Skip to main content Accessibility help
  • Print publication year: 2021
  • Online publication date: May 2021

2 - Stresses, Strains and Elasticity


Comprehensive treatment of metal plasticity requires an understanding of the fundamental nature of stresses and strains. A stress can be understood at a basic level as a force per unit area on which it acts, while a strain is an extension divided by an original length. However, the limitations of these definitions rapidly become clear when considering anything other than very simple loading situations. Analysis of various practical situations can in fact be rigorously implemented without becoming embroiled in mathematical complexity, most commonly via usage of commercial (finite element) numerical modeling packages. However, there are various issues involved in such treatments, which need to be appreciated by practitioners if outcomes are to be understood in detail. This chapter covers the necessary fundamentals, relating to stresses and strains, and to their relationship during elastic (reversible) deformation. How this relationship becomes modified when the material undergoes plastic (permanent) deformation is covered in the following chapter.