Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
October 2016
Print publication year:
2016
Online ISBN:
9781139226769

Book description

An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.

Reviews

'The monograph contains numerous references to original papers, as well as numerous exercises. This monograph may be strongly recommended as a good introduction to this interesting and intensively developing branch of analysis …'

Vladimir S. Pilidi Source: Zentralblatt MATH

'As with Volume 1, chapter notes outline historical development, and an extensive bibliography cites substantial work done in the area since 2000.'

Joseph D. Lakey Source: MathSciNet

‘… designed for a person who wants to learn the theory of these spaces and understand the state of the art in the area. All major results are included. In some situations the original proofs are provided, while in other cases they provide the 'better' proofs that have become available since. The books are designed to be accessible to both experts and newcomers to the area. Comments at the end of each section are very helpful, and the numerous exercises were clearly chosen to help master some of the techniques and tools used … In sum, these are excellent books that are bound to become standard references for the theory of H(b) spaces.’

Source: Bulletin of the American Mathematical Society

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Abate, M. The Lindelöf principle and the angular derivative in strongly convex domains. J. Anal. Math. 54 (1990), 189–228.
[2] Abate, M. Angular derivatives in strongly pseudoconvex domains. In Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), vol. 52 of Proceedings of Symposia in Pure Mathematics. American Mathematical Society, Providence, RI, 1991, pp. 23–40.
[3] Abate, M. The Julia–Wolff–Carathéodory theorem in polydisks. J. Anal. Math. 74 (1998), 275–306.
[4] Abate, M. Angular derivatives in several complex variables. In Real methods in complex and CR geometry, vol. 1848 of Lecture Notes in Mathematics. Springer, Berlin, 2004, pp. 1–47.
[5] Abate, M., and Tauraso, R. The Julia–Wolff–Carathéodory theorem(s). In Complex geometric analysis in Pohang (1997), vol. 222 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1999, pp. 161–172.
[6] Agler, J., and McCarthy, J.E. Pick interpolation and Hilbert function spaces, vol. 44 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[7] Ahern, P.R., and Clark, D.N. Invariant subspaces and analytic continuation in several variables. J. Math. Mech. 19 (1969/1970), 963–969.
[8] Ahern, P.R., and Clark, D.N. On functions orthogonal to invariant subspaces. Acta Math. 124 (1970), 191–204.
[9] Ahern, P.R., and Clark, D.N. On star-invariant subspaces. Bull. Amer. Math. Soc. 76 (1970), 629–632.
[10] Ahern, P.R., and Clark, D.N. Radial limits and invariant subspaces. Amer. J. Math. 92 (1970), 332–342.
[11] Ahern, P.R., and Clark, D.N. Radia. nth derivatives of Blaschke products. Math. Scand. 28 (1971), 189–201.
[12] Ahern, P.R., and Clark, D.N. On inner functions with Hp.-derivative. Michigan Math. J. 21 (1974), 115–127.
[13] Ahern, P.R., and Clark, D.N. On inner functions with Bp derivative. Michigan Math. J. 23, 2 (1976), 107–118.
[14] Alexander, W. O., and Redheffer, R. The excess of sets of complex exponentials. Duke Math. J. 34 (1967), 59–72.
[15] Alpay, D., Dijksma, A., Rovnyak, J., and de Snoo, H. Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, vol. 96 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1997.
[16] Alpay, D., and Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models. I. Integral Equations Operator Theor. 7, 5 (1984), 589–641.
[17] Alpay, D., and Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models. II. Integral Equations Operator Theor. 8, 2 (1985), 145–180.
[18] Anderson, J.M., and Rovnyak, J. On generalized Schwarz–Pick estimates. Mathematik. 53, 1 (2006), 161–168.
[19] Ando, T. De Branges spaces and analytic operator functions. Lecture notes. Hokkaido University, Sapporo, Japan, 1990.
[20] Ando, T., and Fan, K. Pick–Julia theorems for operators. Math. Z. 168, 1 (1979), 23–34.
