevan, MJ. Central Tolerance: Good but Imperfect. Immunological Reviews. 2006 Feb;209:290–6. PubMed PMID: 16448550.Google Scholar
Kyewski, B, Klein, L. A Central Role for Central Tolerance. Annu Rev Immunol. 2006;24:571606. PubMed PMID: 16551260.Google Scholar
Mathis, D, Benoist, C. Back to Central Tolerance. Immunity. 2004 May;20(5):509–16. PubMed PMID: 15142520.Google Scholar
Ruiz, P, Streilein, JW. Evidence that I-E-negative Mice Resistant to Neonatal H-2 Tolerance Induction Display Ubiquitous Thymic Clonal Deletion of Donor-reactive T Cells. Transplantation. 1993 Feb;55(2):321–8. PubMed PMID: 8434383. Epub 1993/02/01. English.Google Scholar
Lakkis, FG, Arakelov, A, Konieczny, BT, Inoue, Y. Immunologic ‘Ignorance’ of Vascularized Organ Transplants in the Absence of Secondary Lymphoid Tissue. Nature Medicine. 2000 Jun;6(6):686–8. PubMed PMID: 10835686.Google Scholar
Alegre, M-L, Florquin, S, Goldman, M. Cellular Mechanisms Underlying Acute Graft Rejection: Time for Reassessment. Current Opinion in Immunology. 2007 Oct;19(5):563–8. PubMed PMID: 17720467.Google Scholar
Trambley, J, Bingaman, AW, Lin, A, Elwood, ET, Waitze, SY, Ha, J, et al. Asialo GM1+ CD8+ T Cells Play a Critical Role in Costimulation Blockade-resistant Allograft Rejection. Journal of Clinical Investigation. 1999;104(12):1715–22.Google Scholar
Neujahr, DC, Chen, C, Huang, X, Markmann, JF, Cobbold, S, Waldmann, H, et al. Accelerated Memory Cell Homeostasis during T Cell Depletion and Approaches to Overcome It. Journal of Immunology. 2006;176(8):4632–9.Google Scholar
Gershon, RK. A Disquisition on Suppressor T Cells. Transplantation Reviews. 1975;26:170–85. PubMed PMID: 1101469.Google Scholar
Gershon, RK, Cohen, P, Hencin, R, Liebhaber, SA. Suppressor T Cells. Journal of Immunology. 1972 Mar;108(3):586–90. PubMed PMID: 4401006.Google Scholar
Takahashi, T, Kuniyasu, Y, Toda, M, Sakaguchi, N, Itoh, M, Iwata, M, et al. Immunologic Self-tolerance Maintained by CD25+CD4+ Naturally Anergic and Suppressive T Cells: Induction of Autoimmune Disease by Breaking Their Anergic/Suppressive State. Int Immunol. 1998 December 1, 1998;10(12):1969–80.Google Scholar
Sakaguchi, S, Sakaguchi, N, Asano, M, Itoh, M, Toda, M. Immunologic Self-tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-chains (CD25). Breakdown of a Single Mechanism of Self-tolerance Causes Various Autoimmune Diseases. Journal of Immunology. 1995 Aug 1;155(3):1151–64. PubMed PMID: 7636184.Google Scholar
Josefowicz, SZ, Lu, LF, Rudensky, AY. Regulatory T Cells: Mechanisms of Differentiation and Function. Annu Rev Immunol. 2012;30:531–64. PubMed PMID: 22224781. Epub 2012/01/10. English.CrossRefGoogle ScholarPubMed
Tang, Q, Bluestone, JA. The Foxp3+ Regulatory T Cell: A Jack of all Trades, Master of Regulation. Nat Immunol. 2008;9(3):239–44.Google Scholar
Bandukwala, HS, Rao, A. ‘Nurr’ishing Treg Cells: Nr4a Transcription Factors Control Foxp3 Expression. Nat Immunol. 2013 03//print;14(3):201–3.Google Scholar
Pot, C, Apetoh, L, Kuchroo, VK. Type 1 Regulatory T Cells (Tr1) in Autoimmunity. Semin Immunol. 2011 Jun;23(3):202–8. PubMed PMID: 21840222. PubMed Central PMCID: PMC3178065. Epub 2011/08/16. English.Google Scholar
Burlingham, WJ, Goulmy, E. Human CD8+ T-regulatory Cells with Low-avidity T-cell Receptor Specific for Minor Histocompatibility Antigens. Hum Immunol. 2008 Nov;69(11):728–31. PubMed PMID: 18812197. PubMed Central PMCID: PMC2665292. Epub 2008/09/25. English.Google Scholar
Monteiro, M, Almeida, CF, Caridade, M, Ribot, JC, Duarte, J, Agua-Doce, A, et al. Identification of Regulatory Foxp3+ Invariant NKT Cells Induced by TGF-beta. J Immunol. 2010 Aug 15;185(4):2157–63. PubMed PMID: 20639482. Epub 2010/07/20. English.Google Scholar
Fischer, K, Voelkl, S, Heymann, J, Przybylski, GK, Mondal, K, Laumer, M, et al. Isolation and Characterization of Human Antigen-specific TCRαβ+ CD4-CD8- Double-negative Regulatory T Cells. Blood. 2005 April 1, 2005;105(7):2828–35.Google Scholar
DiLillo, DJ, Matsushita, T, Tedder, TF. B10 Cells and Regulatory B Cells Balance Immune Responses during Inflammation, Autoimmunity, and Cancer. Ann N Y Acad Sci. 2010;1183(1):3857.Google Scholar
Morelli, AE, Thomson, AW. Tolerogenic Dendritic Cells and the Quest for Transplant Tolerance. Nat Rev Immunol. 2007 08//print;7(8):610–21.Google Scholar
Haile, LA, von Wasielewski, R, Gamrekelashvili, J, Kruger, C, Bachmann, O, Westendorf, AM, et al. Myeloid-derived Suppressor Cells in Inflammatory Bowel Disease: A New Immunoregulatory Pathway. Gastroenterology. 2008 Sep;135(3):871–81, 81 e1–5. PubMed PMID: 18674538. Epub 2008/08/05. English.Google Scholar
Fleming, BD, Mosser, DM. Regulatory Macrophages: Setting the Threshold for Therapy. Eur J Immunol. 2011 Sep;41(9):2498–502. PubMed PMID: 21952805. Epub 2011/09/29. English.Google Scholar
English, K, French, A, Wood, KJ. Mesenchymal Stromal Cells: Facilitators of Successful Transplantation? Cell Stem Cell. 2010 Oct 8;7(4):431–42. PubMed PMID: 20887949. Epub 2010/10/05. English.Google Scholar
Kim, HJ, Hwang, SJ, Kim, BK, Jung, KC, Chung, DH. NKT Cells Play Critical Roles in the Induction of Oral Tolerance by Inducing Regulatory T Cells Producing IL-10 and Transforming Growth Factor Beta, and by Clonally Deleting Antigen-specific T Cells. Immunology. 2006 May;118(1):101–11. PubMed PMID: 16630027.Google Scholar
