Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T12:39:57.435Z Has data issue: false hasContentIssue false

Chapter 26 - Immunohistochemistry in the diagnosis of pulmonary tumors

Published online by Cambridge University Press:  05 June 2014

Philip Hasleton
Affiliation:
University of Manchester
Douglas B. Flieder
Affiliation:
Fox Chase Cancer Center, Philadelphia
Get access

Summary

Introduction

Immunohistochemistry is an indispensible diagnostic tool in the study of lung tumors. It may be helpful as a supplement to morphology in classifying primary lung tumours. This subclassification is increasingly important, as emerging therapeutic options demand increasing diagnostic exactitude. The technique is also invaluable in deciding whether a tumor, particularly an adenocarcinoma, is a pulmonary primary or arises from an extra-pulmonary site. If metastatic, immunohistochemical stains can also often determine the primary site.

However, immunohistochemistry has limitations. No marker is absolutely specific or absolutely sensitive. Since the exact conditions of tissue fixation, antigen retrieval and staining vary between laboratories, diagnostic laboratories do not exactly reproduce the conditions of the published studies. Deciding whether a tumor shows positive staining also has an element of subjectivity. Cut-off levels vary between studies and often involve a combination of staining intensity and proportion of cells stained, for which there is no universally agreed scoring system. Some antibodies, when applied to some tumors, have given rise to hundreds of reported cases with consistent results. Published results with other antibodies and tumors have given varied results for reasons that may or may not be apparent. Particularly for less common pulmonary or extra-pulmonary tumors, the published data may be sparse in the extreme. The corpus of published data is immense and ever growing, particularly as tissue microarrays have the potential to examine hundreds of tumors within the scope of one study. Mastering this body of knowledge is an all but impossible task.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ikeda, K, Clark, JC, Shaw-White, JR, et al. Gene structure and expression of human thyroid transcription factor-1 in respiratory epithelial cells. J Biol Chem 1995;270(14):8108–14.CrossRefGoogle ScholarPubMed
Guazzi, S, Lonigro, R, Pintonello, L, et al. The thyroid transcription factor-1 gene is a candidate target for regulation by Hox proteins. Embo J 1994;13(14):3339–47.Google ScholarPubMed
Saiardi, A, Tassi, V, De Filippis, V, Civitareale, D.Cloning and sequence analysis of human thyroid transcription factor 1. Biochim Biophys Acta 1995;1261(2):307–10.CrossRefGoogle ScholarPubMed
Boggaram, V.Regulation of lung surfactant protein gene expression. Front Biosci 2003;8:d751–64.CrossRefGoogle ScholarPubMed
Alcorn, JL, Islam, KN, Young, PP, Mendelson, CR.Glucocorticoid inhibition of SP-A gene expression in lung type II cells is mediated via the TTF-1-binding element. Am J Physiol Lung Cell Mol Physiol 2004;286(4):L767–76.CrossRefGoogle ScholarPubMed
Li, J, Gao, E, Mendelson, CR.Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1. J Biol Chem 1998;273(8):4592–600.CrossRefGoogle ScholarPubMed
Bruno, MD, Bohinski, RJ, Huelsman, KM, Whitsett, JA, Korfhagen, TR.Lung cell-specific expression of the murine surfactant protein A (SP-A) gene is mediated by interactions between the SP-A promoter and thyroid transcription factor-1. J Biol Chem 1995;270(12):6531–6.CrossRefGoogle ScholarPubMed
Kelly, SE, Bachurski, CJ, Burhans, MS, Glasser, SW.Transcription of the lung-specific surfactant protein C gene is mediated by thyroid transcription factor 1. J Biol Chem 1996;271(12):6881–8.CrossRefGoogle ScholarPubMed
Yan, C, Whitsett, JA.Protein kinase A activation of the surfactant protein B gene is mediated by phosphorylation of thyroid transcription factor 1. J Biol Chem 1997;272(28):17327–32.CrossRefGoogle ScholarPubMed
Kumar, AS, Venkatesh, VC, Planer, BC, Feinstein, SI, Ballard, PL.Phorbol ester down-regulation of lung surfactant protein B gene expression by cytoplasmic trapping of thyroid transcription factor-1 and hepatocyte nuclear factor 3. J Biol Chem 1997;272(33):20764–73.CrossRefGoogle ScholarPubMed
Margana, R, Berhane, K, Alam, MN, Boggaram, V.Identification of functional TTF-1 and Sp1/Sp3 sites in the upstream promoter region of rabbit SP-B gene. Am J Physiol Lung Cell Mol Physiol 2000;278(3):L477–84.CrossRefGoogle ScholarPubMed
Yang, MC, Guo, Y, Liu, CC, Weissler, JC, Yang, YS.The TTF-1/TAP26 complex differentially modulates surfactant protein-B (SP-B) and -C (SP-C) promoters in lung cells. Biochem Biophys Res Commun 2006;344(2):484–90.CrossRefGoogle Scholar