[21] Andrews, G.E., Askey, R., and Roy, R. Special functions, vol. 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, UK, 1999.
[22] Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337–404.
[23] Avdonin, S.A., and Ivanov, S.A. Families of exponentials: the method of moments in controllability problems for distributed parameter systems. Translated from Russian and revised by authors. Cambridge University Press, Cambridge, UK, 1995.
[24] Balayan, L., and Garcia, S.R. Unitary equivalence to a complex symmetric matrix: geometric criteria. Oper. Matrice. 4, 1 (2010), 53–76.
[25] Ball, J.A., and KrieteIII, T. L. Operator-valued Nevanlinna–Pick kernels and the functional models for contraction operators. Integral Equations Operator Theor. 10, 1 (1987), 17–61.
[26] Ball, J.A., and Lubin, A. On a class of contractive perturbations of restricted shifts. Pacific J. Math. 63, 2 (1976), 309–323.
[27] Baranov, A.D. Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J. Funct. Anal. 223, 1 (2005), 116–146.
[28] Baranov, A. Completeness and Riesz bases of reproducing kernels in model subspaces. Int. Math. Res. Not. 2006 (2006), 81530.
[29] Baranov, A., Fricain, E., and Mashreghi, J. Weighted norm inequalities for de Branges–Rovnyak spaces and their applications. Amer. J.Math. 132, 1 (2010), 125–155.
[30] Beneker, P. Strongly exposed points, Helson–Szegʺo weights and Toeplitz operators. Integral Equations Operator Theor. 31, 3 (1998), 299–306.
[31] Beneker, P., and Wiegerinck, J. The boundary of the unit ball in H1-type spaces. In Function spaces (Edwardsville, IL, 2002), vol. 328 of Contemporary Mathematics. AmericanMathematical Society, Providence, RI, 2003, pp. 59–84.
[32] Bénéteau, C., Dahlner, A., and Khavinson, D. Remarks on the Bohr phenomenon. Comput. Methods Funct. Theor. 4, 1 (2004), 1–19.
[33] Beurling, A. On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1948), 17.
[34] Blandign`eres, A., Fricain, E., Gaunard, F., Hartmann, A., and Ross, W. Reverse Carleson embeddings for model spaces. J. London Math. Soc. 88, 2 (2013), 437–464.
[35] Blandign`eres, A., Fricain, E., Gaunard, F., Hartmann, A., and Ross, W. Direct and reverse Carleson measures for H(b) spaces. Submitted, arXiv:1308.1574.
[36] Bolotnikov, V., and Kheifets, A. A higher order analogue of the Carathéodory–Julia theorem. J. Funct. Anal. 237, 1 (2006), 350–371.
[37] Boricheva, I. Geometric properties of projections of reproducing kernels o. z -invariant subspaces of H 2 . J. Funct. Anal. 161, 2 (1999), 397–417.
[38] Borwein, P., and Erdélyi, T. A sharp Bernstein-type inequality for exponential sums. J. Reine Angew. Math. 476 (1996), 127–141.
[39] Borwein, P., and Erdélyi, T. Sharp extensions of Bernstein's inequality to rational spaces. Mathematik. 43, 2 (1996), 413–423.
[40] Caratheódory, C. Ü ber die Winkelderivierten von beschra¨nkten analytischen Funktionen. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. (1929), 39–54.
[41] Carathéodory, C. Theory of functions of a complex variable. Vol. 1. Translated by F., Steinhardt. Chelsea, New York, 1954.
[42] Carathéodory, C. Theory of functions of a complex variable. Vol. 2. Translated by F. Steinhardt. Chelsea, New York, 1954.
[43] Cargo, G.T. The radial images of Blaschke products. J. London Math. Soc. 36 (1961), 424–430.
[44] Cargo, G.T. Angular and tangential limits of Blaschke products and their successive derivatives. Canad. J. Math. 14 (1962), 334–348.
[45] Cargo, G.T. The boundary bahavior of Blaschke products. J. Math. Anal. Appl. 5 (1962), 1–16.