Carrier, Y, Yuan, J, Kuchroo, VK, Weiner, HL. Th3 Cells in Peripheral Tolerance. I. Induction of Foxp3-positive Regulatory T Cells by Th3 Cells Derived from TGF-beta T Cell-transgenic Mice. Journal of Immunology. 2007 Jan 1;178(1):179–85. PubMed PMID: 17182553.Google Scholar
Biagi, E, Di Biaso, I, Leoni, V, Gaipa, G, Rossi, V, Bugarin, C, et al. Extracorporeal Photochemotherapy Is Accompanied by Increasing Levels of Circulating CD4+CD25+GITR+Foxp3+CD62 L+ Functional Regulatory T-cells in Patients with Graft-versus-Host Disease. Transplantation. 2007 Jul 15;84(1):31–9. PubMed PMID: 17627234.Google Scholar
Hilchey, SP, De, A, Rimsza, LM, Bankert, RB, Bernstein, SH. Follicular Lymphoma Intratumoral CD4+CD25+GITR+ Regulatory T Cells Potently Suppress CD3/CD28-costimulated Autologous and Allogeneic CD8+CD25- and CD4+CD25- T Cells. Journal of Immunology. 2007 Apr 1;178(7):4051–61. PubMed PMID: 17371959.Google Scholar
Ferretti, G, Felici, A, Pino, MS, Cognetti, F. Does CTLA4 Influence the Suppressive Effect of CD25+CD4+ Regulatory T Cells? Journal of Clinical Oncology. 2006 Dec 1;24(34):5469–70; author reply 70–1. PubMed PMID: 17135653.Google Scholar
Quezada, SA, Peggs, KS, Curran, MA, Allison, JP. CTLA4 Blockade and GM-CSF Combination Immunotherapy Alters the Intratumor Balance of Effector and Regulatory T Cells. Journal of Clinical Investigation. 2006 Jul;116(7):1935–45. PubMed PMID: 16778987.Google Scholar
Salama, AD, Najafian, N, Clarkson, MR, Harmon, WE, Sayegh, MH. Regulatory CD25+ T Cells in Human Kidney Transplant Recipients. Journal of the American Society of Nephrology. 2003 Jun;14(6):1643–51. PubMed PMID: 12761267.Google Scholar
Cirocco, RE, Carreno, MR, Mathew, JM, Garcia-Morales, RO, Fuller, L, Esquenazi, V, et al. FoxP3 mRNA Transcripts and Regulatory Cells in Renal Transplant Recipients 10 Years after Donor Marrow Infusion. Transplantation. 2007 Jun 27;83(12):1611–9. PubMed PMID: 17589345.Google Scholar
Dijke, IE, Weimar, W, Baan, CC. Regulatory T Cells after Organ Transplantation: Where Does Their Action Take Place? Human Immunology. 2008;69(7):389–98.Google Scholar
Brunstein, CG, Miller, JS, Cao, Q, McKenna, DH, Hippen, KL, Curtsinger, J, et al. Infusion of Ex Vivo Expanded T Regulatory Cells in Adults Transplanted with Umbilical Cord Blood: Safety Profile and Detection Kinetics. Blood. 2010 October 15.Google Scholar
Farkas, SA, Schnitzbauer, AA, Kirchner, G, Obed, A, Banas, B, Schlitt, HJ. Calcineurin Inhibitor Minimization Protocols in Liver Transplantation. Transplant International. Official Journal of the European Society for Organ Transplantation. 2009 Jan;22(1):4960. PubMed PMID: 19121146. Epub 2009/01/06. English.Google Scholar
Moreira-Teixeira, L, Resende, M, Devergne, O, Herbeuval, J-P, Hermine, O, Schneider, E, et al. Rapamycin Combined with TGF-β Converts Human Invariant NKT Cells into Suppressive Foxp3+ Regulatory Cells. The Journal of Immunology. 2012 January 15, 2012;188(2):624–31.Google Scholar
Ciancio, G, Burke, GW. Alemtuzumab (Campath-1 H) in Kidney Transplantation. American Journal of Transplantation. Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2008 Jan;8(1):1520. PubMed PMID: 18093269. Epub 2007/12/21. English.Google Scholar
Chiffoleau, E, Walsh, PT, Turka, L. Apoptosis and Transplantation Tolerance. Immunological Reviews. 2003 Jun;193:124–45. PubMed PMID: 12752677.Google Scholar
Sohn, SJ, Thompson, J, Winoto, A. Apoptosis during Negative Selection of Autoreactive Thymocytes. Current Opinion in Immunology. 2007 Oct;19(5):510–5. PubMed PMID: 17656079.Google Scholar
Dresske, B, Lin, X, Huang, D-S, Zhou, X, Fandrich, F. Spontaneous Tolerance: Experience with the Rat Liver Transplant Model. Human Immunology. 2002 Oct;63(10):853–61. PubMed PMID: 12368037.Google Scholar
Vincenti, F, Luggen, M, Vincenti, F, Luggen, M. T cell Costimulation: A Rational Target in the Therapeutic Armamentarium for Autoimmune Diseases and Transplantation. Annual Review of Medicine. 2007;58:347–58. PubMed PMID: 17020493.Google Scholar
Vincenti, F, Larsen, C, Durrbach, A, Wekerle, T, Nashan, B, Blancho, G, et al. Costimulation Blockade with Belatacept in Renal Transplantation. The New England Journal of Medicine. 2005 Aug 25;353(8):770–81. PubMed PMID: 16120857. Epub 2005/08/27. English.Google Scholar
Bonfoco, E, Stuart, PM, Brunner, T, Lin, T, Griffith, TS, Gao, Y, et al. Inducible Nonlymphoid Expression of Fas Ligand Is Responsible for Superantigen-induced Peripheral Deletion of T Cells. Immunity. 1998 Nov;9(5):711–20. PubMed PMID: 9846492.Google Scholar
Kurts, C, Heath, WR, Kosaka, H, Miller, JF, Carbone, FR. The Peripheral Deletion of Autoreactive CD8+ T Cells Induced by Cross-presentation of Self-antigens Involves Signaling through CD95 (Fas, Apo-1). Journal of Experimental Medicine. 1998 Jul 20;188(2):415–20. PubMed PMID: 9670055.Google Scholar
Dempsey, PW, Doyle, SE, He, JQ, Cheng, G. The Signaling Adaptors and Pathways Activated by TNF Superfamily. Cytokine & Growth Factor Reviews. 2003 Jun–Aug;14(3–4):193209. PubMed PMID: 12787559.Google Scholar
Feng, X. Regulatory Roles and Molecular Signaling of TNF Family Members in Osteoclasts. Gene. 2005 Apr 25;350(1):113. PubMed PMID: 15777737.Google Scholar
Sheikh, MS, Huang, Y. Death Receptor Activation Complexes: It Takes Two to Activate TNF Receptor 1. Cell Cycle. 2003 Nov–Dec;2(6):550–2. PubMed PMID: 14504472.Google Scholar
Tryphonopoulos, P, Tzakis, AG, Weppler, D, Garcia-Morales, R, Kato, T, Madariaga, JR, et al. The Role of Donor Bone Marrow Infusions in Withdrawal of Immunosuppression in Adult Liver Allotransplantation. American Journal of Transplantation. 2005 Mar;5(3):608–13. PubMed PMID: 15707417.Google Scholar