Das, A, Boggaram, V.Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression. Am J Physiol Lung Cell Mol Physiol 2007;292(1):L74–84.CrossRefGoogle ScholarPubMed
Liu, C, Glasser, SW, Wan, H, Whitsett, JA.GATA-6 and thyroid transcription factor-1 directly interact and regulate surfactant protein-C gene expression. J Biol Chem 2002;277(6):4519–25.CrossRefGoogle ScholarPubMed
Bachurski, CJ, Yang, GH, Currier, TA, Gronostajski, RM, Hong, D.Nuclear factor I/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. Mol Cell Biol 2003;23(24):9014–24.CrossRefGoogle ScholarPubMed
Park, KS, Whitsett, JA, Di Palma, T, et al. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C. J Biol Chem 2004;279(17):17384–90.CrossRefGoogle ScholarPubMed
Dave, V, Childs, T, Whitsett, JA.Nuclear factor of activated T cells regulates transcription of the surfactant protein D gene (Sftpd) via direct interaction with thyroid transcription factor-1 in lung epithelial cells. J Biol Chem 2004;279(33):34578–88.CrossRefGoogle ScholarPubMed
Ray, MK, Chen, CY, Schwartz, RJ, DeMayo, FJ.Transcriptional regulation of a mouse Clara cell-specific protein (mCC10) gene by the NKx transcription factor family members thyroid transciption factor 1 and cardiac muscle-specific homeobox protein (CSX). Mol Cell Biol 1996;16(5):2056–64.CrossRefGoogle Scholar
Zhang, L, Whitsett, JA, Stripp, BR.Regulation of Clara cell secretory protein gene transcription by thyroid transcription factor-1. Biochim Biophys Acta 1997;1350(3):359–67.CrossRefGoogle ScholarPubMed
Ramirez, MI, Rishi, AK, Cao, YX, Williams, MC.TGT3, thyroid transcription factor I, and Sp1 elements regulate transcriptional activity of the 1.3-kilobase pair promoter of T1alpha, a lung alveolar type I cell gene. J Biol Chem 1997;272(42):26285–94.CrossRefGoogle ScholarPubMed
Maeda, Y, Dave, V, Whitsett, JA.Transcriptional control of lung morphogenesis. Physiol Rev 2007;87(1):219–44.CrossRefGoogle ScholarPubMed
Cardoso, WV.Transcription factors and pattern formation in the developing lung. Am J Physiol 1995;269(4 Pt 1):L429–42.Google ScholarPubMed
Stahlman, MT, Gray, ME, Whitsett, JA.Expression of thyroid transcription factor-1(TTF-1) in fetal and neonatal human lung. J Histochem Cytochem 1996;44(7):673–8.CrossRefGoogle ScholarPubMed
Morotti, RA, Gutierrez, MC, Askin, F, et al. Expression of thyroid transcription factor-1 in congenital cystic adenomatoid malformation of the lung. Pediatr Dev Pathol 2000;3(5):455–61.CrossRefGoogle ScholarPubMed
Pohlenz, J, Dumitrescu, A, Zundel, D, et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest 2002;109(4):469–73.CrossRefGoogle ScholarPubMed
Willemsen, MA, Breedveld, GJ, Wouda, S, et al. Brain-Thyroid-Lung syndrome: a patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene. Eur J Pediatr 2005;164(1):28–30.CrossRefGoogle ScholarPubMed
Devriendt, K, Vanhole, C, Matthijs, G, de Zegher, F.Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med 1998;338(18):1317–8.CrossRefGoogle Scholar
Galambos, C, Levy, H, Cannon, CL, et al. Pulmonary pathology in thyroid transcription factor-1 deficiency syndrome. Am J Respir Crit Care Med 2010;182(4):549–54.CrossRefGoogle ScholarPubMed
Bingle, CD.Thyroid transcription factor-1. Int J Biochem Cell Biol 1997;29(12):1471–3.CrossRefGoogle ScholarPubMed
Zhou, H, Morotti, RA, Profitt, SA, et al. Expression of thyroid transcription factor-1, surfactant proteins, type I cell-associated antigen, and Clara cell secretory protein in pulmonary hypoplasia. Pediatr Dev Pathol 2001;4(4):364–71.CrossRefGoogle ScholarPubMed
Losada, A, Tovar, JA, Xia, HM, Diez-Pardo, JA, Santisteban, P.Down-regulation of thyroid transcription factor-1 gene expression in fetal lung hypoplasia is restored by glucocorticoids. Endocrinology 2000;141(6):2166–73.CrossRefGoogle ScholarPubMed
Hosgor, M, Ijzendoorn, Y, Mooi, WJ, Tibboel, D, De Krijger, RR.Thyroid transcription factor-1 expression during normal human lung development and in patients with congenital diaphragmatic hernia. J Pediatr Surg 2002;37(9):1258–62.CrossRefGoogle ScholarPubMed
Spilde, TL, Bhatia, AM, Miller, KA, et al. Thyroid transcription factor-1 expression in the human neonatal tracheoesophageal fistula. J Pediatr Surg 2002;37(7):1065–7.CrossRefGoogle ScholarPubMed
Shimada, I, Matsui, K, Kominato, Y, et al. Immunohistochemical study of thyroid transcription factor-1 and surfactant-associated protein A for investigation of peripheral airway structure in perinatal fatality. Leg Med (Tokyo) 2008;10(2):96–100.CrossRefGoogle ScholarPubMed
Ordonez, NG.Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. Adv Anat Pathol 2000;7(2):123–7.CrossRefGoogle ScholarPubMed