[46] Chacón, G.R. Carleson measures on Dirichlet-type spaces. Proc. Amer. Math. Soc. 139, 5 (2011), 1605–1615.
[47] Chacón, G.R. Interpolating sequences in harmonically weighted Dirichlet spaces. Integral Equations Operator Theor. 69, 1 (2011), 73–85.
[48] Chacón, G.R. Closed-range composition operators on Dirichlet-type spaces. Complex Anal. Oper. Theor. 7, 4 (2013), 909–926.
[49] Chacón, G.R., Fricain, E., and Shabankhah, M. Carleson measures and reproducing kernel thesis in Dirichlet-type spaces. Algebra i Anali. 24, 6 (2012), 1–20.
[50] Chalendar, I., Fricain, E., and Partington, J.R. Overcompleteness of sequences of reproducing kernels in model spaces. Integral Equations Operator Theor. 56, 1 (2006), 45–56.
[51] Chalendar, I., Fricain, E., and Timotin, D. Functional models and asymptotically orthonormal sequences. Ann. Inst. Fourier (Grenoble. 53, 5 (2003), 1527–1549.
[52] Chevrot, N., Fricain, E., and Timotin, D. The characteristic function of a complex symmetric contraction. Proc. Amer. Math. Soc. 135, 9 (2007), 2877–2886.(electronic).
[53] Chevrot, N., Fricain, E., and Timotin, D. On certain Riesz families in vector-valued de Branges–Rovnyak spaces. J. Math. Anal. Appl. 355, 1 (2009), 110–125.
[54] Chevrot, N., Guillot, D., and Ransford, T. De Branges–Rovnyak spaces and Dirichlet spaces. J. Funct. Anal. 259, 9 (2010), 2366–2383.
[55] Clark, D.N. One dimensional perturbations of restricted shifts. J. Anal. Math. 25 (1972), 169–191.
[56] Cohn, B. Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math. 103, 2 (1982), 347–364.
[57] Cohn, W.S. Carleson measures and operators on star-invariant subspaces. J. Operator Theor. 15, 1 (1986), 181–202.
[58] Costara, C., and Ransford, T. Which de Branges–Rovnyak spaces are Dirichlet spaces (and vice versa). J. Funct. Anal. 265, 12 (2013), 3204–3218.
[59] Cowen, C.C., and MacCluer, B.D. Composition operators on spaces of analytic functions. In Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[60] Cowen, C., and Pommerenke, C. Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc. 26, 2 (1982), 271–289.
[61] Crofoot, R.B. Multipliers between invariant subspaces of the backward shift. Pacific J. Math. 166, 2 (1994), 225–246.
[62] Davis, B.M., and McCarthy, J.E. Multipliers of de Branges spaces. Michigan Math. J. 38, 2 (1991), 225–240.
[63] de Branges, L. The story of the verification of the Bieberbach conjecture. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 199–203.
[64] de Branges, L., and Rovnyak, J. Canonical models in quantum scattering theory. In Perturbation theory and its applications in quantum mechanics (Proc. Adv. Sem. Math. Res. Center, US Army, Theor. Chem. Inst., Univ. Wisconsin, Madison, WI, 1965). Wiley, New York, 1966, pp. 295–392.
[65] de Branges, L., and Rovnyak, J. Square summable power series. Holt, Rinehart and Winston, New York, 1966.
[66] de Leeuw, K., and Rudin, W. Extreme points and extremum problems in H1. Pacific J. Math. 8 (1958), 467–485.
[67] Douglas, R.G. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415.
[68] Dyakonov, K.M. Entire functions of exponential type and model subspaces i. Hp Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190, Issled. Linein. Oper. Teor. Funktsii. 19 (1991), 81–100.
[69] Dyakonov, K.M. Differentiation in star-invariant subspaces. I. Boundedness and compactness. J. Funct. Anal. 192, 2 (2002), 364–386.
[70] Dyakonov, K.M. Differentiation in star-invariant subspaces. II. Schatten class criteria. J. Funct. Anal. 192, 2 (2002), 387–409.