Leventhal, J, Abecassis, M, Miller, J, Gallon, L, Ravindra, K, Tollerud, DJ, et al. Chimerism and Tolerance without GVHD or Engraftment Syndrome in HLA-mismatched Combined Kidney and Hematopoietic Stem Cell Transplantation. Science Translational Medicine. 2012 March 7, 2012;4(124):124ra28.Google Scholar
Martinez-Llordella, M, Puig-Pey, I, Orlando, G, Ramoni, M, Tisone, G, Rimola, A, et al. Multiparameter Immune Profiling of Operational Tolerance in Liver Transplantation. American Journal of Transplantation. 2007 Feb;7(2):309–19. PubMed PMID: ISI:000243440100008. eng.Google Scholar
Bohne, F, Martínez-Llordella, M, Lozano, J-J, Miquel, R, Benítez, C, Londoño, M-C, et al. Intra-graft Expression of Genes Involved in Iron Homeostasis Predicts the Development of Operational Tolerance in Human Liver Transplantation. The Journal of Clinical Investigation. 2012;122(1):368–82.Google Scholar
Newell, KA, Asare, A, Kirk, AD, Gisler, TD, Bourcier, K, Suthanthiran, M, et al. Identification of a B Cell Signature Associated with Renal Transplant Tolerance in Humans. The Journal of Clinical Investigation. 2010;120(6):1836–47.Google Scholar
Newell, KA, Larsen, CP. Tolerance Assays: Measuring the Unknown. Transplantation. 2006 Jun 15;81(11):1503–9. PubMed PMID: 16770237.Google Scholar
Londono, MC, Danger, R, Giral, M, Soulillou, JP, Sanchez-Fueyo, A, Brouard, S. A Need for Biomarkers of Operational Tolerance in Liver and Kidney Transplantation. Am J Transplant. 2012 Jun;12(6):1370–7. PubMed PMID: 22486792. Epub 2012/04/11. English.Google Scholar
Nankivell, BJ, Chapman, JR. Chronic Allograft Nephropathy: Current Concepts and Future Directions. Transplantation. 2006 Mar 15;81(5):643–54. PubMed PMID: 16534463.CrossRefGoogle ScholarPubMed
Wood, KJ, Goto, R. Mechanisms of Rejection: Current Perspectives. Transplantation. 2012;93(1):110.1097/TP.0b013e31823cab44.Google Scholar
Huang, Y, Rabb, H, Womer, KL. Ischemia-reperfusion and Immediate T Cell Responses. Cellular Immunology. 2007 Jul;248(1):411. PubMed PMID: 17942086.Google Scholar
Kupiec-Weglinski, JW, Busuttil, RW. Ischemia and Reperfusion Injury in Liver Transplantation. Transplantation Proceedings. 2005 May;37(4):1653–6. PubMed PMID: 15919422.Google Scholar
Ysebaert, DK, De Greef, KE, De Beuf, A, Van Rompay, AR, Vercauteren, S, Persy, VP, et al. T cells as Mediators in Renal Ischemia/Reperfusion Injury. Kidney International. 2004 Aug;66(2):491–6. PubMed PMID: 15253695.Google Scholar
Andersen, CB, Ladefoged, SD, Larsen, S. Acute Kidney Graft Rejection. A Morphological and Immunohistological Study on “Zero-hour” and Follow-up Biopsies with Special Emphasis on Cellular Infiltrates and Adhesion Molecules. APMIS. 1994;102(1):2337.Google Scholar
Devouassoux, G, Pison, C, Drouet, C, Pin, I, Brambilla, C, Brambilla, E. Early Lung Leukocyte Infiltration, HLA and Adhesion Molecule Expression Predict Chronic Rejection. Transplant Immunology. 2001 Feb;8(4):229–36. PubMed PMID: 11316065.Google Scholar
van der Woude, FJ, Deckers, JG, Mallat, MJ, Yard, BA, Schrama, E, van Saase, JL, et al. Tissue Antigens in Tubulointerstitial and Vascular Rejection. Kidney International – Supplement. 1995 Dec;52:S11–3. PubMed PMID: 8587271.Google Scholar
Hengstenberg, C, Hufnagel, G, Haverich, A, Olsen, EGJ, Maisch, B. De Novo Expression of MHC Class I and Class II Antigens on Endomyocardial Biopsies from Patients with Inflammatory Heart Disease and Rejection Following Heart Transplantation. European Heart Journal. 1993 January 2;14(6):758–63.Google Scholar
Farr, AG, Mannschreck, JW, Anderson, SK. Expression of Class II MHC Antigens in Murine Pancreas after Streptozocin-induced Insulitis. Diabetes. 1988 October 1;37(10):1373–9.Google Scholar
Hasegawa, S, Becker, G, Nagano, H, Libby, P, Mitchell, RN. Pattern of Graft- and Host-specific MHC Class II Expression in Long-term Murine Cardiac Allografts: Origin of Inflammatory and Vascular Wall Cells. American Journal of Pathology. 1998 Jul;153(1):6979. PubMed PMID: 9665467.Google Scholar
Haverty, TP, Watanabe, M, Neilson, EG, Kelly, CJ. Protective Modulation of Class II MHC Gene Expression in Tubular Epithelium by Target Antigen-specific Antibodies. Cell-surface Directed Down-regulation of Transcription Can Influence Susceptibility to Murine Tubulointerstitial Nephritis. J Immunol. 1989 August 15;143(4):1133–41.Google Scholar
Adoumie, R, Serrick, C, Giaid, A, Shennib, H, Adoumie, R, Serrick, C, et al. Early Cellular Events in the Lung Allograft. Annals of Thoracic Surgery. 1992 Dec;54(6):1071–6; discussion 6–7. PubMed PMID: 1449289.Google Scholar
Denton, MD, Davis, SF, Baum, MA, Melter, M, Reinders, ME, Exeni, A, et al. The Role of the Graft Endothelium in Transplant Rejection: Evidence that Endothelial Activation May Serve as a Clinical Marker for the Development of Chronic Rejection. Pediatric Transplantation. 2000 Nov;4(4):252–60. PubMed PMID: 11079263.Google Scholar
Baldwin, WM, Larsen, CP, Fairchild, RL. Innate Immune Responses to Transplants: A Significant Variable with Cadaver Donors. Immunity. 2001;14(4):369–76.Google Scholar
Borges, TJ, Wieten, L, van Herwijnen, MJ, Broere, F, van der Zee, R, Bonorino, C, et al. The anti-inflammatory Mechanisms of Hsp70. Front Immunol. 2012;3:95. PubMed PMID: 22566973. PubMed Central PMCID: PMC3343630. Epub 2012/05/09. English.Google Scholar