Ordonez, NG.Utilization of thyroid transcription factor-1 immunostaining in the diagnosis of lung tumors. Methods Mol Med 2003;75:355–68.Google Scholar
Kaufmann, O, Dietel, M.Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Histopathology 2000;36(1):8–16.CrossRefGoogle ScholarPubMed
Anagnostou, VK, Syrigos, KN, Bepler, G, Homer, RJ, Rimm, DL.Thyroid transcription factor 1 is an independent prognostic factor for patients with stage I lung adenocarcinoma. J Clin Oncol 2009;27(2):271–8.CrossRefGoogle ScholarPubMed
Sturm, N, Lantuejoul, S, Laverriere, MH, et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34betaE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum Pathol 2001;32(9):918–25.CrossRefGoogle ScholarPubMed
Chang, YL, Lee, YC, Liao, WY, Wu, CT.The utility and limitation of thyroid transcription factor-1 protein in primary and metastatic pulmonary neoplasms. Lung Cancer 2004;44(2):149–57.CrossRefGoogle ScholarPubMed
Rossi, G, Cavazza, A, Sturm, N, et al. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol 2003;27(3):311–24.CrossRefGoogle ScholarPubMed
Bejarano, PA, Nikiforov, YE, Swenson, ES, Biddinger, PW.Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol 2000;8(3):189–94.CrossRefGoogle ScholarPubMed
Bisceglia, M, Ragazzi, M, Galliani, CA, Lastilla, G, Rosai, J.TTF-1 expression in nephroblastoma. Am J Surg Pathol 2009;33(3):454–61.CrossRefGoogle ScholarPubMed
Xu, B, Thong, N, Tan, D, Khoury, T.Expression of thyroid transcription factor-1 in colorectal carcinoma. Appl Immunohistochem Mol Morphol 2010;18(3):244–9.CrossRefGoogle ScholarPubMed
Chan, JK, Suster, S, Wenig, BM, et al. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol 1997;21(2):226–34.CrossRefGoogle ScholarPubMed
Nagao, T, Gaffey, TA, Olsen, KD, Serizawa, H, Lewis, JE.Small cell carcinoma of the major salivary glands: clinicopathologic study with emphasis on cytokeratin 20 immunoreactivity and clinical outcome. Am J Surg Pathol 2004;28(6):762–70.CrossRefGoogle ScholarPubMed
Wang, W, Epstein, JI.Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008;32(1):65–71.CrossRefGoogle ScholarPubMed
Yao, JL, Madeb, R, Bourne, P, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006;30(6):705–12.CrossRefGoogle ScholarPubMed
Ordonez, NG.Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24(9):1217–23.CrossRefGoogle ScholarPubMed
Kaufmann, O, Dietel, M.Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36(5):415–20.CrossRefGoogle ScholarPubMed
Agoff, SN, Lamps, LW, Philip, AT, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13(3):238–42.CrossRefGoogle Scholar
Byrd-Gloster, AL, Khoor, A, Glass, LF, et al. Differential expression of thyroid transcription factor 1 in small cell lung carcinoma and Merkel cell tumor. Hum Pathol 2000;31(1):58–62.CrossRefGoogle ScholarPubMed
Cheuk, W, Kwan, MY, Suster, S, Chan, JK.Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125(2):228–31.Google Scholar
Bobos, M, Hytiroglou, P, Kostopoulos, I, Karkavelas, G, Papadimitriou, CS.Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung. Am J Dermatopathol 2006;28(2):99–104.CrossRefGoogle ScholarPubMed
Hanly, AJ, Elgart, GW, Jorda, M, Smith, J, Nadji, M.Analysis of thyroid transcription factor-1 and cytokeratin 20 separates merkel cell carcinoma from small cell carcinoma of lung. J Cutan Pathol 2000;27(3):118–20.CrossRefGoogle ScholarPubMed
Leech, SN, Kolar, AJ, Barrett, PD, Sinclair, SA, Leonard, N.Merkel cell carcinoma can be distinguished from metastatic small cell carcinoma using antibodies to cytokeratin 20 and thyroid transcription factor 1. J Clin Pathol 2001;54(9):727–9.CrossRefGoogle ScholarPubMed
Ralston, J, Chiriboga, L, Nonaka, D.MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol 2008;21(11):1357–62.CrossRefGoogle ScholarPubMed
Sierakowski, A, Al-Janabi, K, Dam, H, Sood, M.Metastatic Merkel cell carcinoma with positive expression of thyroid transcription factor-1 – a case report. Am J Dermatopathol 2009;31(4):384–6.CrossRefGoogle ScholarPubMed
Agaimy, A, Wunsch, PH.Unexpected and potentially misleading TTF-1 expression: a word of caution. Virchows Arch 2006;449(5):603–5.CrossRefGoogle ScholarPubMed
Haque, AK, Syed, S, Lele, SM, Freeman, DH, Adegboyega, PA.Immunohistochemical study of thyroid transcription factor-1 and HER2/neu in non-small cell lung cancer: strong thyroid transcription factor-1 expression predicts better survival. Appl Immunohistochem Mol Morphol 2002;10(2):103–9.CrossRefGoogle ScholarPubMed
Tan, D, Li, Q, Deeb, G, et al. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: a high-throughput tissue microarray and immunohistochemistry study. Hum Pathol 2003;34(6):597–604.CrossRefGoogle ScholarPubMed
Puglisi, F, Aprile, G, Bruckbauer, M, et al. Combined analysis of MIB-1 and thyroid transcription factor-1 predicts survival in non-small cell lung carcinomas. Cancer Lett 2001;162(1):97–103.CrossRefGoogle ScholarPubMed