[71] Fan, K. Julia's lemma for operators. Math. Ann. 239, 3 (1979), 241–245.
[72] Fan, K. Iteration of analytic functions of operators. Math. Z. 179, 3 (1982), 293–298.
[73] Fan, K. Iteration of analytic functions of operators. II. Linear Multilinear Algebr. 12, 4 (1982/83), 295–304.
[74] Feje'r, L. Ü ber trigonometrische Polynome. J. Reine Angew. Math. 146 (1916), 53–82.
[75] Fricain, E. Bases of reproducing kernels in model spaces. J. Operator Theor. 46, 3, suppl. (2001), 517–543.
[76] Fricain, E. Complétude des noyaux reproduisants dans les espaces mod`eles. Ann. Inst. Fourier (Grenoble. 52, 2 (2002), 661–686.
[77] Fricain, E. Bases of reproducing kernels in de Branges spaces. J. Funct. Anal. 226, 2 (2005), 373–405.
[78] Fricain, E., and Hartmann, A. Regularity on the boundary in spaces of holomorphic functions on the unit disk. In Hilbert spaces of analytic functions, vol. 51 of CRM Proceedings and Lecture Notes. American Mathematical Society, Providence, RI, 2010, pp. 91–119.
[79] Fricain, E., Hartmann, A., and Ross, W. Concrete examples of H(b) spaces. arXiv:1405.2323.
[80] Fricain, E., and Mashreghi, J. Boundary behavior of functions in the de Branges–Rovnyak spaces. Complex Anal. Oper. Theor. 2, 1 (2008), 87–97.
[81] Fricain, E., and Mashreghi, J. Integral representation of the n-th derivative in de Branges–Rovnyak spaces and the norm convergence of its reproducing kernel. Ann. Inst. Fourier (Grenoble. 58, 6 (2008), 2113–2135.
[82] Fricain, E., Mashreghi, J., and Seco, D. Cyclicity in non-extreme de Branges–Rovnyak spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[83] Frostman, O. Sur les produits de Blaschke. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund. 12, 15 (1942), 169–182.
[84] Frostman, O. Potentiel de masses à somme algébrique nulle. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund. 20, 1 (1950), 1–21.
[85] Garcia, S.R., and Poore, D.E. On the norm closure problem for complex symmetric operators. Proc. Amer. Math. Soc. 141, 2 (2013), 549.
[86] Garcia, S.R., Poore, D.E., and Tener, J.E. Unitary equivalence to a complex symmetric matrix: low dimensions. Linear Algebra Appl. 437, 1 (2012), 271–284.
[87] Garcia, S.R., and Putinar, M. Complex symmetric operators and applications. Trans. Amer. Math. Soc. 358, 3 (2006), 1285–1315.(electronic).
[88] Garcia, S.R., and Putinar, M. Complex symmetric operators and applications. II. Trans. Amer. Math. Soc. 359, 8 (2007), 3913–3931.(electronic).
[89] Garcia, S.R., and Putinar, M. Interpolation and complex symmetry. Tohoku Math. J. (2. 60, 3 (2008), 423–440.
[90] Garcia, S.R., and Tener, J.E. Unitary equivalence of a matrix to its transpose. J. Operator Theor. 68, 1 (2012), 179–203.
[91] Garcia, S.R., and Wogen, W.R. Complex symmetric partial isometries. J. . Funct. Anal. 257, 4 (2009), 1251–1260.
[92] Garcia, S.R., and Wogen, W.R. Some new classes of complex symmetric operators. Trans. Amer. Math. Soc. 362, 11 (2010), 6065–6077.
[93] Garnett, J.B. Bounded analytic functions, 1st edn., vol. 236 of Graduate Texts in Mathematics. Springer, New York, 2007.
[94] Goebel, K., and Reich, S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings, vol. 83 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York, 1984.
[95] Goldberg, J.L. Functions with positive real part in a half-plane. Duke Math. J. 29 (1962), 333–339.