Jiang, W, Hu, M, Rao, J, Xu, X, Wang, X, Kong, L. Over-expression of Toll-like Receptors and Their Ligands in Small-for-Size Graft. Hepatology Research: The Official Journal of the Japan Society of Hepatology. 2010 Apr;40(4):318–29. PubMed PMID: 20070394. Epub 2010/01/15. English.Google Scholar
Pockley, AG, Muthana, M. Heat Shock Proteins and Allograft Rejection. Contrib Nephrol. 2005;148:122–34. PubMed PMID: 15912031. Epub 2005/05/25. English.Google Scholar
Hiratsuka, M, Yano, M, Mora, BN, Nagahiro, I, Cooper, JD, Patterson, GA, et al. Heat Shock Pretreatment Protects Pulmonary Isografts from Subsequent Ischemia-Reperfusion Injury. Journal of Heart & Lung Transplantation. 1998 Dec;17(12):1238–46. PubMed PMID: 9883766.Google Scholar
Squiers, EC, Bruch, D, Buelow, R, Tice, DG, Squiers, EC, Bruch, D, et al. Pretreatment of Small Bowel Isograft Donors with Cobalt-Protoporphyrin Decreases Preservation Injury. Transplantation Proceedings. 1999 Feb–Mar;31(1–2):585–6. PubMed PMID: 10083247.Google Scholar
Bernink, JH, Peters, CP, Munneke, M, te Velde, AA, Meijer, SL, Weijer, K, et al. Human Type 1 Innate Lymphoid Cells Accumulate in Inflamed Mucosal Tissues. Nat Immunol. 2013 03//print;14(3):221–9.Google Scholar
Ito, T, Connett, JM, Kunkel, SL, Matsukawa, A. The Linkage of Innate and Adaptive Immune Response during Granulomatous Development. Frontiers in Immunology. 2013 January 31;4. eng.Google Scholar
Penfield, JG, Wang, Y, Li, S, Kielar, MA, Sicher, SC, Jeyarajah, DR, et al. Transplant Surgery Injury Recruits Recipient MHC Class II-positive Leukocytes into the Kidney. Kidney International. 1999 Nov;56(5):1759–69. PubMed PMID: 10571784.Google Scholar
Olszewski, WL, Olszewski, WL. Innate Immunity Processes in Organ Allografting–Their Contribution to Acute and Chronic Rejection. Ann Transplant. 2005;10(2):59. PubMed PMID: 16218025.Google Scholar
Akalin, E, Watschinger, B. Antibody-mediated Rejection. Seminars in Nephrology. 2007 Jul;27(4):393407. PubMed PMID: 17616272.Google Scholar
Truong, LD, Barrios, R, Adrogue, HE, Gaber, LW. Acute Antibody-mediated Rejection of Renal Transplant: Pathogenetic and Diagnostic Considerations. Archives of Pathology & Laboratory Medicine. 2007 Aug;131(8):1200–8. PubMed PMID: 17683182.Google Scholar
Horie, K, Kanou, Y, Sato, M, Tsuyuki, M, Ishida, S, Shimoji, T, et al. A Case of Early Graft Loss Due to Hyperacute Rejection after ABO-incompatible Renal Transplantation. Clinical Transplantation. 2008 //;22(s19):42–6.Google Scholar
Baldwin, WM. Samaniego-Picota, M, Kasper, EK, Clark, AM, Czader, M, Rohde, C, et al. Complement Deposition in Early Cardiac Transplant Biopsies Is Associated with Ischemic Injury and Subsequent Rejection Episodes. Transplantation. 1999 Sep 27;68(6):894900. PubMed PMID: 10515392.Google Scholar
Shimizu, A, Colvin, RB. Pathological Features of Antibody-mediated Rejection. Current Drug Targets – Cardiovascular & Haematological Disorders. 2005 Jun;5(3):199214. PubMed PMID: 15975034.Google Scholar
Akalin, E, Watschinger, B, Akalin, E, Watschinger, B. Antibody-mediated Rejection. Seminars in Nephrology. 2007 Jul;27(4):393407. PubMed PMID: 17616272.Google Scholar
Naemi, FM, Ali, S, Kirby, JA. Antibody-mediated Allograft Rejection: The Emerging Role of Endothelial Cell Signalling and Transcription Factors. Transpl Immunol. 2011 Sep;25(2–3):96103. PubMed PMID: 21782944. Epub 2011/07/26. English.Google Scholar
Zhang, X, Rozengurt, E, Reed, EF. HLA Class I Molecules Partner with Integrin Beta4 to Stimulate Endothelial Cell Proliferation and Migration. Science Signaling. 2010;3(149):ra85. PubMed PMID: 21098729. Epub 2010/11/26. English.Google Scholar
Feucht, HE, Felber, E, Gokel, MJ, Hillebrand, G, Nattermann, U, Brockmeyer, C, et al. Vascular Deposition of Complement-split Products in Kidney Allografts with Cell-mediated Rejection. Clinical & Experimental Immunology. 1991 Dec;86(3):464–70. PubMed PMID: 1747954.Google Scholar
Feucht, HE, Schneeberger, H, Hillebrand, G, Burkhardt, K, Weiss, M, Riethmuller, G, et al. Capillary Deposition of C4d Complement Fragment and Early Renal Graft Loss. Kidney International. 1993;43(6):1333–8.Google Scholar
Banasik, M, Boratynska, M, Nowakowska, B, Halon, A, Koscielska-Kasprzak, K, Drulis-Fajdasz, D, et al. C4D Deposition and Positive Posttransplant Crossmatch Are Not Necessarily Markers of Antibody-mediated Rejection in Renal Allograft Recipients. Transplantation Proceedings. 2007 Nov;39(9):2718–20. PubMed PMID: 18021967.Google Scholar
Seemayer, CA, Gaspert, A, Nickeleit, V, Mihatsch, MJ. C4d Staining of Renal Allograft Biopsies: A Comparative Analysis of Different Staining Techniques. Nephrology Dialysis Transplantation. 2007 Feb;22(2):568–76. PubMed PMID: 17164320.Google Scholar
Sun, Q, Liu, ZH, Ji, S, Chen, J, Tang, Z, Zeng, C, et al. Late and Early C4d-positive Acute Rejection: Different Clinico-histopathological Subentities in Renal Transplantation. Kidney International. 2006 Jul;70(2):377–83. PubMed PMID: 16760909.Google Scholar
Roufosse, CA, Shore, I, Moss, J, Moran, LB, Willicombe, M, Galliford, J, et al. Peritubular Capillary Basement Membrane Multilayering on Electron Microscopy: A Useful Marker of Early Chronic Antibody-mediated Damage. Transplantation. 2012 Aug 15;94(3):269–74. PubMed PMID: 22790448. Epub 2012/07/14. English.Google Scholar
Sis, B, Halloran, PF. Endothelial Transcripts Uncover a Previously Unknown Phenotype: C4d-negative Antibody-mediated Rejection. Curr Opin Organ Transplant. 2010 Feb;15(1):42–8. PubMed PMID: 20009933. Epub 2009/12/17. English.Google Scholar