Saad, RS, Liu, YL, Han, H, Landreneau, RJ, Silverman, JF.Prognostic significance of thyroid transcription factor-1 expression in both early-stage conventional adenocarcinoma and bronchioloalveolar carcinoma of the lung. Hum Pathol 2004;35(1):3–7.CrossRefGoogle ScholarPubMed
Barlesi, F, Pinot, D, Legoffic, A, et al. Positive thyroid transcription factor 1 staining strongly correlates with survival of patients with adenocarcinoma of the lung. Br J Cancer 2005;93(4):450–2.CrossRefGoogle ScholarPubMed
Berghmans, T, Paesmans, M, Mascaux, C, Martin, B, Meert, AP, Haller, A, et al. Thyroid transcription factor 1 – a new prognostic factor in lung cancer: a meta-analysis. Ann Oncol 2006;17(11):1673–6.CrossRefGoogle ScholarPubMed
Fujiwara, S, Nawa, A, Nakanishi, T, et al. Thyroid transcription factor 1 expression in ovarian carcinomas is an independent prognostic factor. Hum Pathol 2010;41(4):560–5.CrossRefGoogle ScholarPubMed
Harlamert, HA, Mira, J, Bejarano, PA, et al. Thyroid transcription factor-1 and cytokeratins 7 and 20 in pulmonary and breast carcinoma. Acta Cytol 1998;42(6):1382–8.CrossRefGoogle ScholarPubMed
Zhang, PJ, Gao, HG, Pasha, TL, Litzky, L, Livolsi, VA.TTF-1 expression in ovarian and uterine epithelial neoplasia and its potential significance, an immunohistochemical assessment with multiple monoclonal antibodies and different secondary detection systems. Int J Gynecol Pathol 2009;28(1):10–8.CrossRefGoogle ScholarPubMed
Hecht, JL, Pinkus, JL, Weinstein, LJ, Pinkus, GS.The value of thyroid transcription factor-1 in cytologic preparations as a marker for metastatic adenocarcinoma of lung origin. Am J Clin Pathol 2001;116(4):483–8.CrossRefGoogle ScholarPubMed
Bejarano, PA, Mousavi, F.Incidence and significance of cytoplasmic thyroid transcription factor-1 immunoreactivity. Arch Pathol Lab Med 2003;127(2):193–5.Google ScholarPubMed
Wieczorek, TJ, Pinkus, JL, Glickman, JN, Pinkus, GS.Comparison of thyroid transcription factor-1 and hepatocyte antigen immunohistochemical analysis in the differential diagnosis of hepatocellular carcinoma, metastatic adenocarcinoma, renal cell carcinoma, and adrenal cortical carcinoma. Am J Clin Pathol 2002;118(6):911–21.CrossRefGoogle ScholarPubMed
Gokden, M, Shinde, A.Recent immunohistochemical markers in the differential diagnosis of primary and metastatic carcinomas of the liver. Diagn Cytopathol 2005;33(3):166–72.CrossRefGoogle ScholarPubMed
Lei, JY, Bourne, PA, diSant'Agnese, PA, Huang, J.Cytoplasmic staining of TTF-1 in the differential diagnosis of hepatocellular carcinoma vs cholangiocarcinoma and metastatic carcinoma of the liver. Am J Clin Pathol 2006;125(4):519–25.CrossRefGoogle ScholarPubMed
Pan, CC, Chen, PC, Tsay, SH, Chiang, H.Cytoplasmic immunoreactivity for thyroid transcription factor-1 in hepatocellular carcinoma: a comparative immunohistochemical analysis of four commercial antibodies using a tissue array technique. Am J Clin Pathol 2004;121(3):343–9.CrossRefGoogle ScholarPubMed
Camilleri-Broet, S, Alifano, M, Morcos, M, et al. Peroperative frozen section analysis of TTF-1 antigen expression. J Clin Pathol 2004;57(1):98–100.CrossRefGoogle ScholarPubMed
Butcher, DN, Goldstraw, P, Ladas, G, et al. Thyroid transcription factor 1 immunohistochemistry as an intraoperative diagnostic tool at frozen section for distinction between primary and secondary lung tumors. Arch Pathol Lab Med 2007;131(4):582–7.Google Scholar
Schauer-Vukasinovic, V, Bur, D, Kling, D, Gruninger, F, Giller, T.Human napsin A: expression, immunochemical detection, and tissue localization. FEBS Lett 1999;462(1–2):135–9.CrossRefGoogle ScholarPubMed
Carginale, V, Trinchella, F, Capasso, C, et al. Adaptive evolution and functional divergence of pepsin gene family. Gene 2004;333:81–90.CrossRefGoogle ScholarPubMed
Ueno, T, Linder, S, Na, CL, et al. Processing of pulmonary surfactant protein B by napsin and cathepsin H. J Biol Chem 2004;279(16):16178–84.CrossRefGoogle ScholarPubMed
Brasch, F, Ochs, M, Kahne, T, et al. Involvement of napsin A in the C- and N-terminal processing of surfactant protein B in type-II pneumocytes of the human lung. J Biol Chem 2003;278(49):49006–14.CrossRefGoogle Scholar
Hirano, T, Auer, G, Maeda, M, et al. Human tissue distribution of TA02, which is homologous with a new type of aspartic proteinase, napsin A. Jpn J Cancer Res 2000;91(10):1015–21.CrossRefGoogle ScholarPubMed
Tatnell, PJ, Powell, DJ, Hill, J, et al. Napsins: new human aspartic proteinases. Distinction between two closely related genes. FEBS Lett 1998;441(1):43–8.CrossRefGoogle ScholarPubMed