[96] Guyker, J. The de Branges–Rovnyak model. Proc. Amer. Math. Soc. 111, 1 (1991), 95–99.
[97] Hartmann, A., Sarason, D., and Seip, K. Surjective Toeplitz operators. Acta Sci. Math. (Szeged). 70, 3–4 (2004), 609–621.
[98] Hayashi, E. The kernel of a Toeplitz operator. Integral Equations Operator Theor. 9, 4 (1986), 588–591.
[99] Hayashi, E. Classification of nearly invariant subspaces of the backward shift. Proc. Amer. Math. Soc. 110, 2 (1990), 441–448.
[100] Helson, H. Lectures on invariant subspaces. Academic Press, New York, 1964.
[101] Helson, H. Large analytic functions. In Linear operators in function spaces (Timisoara, 1988), vol. 43 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 209–216.
[102] Helson, H. Large analytic functions. II. In Analysis and partial differential equations, vol. 122 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1990, pp. 217–220.
[103] Hervé, M. Quelques propriétés des applications analytiques d'une boule à m dimensions dan elle-mˆeme. J. Math. Pures Appl. (9) 42 (1963), 117–147.
[104] Hitt, D. Invariant subspaces ofH 2 of an annulus. Pacific J. Math. 134, 1 (1988), 101–120.
[105] Hoffman, K. Banach spaces of analytic functions. Reprint of 1962 original. Dover, New York, 1988.
[106] Hruščëv, S.V., Nikolskii, N.K., and Pavlov, B.S. Unconditional bases of exponentials and of reproducing kernels. In Complex analysis and spectral theory (Leningrad, 1979/1980), vol. 864 of Lecture Notes in Mathematics. Springer, Berlin, 1981, pp. 214–335.
[107] Ingham, A.E. Some trigonometrical inequalities with applications to the theory of series.Math. Z. 41, 1 (1936), 367–379.
[108] Izuchi, K.J. Singular inner functions whose Frostman shifts are Carleson– Newman Blaschke products. Complex Var. Elliptic Equ. 51, 3 (2006), 255–266.
[109] Izuchi, K.J., and Kim, H.O. Singular inner functions whose Frostman shifts are Carleson–Newman Blaschke products. II. Complex Var. Elliptic Equ. 52, 5 (2007), 425–437.
[110] Jafari, F. Angular derivatives in polydiscs. Indian J. Math. 35, 3 (1993), 197–212.
[111] Julia, G. Extension nouvelle d'un lemme de Schwarz. Acta Math. 42, 1 (1920), 349–355.
[112] Jury, M.T. Reproducing kernels, de Branges–Rovnyak spaces, and norms of weighted composition operators. Proc. Amer. Math. Soc. 135, 11 (2007), 3669–3675.(electronic).
[113] Kadec, M. I. The exact value of the Paley–Wiener constant. Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254.
[114] Kapustin, V.V. Real functions in weighted Hardy spaces. Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 262, Issled. Linein. Oper. Teor. Funkts. 27 (1999), 138–146. 233–234.
[115] Landau, E., and Valiron, G. A deduction from Schwarz's lemma. J. London Math. Soc. 1–4. 3 (1929), 162–163.
[116] Leech, R.B. On the characterization of H(b) spaces. Proc. Amer. Math. Soc. 23 (1969), 518–520.
[117] Levin, M.B. An estimate of the derivative of a meromorphic function on the boundary of the domain. Dokl. Akad. Nauk SSSR. 216 (1974), 495–497.
[118] Li, K.Y. Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc. 22, 5 (1990), 446–452.
[119] Li, X., Mohapatra, R.N., and Rodriguez, R.S. Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc. (2. 51, 3 (1995), 523–531.
[120] Lotto, B.A. Inner multipliers of de Branges's spaces. Integral Equations Operator Theor. 13, 2 (1990), 216–230.
[121] Lotto, B.A. Toeplitz operators on weighted Hardy spaces. In Function spaces (Edwardsville, IL, 1990), vol. 136 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1992, pp. 295–300.