Mengel, M, Sis, B, Haas, M, Colvin, RB, Halloran, PF, Racusen, LC, et al. BANFF 2011 Meeting Report: New Concepts in Antibody-mediated Rejection. American Journal of Transplantation. 2012;12(3):563–70.Google Scholar
Hammond, ME, Stehlik, J, Snow, G, Renlund, DG, Seaman, J, Dabbas, B, et al. Utility of Histologic Parameters in Screening for Antibody-mediated Rejection of the Cardiac Allograft: A Study of 3,170 Biopsies. J Heart Lung Transplant. 2005 Dec;24(12):2015–21. PubMed PMID: 16364843.Google Scholar
Nankivell, BJ, Alexander, SI. Rejection of the Kidney Allograft. New England Journal of Medicine. 2010;363(15):1451–62. PubMed PMID: 20925547.Google Scholar
Jukes, J-P, Wood, KJ, Jones, ND. Natural Killer T Cells: A Bridge to Tolerance or a Pathway to Rejection? Transplantation. 2007 Sep 27;84(6):679–81. PubMed PMID: 17893598.Google Scholar
Kitchens, WH, Uehara, S, Chase, CM, Colvin, RB, Russell, PS, Madsen, JC. The Changing Role of Natural Killer Cells in Solid Organ Rejection and Tolerance. Transplantation. 2006 Mar 27;81(6):811–7. PubMed PMID: 16570001.Google Scholar
Goldman, M, Le Moine, A, Braun, M, Flamand, V, Abramowicz, D. A Role for Eosinophils in Transplant Rejection. Trends Immunol. 2001 May;22(5):247–51. PubMed PMID: 11323281. Epub 2001/04/27. English.Google Scholar
Chantranuwat, C, Qiao, JH, Kobashigawa, J, Hong, L, Shintaku, P, Fishbein, MC. Immunoperoxidase Staining for C4d on Paraffin-embedded Tissue in Cardiac Allograft Endomyocardial Biopsies: Comparison to Frozen Tissue Immunofluorescence. Appl Immunohistochem Mol Morphol. 2004 Jun;12(2):166–71. PubMed PMID: 15354744.Google Scholar
Aguilar, P, Mathieu, CP, Clerc, G, Ethevenot, G, Fajraoui, M, Mattei, S, et al. Modulation of Natural Killer (NK) Receptors on NK (CD3-/CD56+), T (CD3+/CD56-) and NKT-like (CD3+/CD56+) Cells after Heart Transplantation. Journal of Heart & Lung Transplantation. 2006 Feb;25(2):200–5. PubMed PMID: 16446221.Google Scholar
McNerney, ME, Lee, KM, Zhou, P, Molinero, L, Mashayekhi, M, Guzior, D, et al. Role of Natural Killer Cell Subsets in Cardiac Allograft Rejection. American Journal of Transplantation. 2006 Mar;6(3):505–13. PubMed PMID: 16468959.Google Scholar
Sanfilippo, F, Kolbeck, PC, Vaughn, WK, Bollinger, RR. Renal Allograft Cell Infiltrates Associated with Irreversible Rejection. Transplantation. 1985 Dec;40(6):679–85. PubMed PMID: 3907043.Google Scholar
Azzawi, M, Hasleton, PS, Geraghty, PJ, Yonan, N, Krysiak, P, El-Gammal, A, et al. RANTES Chemokine Expression Is Related to Acute Cardiac Cellular Rejection and Infiltration by CD45RO T-lymphocytes and Macrophages. Journal of Heart & Lung Transplantation. 1998 Sep;17(9):881–7. PubMed PMID: 9773860.Google Scholar
Erren, M, Arlt, M, Willeke, P, Schluter, B, Junker, R, Deng, MC, et al. Predictive Value of the CD45RO Positive T-helper Lymphocyte Subset for Acute Cellular Rejection during the Early Phase after Kidney Transplantation. Transplantation Proceedings. 1999 Feb–Mar;31(1–2):319–21. PubMed PMID: 10083125.Google Scholar
Wang, P, Zhu, L, Liu, T, Zhang, X, Qiu, Y. Intragraft CD45 RO Gene Expression Is an Early Marker to Detect Small Bowel Allograft Rejection in Rats. Microsurgery. 1999;19(7):348–50. PubMed PMID: 10586202.Google Scholar
Mueller, TF, Einecke, G, Reeve, J, Sis, B, Mengel, M, Jhangri, GS, et al. Microarray Analysis of Rejection in Human Kidney Transplants using Pathogenesis-based Transcript Sets. Am J Transplant. 2007 Dec;7(12):2712–22. PubMed PMID: 17941957. Epub 2007/10/19. English.Google Scholar
Sarwal, M, Chua, MS, Kambham, N, Hsieh, SC, Satterwhite, T, Masek, M, et al. Molecular Heterogeneity in Acute Renal Allograft Rejection Identified by DNA Microarray Profiling. The New England Journal of Medicine. 2003 Jul 10;349(2):125–38. PubMed PMID: 12853585. Epub 2003/07/11. English.Google Scholar
Hadley, G. Role of Integrin CD103 in Promoting Destruction of Renal Allografts by CD8 T Cells. American Journal of Transplantation. 2004 Jul;4(7):1026–32. PubMed PMID: 15196058.Google Scholar
Wang, D, Yuan, R, Feng, Y, El-Asady, R, Farber, DL, Gress, RE, et al. Regulation of CD103 Expression by CD8+ T Cells Responding to Renal Allografts. Journal of Immunology. 2004 Jan 1;172(1):214–21. PubMed PMID: 14688328.Google Scholar
Al-Hamidi, A, Pekalski, M, Robertson, H, Ali, S, Kirby, JA. Renal Allograft Rejection: The Contribution of Chemokines to the Adhesion and Retention of AlphaE(CD103)Beta7 Integrin-expressing Intratubular T Cells. Mol Immunol. 2008 Sep;45(15):4000–7. PubMed PMID: 18649941. Epub 2008/07/25. English.Google Scholar
Adams, DH, Afford, SC. Effector Mechanisms of Nonsuppurative Destructive Cholangitis in Graft-versus-Host Disease and Allograft Rejection. Seminars in Liver Disease. 2005 Aug;25(3):281–97. PubMed PMID: 16143944. Epub 2005/09/07. English.Google Scholar
Delacruz, V, Garcia, M, Mittal, N, Nishida, S, Levi, D, Selvaggi, G, et al. Immunoenzymatic and Morphological Detection of Epithelial Cell Apoptotic Stages in Gastrointestinal Allografts from Multivisceral Transplant Patients. Transplantation Proceedings. 2004 Mar;36(2):338–9. PubMed PMID: 15050151.Google Scholar
Alegre, M, Fallarino, F, Zhou, P, Frauwirth, K, Thistlethwaite, J, Newell, K, et al. Transplantation and the CD28/CTLA4/B7 Pathway. Transplantation Proceedings. 2001 Feb–Mar;33(1–2):209–11. PubMed PMID: 11266782.Google Scholar