Ueno, T, Elmberger, G, Weaver, TE, Toi, M, Linder, S.The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. Lab Invest 2008;88(3):256–63.CrossRefGoogle ScholarPubMed
Dejmek, A, Naucler, P, Smedjeback, A, et al. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol 2007;35(8):493–7.CrossRefGoogle ScholarPubMed
Bishop, JA, Sharma, R, Illei, PB.Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 2010;41(1):20–5.CrossRefGoogle ScholarPubMed
Pereira, TC, Share, SM, Magalhaes, AV, Silverman, JF.Can we tell the site of origin of metastatic squamous cell carcinoma? An immunohistochemical tissue microarray study of 194 cases. Appl Immunohistochem Mol Morphol 2011;19(1):10–4.CrossRefGoogle ScholarPubMed
Jagirdar, J.Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch Pathol Lab Med 2008;132(3):384–96.Google Scholar
Hirano, T, Gong, Y, Yoshida, K, et al. Usefulness of TA02 (napsin A) to distinguish primary lung adenocarcinoma from metastatic lung adenocarcinoma. Lung Cancer 2003;41(2):155–62.CrossRefGoogle ScholarPubMed
Zamecnik, J, Kodet, R.Value of thyroid transcription factor-1 and surfactant apoprotein A in the differential diagnosis of pulmonary carcinomas: a study of 109 cases. Virchows Arch 2002;440(4):353–61.CrossRefGoogle ScholarPubMed
Bejarano, PA, Baughman, RP, Biddinger, PW, et al. Surfactant proteins and thyroid transcription factor-1 in pulmonary and breast carcinomas. Modern Pathol 1996;9(4):445–52.Google ScholarPubMed
Lu, SH, Ohtsuki, Y, Nonami, Y, et al. Ultrastructural study of nuclear inclusions immunohistochemically positive for surfactant protein A in pulmonary adenocarcinoma with special reference to their morphogenesis. Med Mol Morphol 2006;39(4):214–20.CrossRefGoogle ScholarPubMed
Abutaily, AS, Addis, BJ, Roche, WR.Immunohistochemistry in the distinction between malignant mesothelioma and pulmonary adenocarcinoma: a critical evaluation of new antibodies. J Clin Pathol 2002;55(9):662–8.CrossRefGoogle ScholarPubMed
Mizutani, Y, Nakajima, T, Morinaga, S, et al. Immunohistochemical localization of pulmonary surfactant apoproteins in various lung tumors. Special reference to nonmucus producing lung adenocarcinomas. Cancer 1988;61(3):532–7.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Goldmann, T, Galle, J, Wiedorn, KH, et al. Diagnostic value of immunohistochemically detected surfactant – apoprotein-A in malignant tumors located in the lungs: report of two cases. Ann Diagn Pathol 2001;5(2):84–90.CrossRefGoogle ScholarPubMed
Erickson, LA, Lloyd, RV.Practical markers used in the diagnosis of endocrine tumors. Adv Anat Pathol 2004;11(4):175–89.CrossRefGoogle Scholar
Lyda, MH, Weiss, LM.Immunoreactivity for epithelial and neuroendocrine antibodies are useful in the differential diagnosis of lung carcinomas. Hum Pathol 2000;31(8):980–7.CrossRefGoogle ScholarPubMed
Shy, SW, Lee, WH, Chou, MC, Lai, YS, Tu, YC.Small cell lung carcinoma: clinicopathological, immunohistochemical, and ultrastructural study. J Surg Oncol 1990;45(3):146–61.CrossRefGoogle ScholarPubMed
Hoog, A, Gould, VE, Grimelius, L, et al. Tissue fixation methods alter the immunohistochemical demonstrability of synaptophysin. Ultrastruct Pathol 1988;12(6):673–8.CrossRefGoogle ScholarPubMed
Naka, T, Oda, Y, Iwamoto, Y, et al. Immunohistochemical analysis of E-cadherin, alpha-catenin, beta- catenin, gamma-catenin, and neural cell adhesion molecule (NCAM) in chordoma. J Clin Pathol 2001;54(12):945–50.CrossRefGoogle Scholar
Ionescu, DN, Treaba, D, Gilks, CB, et al. Nonsmall cell lung carcinoma with neuroendocrine differentiation – an entity of no clinical or prognostic significance. Am J Surg Pathol 2007;31(1):26–32.CrossRefGoogle ScholarPubMed
Zhang, H, Liu, J, Cagle, PT, et al. Distinction of pulmonary small cell carcinoma from poorly differentiated squamous cell carcinoma: an immunohistochemical approach. Mod Pathol 2005;18(1):111–8.CrossRefGoogle ScholarPubMed
Noguchi, M.Stepwise progression of pulmonary adenocarcinoma – clinical and molecular implications. Cancer Metastasis Rev 2010;29(1):15–21.CrossRefGoogle ScholarPubMed
Wistuba, II, Gazdar, AF, Minna, JD.Molecular genetics of small cell lung carcinoma. Semin Oncol 2001;28(2 Suppl 4):3–13.CrossRefGoogle ScholarPubMed
Shih, Ie M, Kurman, RJ.p63 expression is useful in the distinction of epithelioid trophoblastic and placental site trophoblastic tumors by profiling trophoblastic subpopulations. Am J Surg Pathol 2004;28(9):1177–83.CrossRefGoogle ScholarPubMed
Ivan, D, Hafeez, Diwan A, Prieto, VG.Expression of p63 in primary cutaneous adnexal neoplasms and adenocarcinoma metastatic to the skin. Mod Pathol 2005;18(1):137–42.CrossRefGoogle Scholar
Shtilbans, V, Szporn, AH, Wu, M, Burstein, DE.p63 immunostaining in destained bronchoscopic cytological specimens. Diagn Cytopathol 2005;32(4):198–203.CrossRefGoogle ScholarPubMed