[122] Lotto, B.A., and McCarthy, J.E. Composition preserves rigidity. Bull. London Math. Soc. 25, 6 (1993), 573–576.
[123] Lotto, B.A., and Sarason, D. Multiplicative structure of de Branges's spaces. Rev. Mat. Iberoamer. 7, 2 (1991), 183–220.
[124] Lotto, B.A., and Sarason, D. Multipliers of de Branges–Rovnyak spaces. Indiana Univ. Math. J. 42, 3 (1993), 907–920.
[125] Lotto, B.A., and Sarason, D. Multipliers of de Branges–Rovnyak spaces. II. In Harmonic analysis and hypergroups (Delhi, 1995), vol. of Trends in Mathematics. Birkhäuser, Boston, MA, 1998, pp. 51–58.
[126] MacCluer, B.D., Stroethoff, K., and Zhao, R. Generalized Schwarz–Pick estimates. Proc. Amer. Math. Soc. 131, 2 (2003), 593–599.(electronic).
[127] MacCluer, B.D., Stroethoff, K., and Zhao, R. Schwarz–Pick type estimates. Complex Var. Theory Appl. 48, 8 (2003), 711–730.
[128] Makarov, N., and Poltoratski, A. Beurling–Malliavin theory for Toeplitz kernels. Invent. Math. 180, 3 (2010), 443–480.
[129] Mashreghi, J. Derivatives of inner functions, vol. 31 of Fields Institute Monographs. Springer, New York, 2013.
[130] Matheson, A.L., and Ross, W.T. An observation about Frostman shifts. Comput. Methods Funct. Theor. 7, 1 (2007), 111–126.
[131] Mellon, P. Another look at results of Wolff and Julia type for J algebras. J. Math. Anal. Appl. 198, 2 (1996), 444–457.
[132] Mercer, P.R. On a strengthened Schwarz–Pick inequality. J. Math. Anal. Appl. 234, 2 (1999), 735–739.
[133] Mortini, R., and Nicolau, A. Frostman shifts of inner functions. J. Anal.Math. 92 (2004), 285–326.
[134] Nakamura, Y. One-dimensional perturbations of isometries. Integral Equations Operator Theor. 9, 2 (1986), 286–294.
[135] Nevanlinna, R. Remarques sur le lemme de Schwarz. C. R. Acad. Sci. Paris. 188 (1929), 1027–1029.
[136] Nikolskii, N.K. Bases of exponentials and values of reproducing kernels. Dokl. Akad. Nauk SSS. 252, 6 (1980), 1316–1320.
[137] Nikolskii, N.K. Treatise on the shift operator. Spectral function theory, vol. 273 of Grundlehren der Mathematischen Wissenschaften. With appendix by S. V., Hruščev and V. V., Peller. Translated from Russian by J., Peetre. Springer, Berlin, 1986.
[138] Nikolskii, N.K. Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems, vol. 93 of Mathematical Surveys and Monographs. Translated from French by A., Hartmann and revised by the author. American Mathematical Society, Providence, RI, 2002.
[139] Nikolskii, N.K., and Vasyunin, V.I. Notes on two function models. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 113–141.
[140] Nikolskii, N.K., and Vasyunin, V.I. A unified approach to function models, and the transcription problem. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), vol. 41 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1989, pp. 405–434.
[141] Nikolskii, N.K., and Vasyunin, V.I. Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. I. In Functional analysis and related topics (Sapporo, 1990). World Scientific, River Edge, NJ, 1991, pp. 19–28.
[142] Nikolskii, N.K., and Vasyunin, V.I. Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. II. In Progress in approximation theory (Tampa, FL, 1990), vol. 19 of Springer Series in Computational Mathematics. Springer, New York, 1992, pp. 315–331.
[143] Nikolskii, N., and Vasyunin, V. Elements of spectral theory in terms of the free function model. I. Basic constructions. In Holomorphic spaces (Berkeley, CA, 1995), vol. 33 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, UK, 1998, pp. 211–302.