Clarkson, MR, Sayegh, MH, Clarkson, MR, Sayegh, MH. T-cell Costimulatory Pathways in Allograft Rejection and Tolerance. Transplantation. 2005 Sep 15;80(5):555–63. PubMed PMID: 16177624.Google Scholar
Kitchens, WH, Haridas, D, Wagener, ME, Song, M, Ford, ML. Combined Costimulatory and Leukocyte Functional Antigen-1 Blockade Prevents Transplant Rejection Mediated by Heterologous Immune Memory Alloresponses. Transplantation. 2012 May 27;93(10):9971005. PubMed PMID: 22475765. Epub 2012/04/06. English.Google Scholar
Ho, J, Wiebe, C, Gibson, IW, Rush, DN, Nickerson, PW. Immune Monitoring of Kidney Allografts. Am J Kidney Dis. 2012 Oct;60(4):629–40. PubMed PMID: 22542291. Epub 2012/05/01. English.Google Scholar
Hodge, G, Hodge, S, Li-Liew, C, Reynolds, PN, Holmes, M. Increased Natural Killer T-like Cells Are a Major Source of Pro-inflammatory Cytokines and Granzymes in Lung Transplant Recipients. Respirology. 2012 Jan;17(1):155–63. PubMed PMID: 21995313. Epub 2011/10/15. English.Google Scholar
Clement, MV, Haddad, P, Soulie, A, Benvenuti, C, Lichtenheld, MG, Podack, ER, et al. Perforin and Granzyme B as Markers for Acute Rejection in Heart Transplantation. International Immunology. 1991 Nov;3(11):1175–81. PubMed PMID: 1760412.Google Scholar
Griffiths, GM, Namikawa, R, Mueller, C, Liu, CC, Young, JD, Billingham, M, et al. Granzyme A and Perforin as Markers for Rejection in Cardiac Transplantation. European Journal of Immunology. 1991 Mar;21(3):687–93. PubMed PMID: 2009911.Google Scholar
Madsen, CB, Norgaard, A, Iversen, M, Ryder, LP. Elevated mRNA Levels of CTLA-4, FoxP3, and Granzyme B in BAL, but Not in Blood, during Acute Rejection of Lung Allografts. Transpl Immunol. 2010 Oct;24(1):2632. PubMed PMID: 20633650. Epub 2010/07/17. English.Google Scholar
Ahmed-Ansari, A, Tadros, TS, Knopf, WD, Murphy, DA, Hertzler, G, Feighan, J, et al. Major Histocompatibility Complex Class I and Class II Expression by Myocytes in Cardiac Biopsies Posttransplantation. Transplantation. 1988 May;45(5):972–8. PubMed PMID: 3285544.Google Scholar
Barrett, M, Milton, AD, Barrett, J, Taube, D, Bewick, M, Parsons, VP, et al. Needle Biopsy Evaluation of Class II Major Histocompatibility Complex Antigen Expression for the Differential Diagnosis of Cyclosporine Nephrotoxicity from Kidney Graft Rejection. Transplantation. 1987 Aug;44(2):223–7. PubMed PMID: 3307046.Google Scholar
Belitsky, P, Miller, SM, Gupta, R, Lee, S, Ghose, T. Induction of MHC Class II Expression in Recipient Tissues Caused by Allograft Rejection. Transplantation. 1990 Feb;49(2):472–6. PubMed PMID: 2305472.Google Scholar
Briscoe, DM, Cotran, RS. Role of Leukocyte-endothelial Cell Adhesion Molecules in Renal Inflammation: In Vitro and in Vivo Studies. Kidney International – Supplement. 1993 Jul;42:S2734. PubMed PMID: 8361125.Google Scholar
Heemann, UW, Tullius, SG, Azuma, H, Kupiec-Weglinsky, J, Tilney, NL. Adhesion Molecules and Transplantation. Annals of Surgery. 1994 Jan;219(1):412. PubMed PMID: 8297174.Google Scholar
Kirby, JA. The Role Played by Adhesion Molecules during Allograft Rejection. Transplant Immunology. 1994 Jun;2(2):129–32. PubMed PMID: 7953308.Google Scholar
Mulligan, MS, McDuffie, JE, Shanley, TP, Guo, RF, Vidya Sarma, J, Warner, RL, et al. Role of RANTES in Experimental Cardiac Allograft Rejection. Experimental & Molecular Pathology. 2000 Dec;69(3):167–74. PubMed PMID: 11115358.Google Scholar
Schroppel, B, Fischereder, M, Lin, M, Marder, B, Schiano, T, Kramer, BK, et al. Analysis of Gene Polymorphisms in the Regulatory Region of MCP-1, RANTES, and CCR5 in Liver Transplant Recipients. Journal of Clinical Immunology. 2002 Nov;22(6):381–5. PubMed PMID: 12462338.Google Scholar
Miura, M, Morita, K, Kobayashi, H, Hamilton, TA, Burdick, MD, Strieter, RM, et al. Monokine Induced by IFN-gamma Is a Dominant Factor Directing T Cells into Murine Cardiac Allografts during Acute Rejection. Journal of Immunology. 2001 Sep 15;167(6):3494–504. PubMed PMID: 11544343.Google Scholar
Schnickel, GT, Bastani, S, Hsieh, GR, Shefizadeh, A, Bhatia, R, Fishbein, MC, et al. Combined CXCR3/CCR5 Blockade Attenuates Acute and Chronic Rejection. J Immunol. 2008 April 1, 2008;180(7):4714–21.Google Scholar
Merani, S, Truong, WW, Hancock, W, Anderson, CC, Shapiro, AMJ. Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplantation. 2006;15(4):295309. PubMed PMID: 16898223.CrossRefGoogle ScholarPubMed
Smith, RN, Ueno, T, Ito, T, Tanaka, K, Shea, SP, Abdi, R. Chemokines and Chronic Heart Allograft Rejection. Transplantation. 2007 Aug 15;84(3):442–4. PubMed PMID: 17700176.Google Scholar
Stasikowska, O, Wagrowska-Danilewicz, M. Chemokines and Chemokine Receptors in Glomerulonephritis and Renal Allograft Rejection. Medical Science Monitor. 2007 Feb;13(2):RA31–6. PubMed PMID: 17261994.Google Scholar
Smith, RN, Colvin, RB. Chronic Alloantibody Mediated Rejection. Semin Immunol. 2012 Apr;24(2):115–21. PubMed PMID: 22051115. Epub 2011/11/05. English.Google Scholar
Takeda, A, Horike, K, Ohtsuka, Y, Inaguma, D, Goto, N, Watarai, Y, et al. Current Problems of Chronic Active Antibody-mediated Rejection. Clin Transplant. 2011 Jul;25 Suppl 23:25. PubMed PMID: 21623906. Epub 2011/06/03. English.Google Scholar
Arias, M, Seron, D, Moreso, F, Bestard, O, Praga, M. Chronic Renal Allograft Damage: Existing Challenges. Transplantation. 2011 May 15;91(9 Suppl):S425. PubMed PMID: 21519213. Epub 2011/04/29. English.Google Scholar
Hayry, P. Chronic Allograft Vasculopathy: New Strategies for Drug Development. Transplantation proceedings. 1998 Dec;30(8):3989–90. PubMed PMID: 9865271.Google Scholar