Loo, PS, Thomas, SC, Nicolson, MC, Fyfe, MN, Kerr, KM.Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol 2010;5(4):442–7.CrossRefGoogle ScholarPubMed
Oien, KA.Pathologic evaluation of unknown primary cancer. Semin Oncol 2009;36(1):8–37.CrossRefGoogle ScholarPubMed
Kontogianni, K, Nicholson, AG, Butcher, D, Sheppard, MN.CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artefact. J Clin Pathol 2005;58(9):978–80.CrossRefGoogle Scholar
Lantuejoul, S, Laverriere, MH, Sturm, N, et al. NCAM (neural cell adhesion molecules) expression in malignant mesotheliomas. Hum Pathol 2000;31(4):415–21.CrossRefGoogle ScholarPubMed
Sturm, N, Rossi, G, Lantuejoul, S, et al. 34BetaE12 expression along the whole spectrum of neuroendocrine proliferations of the lung, from neuroendocrine cell hyperplasia to small cell carcinoma. Histopathology 2003;42(2):156–66.CrossRefGoogle ScholarPubMed
Wagner, PL, Kitabayashi, N, Chen, YT, Saqi, A.Combined small cell lung carcinomas: genotypic and immunophenotypic analysis of the separate morphologic components. Am J Clin Pathol 2009;131(3):376–82.CrossRefGoogle ScholarPubMed
Nicholson, AG, Gonzalez, D, Shah, P, et al. Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis. J Thorac Oncol 2010;5(4):436–41.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S, Katzenstein, AL.Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol 2011;35(1):15–25.CrossRefGoogle Scholar
Monica, V, Ceppi, P, Righi, L, et al. Desmocollin-3: a new marker of squamous differentiation in undifferentiated large-cell carcinoma of the lung. Mod Pathol 2009;22(5):709–17.CrossRefGoogle ScholarPubMed
Ring, BZ, Seitz, RS, Beck, RA, et al. A novel five-antibody immunohistochemical test for subclassification of lung carcinoma. Mod Pathol 2009;22(8):1032–43.CrossRefGoogle ScholarPubMed
Rossi, G, Murer, B, Cavazza, A, et al. Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol 2004;28(4):442–52.CrossRefGoogle ScholarPubMed
Yatabe, Y, Koga, T, Mitsudomi, T, Takahashi, T.CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. J Pathol 2004;203(2):645–52.CrossRefGoogle Scholar
Merchant, SH, Amin, MB, Tamboli, P, et al. Primary signet-ring cell carcinoma of lung: immunohistochemical study and comparison with non-pulmonary signet-ring cell carcinomas. Am J Surg Pathol 2001;25(12):1515–9.CrossRefGoogle ScholarPubMed
Goldstein, NS, Thomas, M.Mucinous and nonmucinous bronchioloalveolar adenocarcinomas have distinct staining patterns with thyroid transcription factor and cytokeratin 20 antibodies. Am J Clin Pathol 2001;116(3):319–25.CrossRefGoogle ScholarPubMed
Shah, RN, Badve, S, Papreddy, K, et al. Expression of cytokeratin 20 in mucinous bronchioloalveolar carcinoma. Hum Pathol 2002;33(9):915–20.CrossRefGoogle ScholarPubMed
Simsir, A, Wei, XJ, Yee, H, Moreira, A, Cangiarella, J.Differential expression of cytokeratins 7 and 20 and thyroid transcription factor-1 in bronchioloalveolar carcinoma: an immunohistochemical study in fine-needle aspiration biopsy specimens. Am J Clin Pathol 2004;121(3):350–7.CrossRefGoogle ScholarPubMed
Jerome, Marson V, Mazieres, J, Groussard, O, et al. Expression of TTF-1 and cytokeratins in primary and secondary epithelial lung tumours: correlation with histological type and grade. Histopathology 2004;45(2):125–34.CrossRefGoogle Scholar
Lau, SK, Desrochers, MJ, Luthringer, DJ.Expression of thyroid transcription factor-1, cytokeratin 7, and cytokeratin 20 in bronchioloalveolar carcinomas: an immunohistochemical evaluation of 67 cases. Modern Pathol 2002;15(5):538–42.CrossRefGoogle ScholarPubMed
Saad, RS, Cho, P, Silverman, JF, Liu, Y.Usefulness of Cdx2 in separating mucinous bronchioloalveolar adenocarcinoma of the lung from metastatic mucinous colorectal adenocarcinoma. Am J Clin Pathol 2004;122(3):421–7.CrossRefGoogle ScholarPubMed
Tsuta, K, Ishii, G, Nitadori, J, et al. Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol 2006;209(1):78–87.CrossRefGoogle ScholarPubMed
Casey, JJ, Stempel, BG, Scanlon, EF, Fry, WA.The solitary pulmonary nodule in the patient with breast cancer. Surgery 1984;96(4):801–5.Google ScholarPubMed
Yang, M, Nonaka, D.A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol 2010;23(5):654–61.CrossRefGoogle ScholarPubMed
Su, JM, Hsu, HK, Chang, H, et al. Expression of estrogen and progesterone receptors in non-small-cell lung cancer: immunohistochemical study. Anticancer Res 1996;16(6B):3803–6.Google ScholarPubMed
Lau, SK, Chu, PG, Weiss, LM.Immunohistochemical expression of estrogen receptor in pulmonary adenocarcinoma. Appl Immunohistochem Mol Morphol 2006;14(1):83–7.CrossRefGoogle ScholarPubMed
Dennis, JL, Hvidsten, TR, Wit, EC, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res 2005;11(10):3766–72.CrossRefGoogle ScholarPubMed