[144] Paley, R. E. A. C., and Wiener, N. Fourier transforms in the complex domain, vol. 19 of American Mathematical Society Colloquium Publications. Reprint of the 1934 original. American Mathematical Society, Providence, RI, 1987.
[145] Potapov, V.P. The multiplicative structure of J-contractive matrix functions. Amer. Math. Soc. Transl. (2) 15 (1960), 131–243.
[146] Redheffer, R.M. Completeness of sets of complex exponentials. Adv. Math. 24, 1 (1977), 1–62.
[147] Reich, S., and Shoikhet, D. The Denjoy–Wolff theorem. In Proceedings of workshop on fixed point theory (Kazimierz Dolny, Poland, 1997), vol. 51 of Annales Universitatis Mariae Curie-Skłodowska, 1997, pp. 219–240.
[148] Renaud, A. Quelques propriétés des applications analytiques d'une boule de dimension infinie dans une autre. Bull. Sci. Math. (2) 97 (1973), 129–159.
[149] Richter, S. A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc. 328, 1 (1991), 325–349.
[150] Richter, S., and Sundberg, C. A formula for the local Dirichlet integral. Michigan Math. J. 38, 3 (1991), 355–379.
[151] Richter, S., and Sundberg, C. Multipliers and invariant subspaces in the Dirichlet space. J. Operator Theor. 28, 1 (1992), 167–186.
[152] Richter, S., and Sundberg, C. Invariant subspaces of the Dirichlet shift and pseudocontinuations. Trans. Amer. Math. Soc. 341, 2 (1994), 863–879.
[153] Riesz, M. Sur certaines inégalités dans la théorie des fonctions. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund]. 1 (1931), 18–38.
[154] Rosenblum, M., and Rovnyak, J. Hardy classes and operator theory. Corrected reprint of 1985 original. Dover, Mineola, NY, 1997.
[155] Rovnyak, J. Ideals of square summable power series. Math. Mag. 33 (1959/1960), 265–270.
[156] Rudin, W. Function theory in the unit ball of Cn , vol. of Classics in Mathematics. Reprint of 1980 edition. Springer, Berlin, 2008.
[157] Ruscheweyh, S. Two remarks on bounded analytic functions. Serdic. 11, 2 (1985), 200–202.
[158] Sarason, D. Generalized interpolation in H ∞ Trans. Amer. Math. Soc. 127 (1967), 179–203.
[159] Sarason, D. Doubly shift-invariant spaces in H 2 . J. Operator Theor. 16, 1 (1986), 75–97.
[160] Sarason, D. Shift-invariant spaces from the Brangesian point of view. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 153–166.
[161] Sarason, D. Angular derivatives via Hilbert space. Complex Var. Theory Appl. 10, 1 (1988), 1–10.
[162] Sarason, D. Nearly invariant subspaces of the backward shift. In Contributions to operator theory and its applications (Mesa, AZ, 1987), vol. 35 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1988, pp. 481–493.
[163] Sarason, D. Exposed points in H1. I. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), vol. 41 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1989, pp. 485–496.
[164] Sarason, D. Exposed points in H1. II. In Topics in operator theory: Ernst D. Hellinger memorial volume, vol. 48 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 333–347.
[165] Sarason, D. Kernels of Toeplitz operators. In Toeplitz operators and related topics (Santa Cruz, CA, 1992), vol. 71 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1994, pp. 153–164.
[166] Sarason, D. Sub-Hardy Hilbert spaces in the unit disk, vol. 10 of University of Arkansas Lecture Notes in the Mathematical Sciences. Wiley-Interscience, New York, 1994.
[167] Sarason, D. Local Dirichlet spaces as de Branges–Rovnyak spaces. Proc. Amer. Math. Soc. 125, 7 (1997), 2133–2139.
[168] Sarason, D. Harmonically weighted Dirichlet spaces associated with finitely atomic measures. Integral Equations Operator Theor. 31, 2 (1998), 186–213.