Lachmann, N, Terasaki, PI, Schonemann, C, Lachmann, N, Terasaki, PI, Schonemann, C. Donor-specific HLA Antibodies in Chronic Renal Allograft Rejection: A Prospective Trial with a Four-year Follow-up. Clinical Transplants. 2006:171–99. PubMed PMID: 18365377.Google Scholar
Takahashi, H, Kato, T, Mizutani, K, Terasaki, P, Delacruz, V, Tzakis, AG, et al. Simultaneous Antibody-mediated Rejection of Multiple Allografts in Modified Multivisceral Transplantation. Clinical Transplants. 2006:529–34. PubMed PMID: 18365419.Google Scholar
Terasaki, P, Lachmann, N, Cai, J. Summary of the Effect of de Novo HLA Antibodies on Chronic Kidney Graft Failure. Clinical Transplants. 2006:455–62. PubMed PMID: 18365403.Google Scholar
Denton, MD, Davis, SF, Baum, MA, Melter, M, Reinders, ME, Exeni, A, et al. The Role of the Graft Endothelium in Transplant Rejection: Evidence that Endothelial Activation May Serve as a Clinical Marker for the Development of Chronic Rejection. Pediatric Transplantation. 2000 Nov;4(4):252–60. PubMed PMID: 11079263.Google Scholar
Kauppinen, H, Soots, A, Krogerus, L, Brummer, T, Ahonen, J, Lautenschlager, I. Different Expression of Adhesion Molecules ICAM-1 and VCAM-1 and Activation Markers MHC Class II and IL-2 R in Acute and Chronic Rejection of Rat Kidney Allografts. Transplantation Proceedings. 1997 Nov;29(7):3150–1. PubMed PMID: 9365703.Google Scholar
Grimm, PC, Nickerson, P, Jeffery, J, Savani, RC, Gough, J, McKenna, RM, et al. Neointimal and Tubulointerstitial Infiltration by Recipient Mesenchymal Cells in Chronic Renal-allograft Rejection. The New England Journal of Medicine. 2001 July 12;345(2):93–7.Google Scholar
Allan, JS, Madsen, JC. Recent Advances in the Immunology of Chronic Rejection. Current Opinion in Nephrology & Hypertension. 2002 May;11(3):315–21. PubMed PMID: 11981262.Google Scholar
Ozdemir, BH, Ozdemir, FN, Gungen, Y, Haberal, M. Role of Macrophages and Lymphocytes in the Induction of Neovascularization in Renal Allograft Rejection. American Journal of Kidney Diseases. 2002 Feb;39(2):347–53. PubMed PMID: 11840376.Google Scholar
Ravalli, S, Albala, A, Ming, M, Szabolcs, M, Barbone, A, Michler, RE, et al. Inducible Nitric Oxide Synthase Expression in Smooth Muscle Cells and Macrophages of Human Transplant Coronary Artery Disease. Circulation. 1998 Jun 16;97(23):2338–45. PubMed PMID: 9639378.Google Scholar
de Andrade, JA, Thannickal, VJ. Innovative Approaches to the Therapy of Fibrosis. Curr Opin Rheumatol. 2009 Nov;21(6):649–55. PubMed PMID: 19667993. Pubmed Central PMCID: PMC2862988. Epub 2009/08/12. English.Google Scholar
Wynn, TA. Cellular and Molecular Mechanisms of Fibrosis. Journal of Pathology. 2008 Jan;214(2):199210. PubMed PMID: 18161745.Google Scholar
Nadeau, KC, Azuma, H, Tilney, NL. Sequential Cytokine Dynamics in Chronic Rejection of Rat Renal Allografts: Roles for Cytokines RANTES and MCP-1. Proceedings of the National Academy of Sciences of the United States of America. 1995 Sep 12;92(19):8729–33. PubMed PMID: 7568006.Google Scholar
Russell, ME, Wallace, AF, Hancock, WW, Sayegh, MH, Adams, DH, Sibinga, NE, et al. Upregulation of Cytokines Associated with Macrophage Activation in the Lewis-to-F344 Rat Transplantation Model of Chronic Cardiac Rejection. Transplantation. 1995 Feb 27;59(4):572–8. PubMed PMID: 7533347.Google Scholar
Csencsits, K, Wood, SC, Lu, G, Faust, SM, Brigstock, D, Eichwald, EJ, et al. Transforming Growth Factor Beta-induced Connective Tissue Growth Factor and Chronic Allograft Rejection. American Journal of Transplantation. 2006 May;6(5 Pt 1):959–66. PubMed PMID: 16611331.Google Scholar
Rintala, JM, Savikko, J, Rintala, SE, von Willebrand, E. The Effect of Leflunomide Analogue FK778 on Development of Chronic Rat Renal Allograft Rejection and Transforming Growth Factor-BETA Expression. Transplantation Proceedings. 2006 Dec;38(10):3239–40. PubMed PMID: 17175234.Google Scholar
Barocci, S, Ginevri, F, Valente, U, Torre, F, Gusmano, R, Nocera, A. Correlation between Angiotensin-converting Enzyme Gene Insertion/Deletion Polymorphism and Kidney Graft Long-term Outcome in Pediatric Recipients: A Single-center Analysis. Transplantation. 1999 Feb 27;67(4):534–8. PubMed PMID: 10071023.Google Scholar
Ikegami, M, Nagano, T, Hara, Y, Negita, M, Imanishi, M, Ishii, T, et al. [Tissue Type Plasminogen Activator (t-PA) and Plasminogen Activator Inhibitor (PAI) in Transplanted Kidneys]. Nippon Hinyokika Gakkai Zasshi – Japanese Journal of Urology. 1995 May;86(5):991–5. PubMed PMID: 7596085.Google Scholar
Legendre, C, Pascual, M. Improving Outcomes for Solid-organ Transplant Recipients at Risk from Cytomegalovirus Infection: Late-onset Disease and Indirect Consequences. Clinical Infectious Diseases. 2008 Mar 1;46(5):732–40. PubMed PMID: 18220478.Google Scholar
Grossi, PA, Costa, AN, Fehily, D, Blumberg, EA, Kuehnert, MJ, Fishman, JA, et al. Infections and Organ Transplantation: New Challenges for Prevention and Treatment—A Colloquium. Transplantation. 2012;93:S4S39 10.1097/TP.0b013e3182481347.Google Scholar
Egli, A, Binggeli, S, Bodaghi, S, Dumoulin, A, Funk, GA, Khanna, N, et al. Cytomegalovirus and Polyomavirus BK Posttransplant. Nephrology Dialysis Transplantation. 2007 Sep;22 Suppl 8:viii72viii82. PubMed PMID: 17890268.Google Scholar
Steininger, C. Clinical Relevance of Cytomegalovirus Infection in Patients with Disorders of the Immune System. Clinical Microbiology & Infection. 2007 Oct;13(10):953–63. PubMed PMID: 17803749.Google Scholar