Kaufmann, O, Kother, S, Dietel, M.Use of antibodies against estrogen and progesterone receptors to identify metastatic breast and ovarian carcinomas by conventional immunohistochemical and tyramide signal amplification methods. Mod Pathol 1998;11(4):357–63.Google ScholarPubMed
Kaufmann, O, Deidesheimer, T, Muehlenberg, M, Deicke, P, Dietel, M.Immunohistochemical differentiation of metastatic breast carcinomas from metastatic adenocarcinomas of other common primary sites. Histopathology 1996;29(3):233–40.CrossRefGoogle ScholarPubMed
Striebel, JM, Dacic, S, Yousem, SA.Gross cystic disease fluid protein-(GCDFP-15): expression in primary lung adenocarcinoma. Am J Surg Pathol 2008;32(3):426–32.CrossRefGoogle ScholarPubMed
Sasaki, E, Tsunoda, N, Hatanaka, Y, et al. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod Pathol 2007;20(2):208–14.CrossRefGoogle ScholarPubMed
Bishop, PW, Menasce, LP, Yates, AJ, Win, NA, Banerjee, SS.An immunophenotypic survey of malignant melanomas. Histopathology 1993;23(2):159–66.CrossRefGoogle ScholarPubMed
Plaza, JA, Suster, D, Perez-Montiel, D.Expression of immunohistochemical markers in primary and metastatic malignant melanoma: a comparative study in 70 patients using a tissue microarray technique. Appl Immunohistochem Mol Morphol 2007;15(4):421–5.CrossRefGoogle ScholarPubMed
Banerjee, SS, Harris, M.Morphological and immunophenotypic variations in malignant melanoma. Histopathology 2000;36(5):387–402.CrossRefGoogle ScholarPubMed
Selby, WL, Nance, KV, Park, HK.CEA immunoreactivity in metastatic malignant melanoma. Mod Pathol 1992;5(4):415–9.Google ScholarPubMed
Pelosi, G, Fraggetta, F, Pasini, F, et al. Immunoreactivity for thyroid transcription factor-1 in stage I non- small cell carcinomas of the lung. Am J Surg Pathol 2001;25(3):363–72.CrossRefGoogle Scholar
Amin, MB, Tamboli, P, Merchant, SH, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol 2002;26(3):358–64.CrossRefGoogle ScholarPubMed
Barbareschi, M, Murer, B, Colby, TV, et al. CDX-2 homeobox gene expression is a reliable marker of colorectal adenocarcinoma metastases to the lungs. Am J Surg Pathol 2003;27(2):141–9.CrossRefGoogle ScholarPubMed
Srodon, M, Westra, WH.Immunohistochemical staining for thyroid transcription factor-1: a helpful aid in discerning primary site of tumor origin in patients with brain metastases. Hum Pathol 2002;33(6):642–5.CrossRefGoogle ScholarPubMed
Ordonez, NG.Value of thyroid transcription factor-1, E-cadherin, BG8, WT1, and CD44S immunostaining in distinguishing epithelial pleural mesothelioma from pulmonary and nonpulmonary adenocarcinoma. Am J Surg Pathol 2000;24(4):598–606.CrossRefGoogle ScholarPubMed
Ordonez, NG.The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol 2003;27(8):1031–51.CrossRefGoogle ScholarPubMed
Yatabe, Y, Mitsudomi, T, Takahashi, T.TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 2002;26(6):767–73.CrossRefGoogle ScholarPubMed
Stenhouse, G, Fyfe, N, King, G, Chapman, A, Kerr, KM.Thyroid transcription factor 1 in pulmonary adenocarcinoma. J Clin Pathol 2004;57(4):383–7.CrossRefGoogle ScholarPubMed
Moldvay, J, Jackel, M, Bogos, K, et al. The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res 2004;10(2):85–8.CrossRefGoogle ScholarPubMed
Jang, KY, Kang, MJ, Lee, DG, Chung, MJ.Utility of thyroid transcription factor-1 and cytokeratin 7 and 20 immunostaining in the identification of origin in malignant effusions. Anal Quant Cytol Histol 2001;23(6):400–4.Google ScholarPubMed
Ng, WK, Chow, JC, Ng, PK.Thyroid transcription factor-1 is highly sensitive and specific in differentiating metastatic pulmonary from extrapulmonary adenocarcinoma in effusion fluid cytology specimens. Cancer 2002;96(1):43–8.CrossRefGoogle ScholarPubMed
Reis-Filho, JS, Carrilho, C, Valenti, C, et al. Is TTF1 a good immunohistochemical marker to distinguish primary from metastatic lung adenocarcinomas?Pathol Res Pract 2000;196(12):835–40.CrossRefGoogle ScholarPubMed
Bohinski, RJ, Bejarano, PA, Balko, G, Warnick, RE, Whitsett, JA.Determination of lung as the primary site of cerebral metastatic adenocarcinomas using monoclonal antibody to thyroid transcription factor-1. J Neurooncol 1998;40(3):227–31.CrossRefGoogle ScholarPubMed
Khoor, A, Whitsett, JA, Stahlman, MT, Olson, SJ, Cagle, PT.Utility of surfactant protein B precursor and thyroid transcription factor 1 in differentiating adenocarcinoma of the lung from malignant mesothelioma. Hum Pathol 1999;30(6):695–700.CrossRefGoogle ScholarPubMed
Chieng, DC, Cangiarella, JF, Zakowski, MF, et al. Use of thyroid transcription factor 1, PE-10, and cytokeratins 7 and 20 in discriminating between primary lung carcinomas and metastatic lesions in fine-needle aspiration biopsy specimens. Cancer 2001;93(5):330–6.CrossRefGoogle Scholar