[169] Sarason, D. Errata: “Harmonically weighted Dirichlet spaces associated with finitely atomic measures”. Integral Equations Operator Theor. 36, 4 (2000), 499–504.
[170] Sarason, D. Unbounded Toeplitz operators. Integral Equations Operator Theory. 61 (2008), 281–298.
[171] Sarason, D., and Silva, J.-N. O. Composition operators on a local Dirichlet space. J. Anal. Math. 87 (2002), 433–450.
[172] Sedleckiı, A. M. The stability of the completeness and of the minimality in L2 of a system of exponential functions. Mat. Zametki. 15 (1974), 213–219.
[173] Serrin, J. A note on harmonic functions defined in a half plane. Duke Math. J. 23 (1956), 523–526.
[174] Seubert, S. Unbounded dissipative compressed Toeplitz operators. J. Math. Anal. Appl. 290 (2004), 132–146.
[175] Shapiro, J.H. Composition operators and classical function theory, vol. of Universitext: Tracts in Mathematics. Springer, New York, 1993.
[176] Shields, A.L., and Wallen, L.J. The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1970/1971), 777–788.
[177] Slater, L.J. Generalized hypergeometric functions. Cambridge University Press, Cambridge, UK, 1966.
[178] Stein, E.M. Singular integrals and differentiability properties of functions, vol. 30 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1970.
[179] Stein, E.M. (with assistance of T. S. Murphy). Harmonic analysis: realvariable methods, orthogonality, and oscillatory integrals, vol. III of Monographs in Harmonic Analysis, vol. 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.
[180] Suárez, D. Multipliers of de Branges–Rovnyak spaces in H 2 . Rev. Mat. Iberoamer. 11, 2 (1995), 375–415.
[181] Suárez, D. Backward shift invariant spaces in H 2 . Indiana Univ. Math. J. 46, 2 (1997), 593–619.
[182] Suárez, D. Closed commutants of the backward shift operator. Pacific J. Math. 179, 2 (1997), 371–396.
[183] Sz.-Nagy, B., and Foiaş, C. Dilatation des commutants d'opérateurs. C. R. Acad. Sci. Paris Sér. A–B. 266 (1968), A493–A495.
[184] Sz.-Nagy, B., and Foiaş, C. Harmonic analysis of operators on Hilbert space. Translated from the French and revised. North-Holland, Amsterdam, 1970.
[185] Temme, D., and Wiegerinck, J. Extremal properties of the unit ball in H1. Indag. Math. (N.S.. 3, 1 (1992), 119–127.
[186] Timotin, D. Note on a Julia operator related to model spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[187] Timotin, D. A short introduction to de Branges–Rovnyak spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[188] Vasjunin, V.I. The construction of the B. Szʺokefalvi-Nagy and C. Foiaş functional model. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73, Issled. Linein. Oper. Teorii Funktsii. 8 (1977), 16–23. 229.
[189] Vinogradov, S.A. Properties of multipliers of integrals of Cauchy–Stieltjes type, and some problems of factorization of analytic functions. In Mathematical programming and related questions (Proceedings of the Seventh Winter School, Drogobych, 1974), Theory of functions and functional analysis. Central Ekonom.-Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, pp. 5–39 (in Russian).
[190] Volberg, A.L., and Treil, S.R. Embedding theorems for invariant subspaces of the inverse shift operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149, Issled. Linein. Teor. Funktsii. 15 (1986), 38–51. 186–187.
[191] Wolff, J. Sur une généralisation d'un théor`eme de Schwarz. C. R. Acad. Sci. 182 (1926), 918–920.
[192] Wolff, J. Sur l'itération des fonctions holomorphes dans un demi-plan. Bull. Soc. Math. France. 57 (1929), 195–203.
[193] Young, R.M. An introduction to nonharmonic Fourier series, vol. 93 of Pure and Applied Mathematics. Academic Press, New York, 1980.
[194] Younis, R. Subordination an. Hp functions. Proc. Amer. Math. Soc. 110, 3 (1990), 653–660.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.