Watkins, RR, Lemonovich, TL, Razonable, RR. Immune Response to CMV in Solid Organ Transplant Recipients: Current Concepts and Future Directions. Expert Review of Clinical Immunology. 2012 May;8(4):383–93. PubMed PMID: 22607184. Epub 2012/05/23. English.Google Scholar
Streblow, DN, Orloff, SL, Nelson, JA. Acceleration of Allograft Failure by Cytomegalovirus. Current Opinion in Immunology. 2007 Oct;19(5):577–82. PubMed PMID: 17716883.Google Scholar
Potena, L, Valantine, HA. Cytomegalovirus-associated Allograft Rejection in Heart Transplant Patients. Current Opinion in Infectious Diseases. 2007 Aug;20(4):425–31. PubMed PMID: 17609604.Google Scholar
Valantine, H. Cardiac Allograft Vasculopathy after Heart Transplantation: Risk Factors and Management. J Heart Lung Transplant. 2004 May;23(5 Suppl):S18793. PubMed PMID: 15093804.Google Scholar
Carratala, J, Montejo, M, Perez-Romero, P. Infections Caused by Herpes Viruses Other than Cytomegalovirus in Solid Organ Transplant Recipients. Enferm Infecc Microbiol Clin. 2012 Mar;30 Suppl 2:63–9. PubMed PMID: 22542037. Epub 2012/05/11. English.Google Scholar
Bennett, SM, Broekema, NM, Imperiale, MJ. BK Polyomavirus: Emerging Pathogen. Microbes and infection / Institut Pasteur. 2012 Aug;14(9):672–83. PubMed PMID: 22402031. PubMed Central PMCID: PMC3568954. Epub 2012/03/10. English.Google Scholar
Acott, P, Babel, N. BK Virus Replication Following Kidney Transplant: Does the Choice of Immunosuppressive Regimen Influence Outcomes? Ann Transplant. 2012 Jan–Mar;17(1):8699. PubMed PMID: 22466913. Epub 2012/04/03. English.Google Scholar
Delbue, S, Ferraresso, M, Ghio, L, Carloni, C, Carluccio, S, Belingheri, M, et al. A Review on JC Virus Infection in Kidney Transplant Recipients. Clinical & Developmental Immunology. 2013;2013:926391. PubMed PMID: 23424601. PubMed Central PMCID: PMC3569895. Epub 2013/02/21. English.Google Scholar
Hirsch, HH, Drachenberg, CB, Steiger, J, Ramos, E. Polyomavirus Associated Nephropathy in Renal Transplantation: Critical Issues of Screening and Management. In: Ahsan, N, editor. Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol. 577. 1st ed. New York, N.Y. Georgetown, T.X.: Springer Science+Business Media, Landes Bioscience / Eurekah.com; 2006. p. 160–73.Google Scholar
Nishi, S. Polyomavirus Nephropathy – Recent Pathological Diagnostic Problems and the Report from the 2011 BANFF Meeting. Clin Transplant. 2012 Jul;26 Suppl 24:912. PubMed PMID: 22747469. Epub 2012/07/07. English.Google Scholar
Duvoux, C, Firpi, R, Grazi, GL, Levy, G, Renner, E, Villamil, F. Recurrent Hepatitis C Virus Infection Post Liver Transplantation: Impact of Choice of Calcineurin Inhibitor. Transpl Int. 2013 Feb 18. PubMed PMID: 23413991. Epub 2013/02/19. English.Google Scholar
Manzia, TM, Angelico, R, Toti, L, Lai, Q, Ciano, P, Angelico, M, et al. Hepatitis C Virus Recurrence and Immunosuppression-free State after Liver Transplantation. Expert Review of Clinical Immunology. 2012 Sep;8(7):635–44. PubMed PMID: 23078061. Epub 2012/10/20. English.Google Scholar
Dixon, LR, Crawford, JM. Early Histologic Changes in Fibrosing Cholestatic Hepatitis C. Liver Transpl. 2007 Feb;13(2):219–26. PubMed PMID: 17205558.Google Scholar
Neff, GW, Shire, N, Ruiz, P, O’Brien, C, Garcia, M, Dela Garza, J, et al. The Importance of Clinical Parameters when Differentiating Cholestatic Hepatitis C Virus from Allograft Rejection. Transplantation Proceedings. 2005 Dec;37(10):4397–402. PubMed PMID: 16387130.Google Scholar
Ge, D, Fellay, J, Thompson, AJ, Simon, JS, Shianna, KV, Urban, TJ, et al. Genetic Variation in IL28B Predicts Hepatitis C Treatment-induced Viral Clearance. Nature. 2009;461(7262):399401.Google Scholar
Nayak, NC, Sachdeva, R. Localization of Hepatitis B Surface Antigen in Conventional Paraffin Sections of the Liver. Comparison of Immunofluorescence, Immunoperoxidase, and Orcein Staining Methods with Regard to Their Specificity and Reliability as Antigen Marker. American Journal of Pathology 1975 81(3):479–92.Google Scholar
Green, M, Michaels, MG. Epstein-Barr Virus Infection and Posttransplant Lymphoproliferative Disorder. Am J Transplant. 2013 Feb;13 Suppl 3:4154; quiz PubMed PMID: 23347213. Epub 2013/02/01. English.Google Scholar
Morscio, J, Dierickx, D, Ferreiro, JF, Herreman, A, Van Loo, P, Bittoun, E, et al. Gene Expression Profiling Reveals Clear Differences between EBV-positive and EBV-negative Posttransplant Lymphoproliferative Disorders. Am J Transplant. 2013 Mar 14. PubMed PMID: 23489474. Epub 2013/03/16. English.Google Scholar
Kennedy, C, Obilana, A, O’Brien, F, O’Kelly, P, Dorman, A, Denton, M, et al. Glomerular Disease Recurrence in Second and Subsequent Kidney Transplants. Clin Nephrol. 2013 Jan;79(1):31–6. PubMed PMID: 23073068. Epub 2012/10/18. English.Google Scholar
Moroni, G, Casati, C, Quaglini, S, Gallelli, B, Banfi, G, Montagnino, G, et al. Membranoproliferative Glomerulonephritis Type I in Renal Transplantation Patients: A Single-center Study of a Cohort of 68 Renal Transplants Followed up for 11 Years. Transplantation. 2011 Jun 15;91(11):1233–9. PubMed PMID: 21502910. Epub 2011/04/20. English.Google Scholar
Pham, PT, Pham, PC. Graft Loss Due to Recurrent Lupus Nephritis in Living-related Kidney Donation. Clin J Am Soc Nephrol. 2011 Sep;6(9):2296–9. PubMed PMID: 21799149. Pubmed Central PMCID: PMC3359005. Epub 2011/07/30. English.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×