Afify, AM, al-Khafaji, BM.Diagnostic utility of thyroid transcription factor-1 expression in adenocarcinomas presenting in serous fluids. Acta Cytol 2002;46(4):675–8.CrossRefGoogle ScholarPubMed
Roh, MS, Hong, SH.Utility of thyroid transcription factor-1 and cytokeratin 20 in identifying the origin of metastatic carcinomas of cervical lymph nodes. J Korean Med Sci 2002;17(4):512–7.CrossRefGoogle ScholarPubMed
Romeike, BF, Feiden, W.[Diagnostic value of the monoclonal antibody to thyroid transcription factor -1(TTF-1) in CNS metastases. An immunohistochemical study of 65 cases]. Pathologe 2002;23(4):292–6.CrossRefGoogle Scholar
Gomez-Fernandez, C, Jorda, M, Delgado, PI, Ganjei-Azar, P.Thyroid transcription factor 1: a marker for lung adenoarinoma in body cavity fluids. Cancer 2002;96(5):289–93.CrossRefGoogle ScholarPubMed
Zou, SM, Lin, DM, Lu, N, et al. [Use of thyroid transcription factor-1, surfacfant protein-B, cytokeratin 7 and cytokeratin 20 in discrimination between primary and metastatic adenocarcinoma of lung]. Zhonghua Yi Xue Za Zhi 2003;83(15):1350–2.Google Scholar
Lin, DM, Zou, SM, Lu, N, et al. [TTF-1 expression and its diagnostic application in lung carcinomas]. Zhonghua Zhong Liu Za Zhi 2004;26(10):615–7.Google Scholar
Su, YC, Hsu, YC, Chai, CY.Role of TTF-1, CK20, and CK7 immunohistochemistry for diagnosis of primary and secondary lung adenocarcinoma. Kaohsiung J Med Sci 2006;22(1):14–9.CrossRefGoogle ScholarPubMed
Jan, IS, Chung, PF, Weng, MH, et al. Utility of thyroid transcription factor-1 expression in the differential diagnosis of metastatic adenocarcinoma of serous effusion specimens prepared using the cell transfer technique. J Formos Med Assoc 2006;105(9):695–700.CrossRefGoogle ScholarPubMed
Strickland-Marmol, LB, Khoor, A, Livingston, SK, Rojiani, A.Utility of tissue-specific transcription factors thyroid transcription factor 1 and Cdx2 in determining the primary site of metastatic adenocarcinomas to the brain. Arch Pathol Lab Med 2007;131(11):1686–90.Google Scholar
Bakir, K, Kocer, NE, Deniz, H, Guldur, ME.TTF-1 and surfactant-B as co-adjuvants in the diagnosis of lung adenocarcinoma and pleural mesothelioma. Ann Diagn Pathol 2004;8(6):337–41.CrossRefGoogle Scholar
Johansson, L.Histopathologic classification of lung cancer: Relevance of cytokeratin and TTF-1 immunophenotyping. Ann Diagn Pathol 2004;8(5):259–67.CrossRefGoogle ScholarPubMed
Di Loreto, C, Puglisi, F, Di Lauro, V, Damante, G, Beltrami, CA.TTF-1 protein expression in pleural malignant mesotheliomas and adenocarcinomas of the lung. Cancer Lett 1998;124(1):73–8.CrossRefGoogle ScholarPubMed
Holzinger, A, Dingle, S, Bejarano, PA, et al. Monoclonal antibody to thyroid transcription factor-1: production, characterization, and usefulness in tumor diagnosis. Hybridoma 1996;15(1):49–53.CrossRefGoogle ScholarPubMed
Pomplun, S, Wotherspoon, AC, Shah, G, et al. Immunohistochemical markers in the differentiation of thymic and pulmonary neoplasms. Histopathology 2002;40(2):152–8.CrossRefGoogle ScholarPubMed
Fabbro, D, Di Loreto, C, Stamerra, O, et al. TTF-1 gene expression in human lung tumours. Eur J Cancer 1996;32A(3):512–7.CrossRefGoogle ScholarPubMed
Kargi, A, Gurel, D, Tuna, B.The diagnostic value of TTF-1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. Appl Immunohistochem Mol Morphol 2007;15(4):415–20.CrossRefGoogle ScholarPubMed
Rossi, G, Marchioni, A, Milani, M, et al. TTF-1, cytokeratin 7, 34betaE12, and CD56/NCAM immunostaining in the subclassification of large cell carcinomas of the lung. Am J Clin Pathol 2004;122(6):884–93.CrossRefGoogle ScholarPubMed
Di Loreto, C, Di Lauro, V, Puglisi, F, et al. Immunocytochemical expression of tissue specific transcription factor-1 in lung carcinoma. J Clin Pathol 1997;50(1):30–2.CrossRefGoogle ScholarPubMed
Puglisi, F, Barbone, F, Damante, G, et al. Prognostic value of thyroid transcription factor-1 in primary, resected, non-small cell lung carcinoma. Mod Pathol 1999;12(3):318–24.Google ScholarPubMed
Anwar, F SR.Thyroid transcription factor-1 (TTF-1) distinguishes mesothelioma from pulmonary adenocarcinoma. Lab Invest 1999;79:181A.Google Scholar
Solis, LM, Raso, MG, Kalhor, N, et al. Primary oncocytic adenocarcinomas of the lung: a clinicopathologic, immunohistochemical, and molecular biologic analysis of 16 cases. Am J Clin Pathol 2010;133(1):133–40.CrossRefGoogle ScholarPubMed
Kim, JH, Choi, YD, Lee, JS, et al. Utility of thyroid transcription factor-1 and CDX-2 in determining the primary site of metastatic adenocarcinomas in serous effusions. Acta Cytol 2010;54(3):277–82.CrossRefGoogle ScholarPubMed
Sturm, N, Rossi, G, Lantuejoul, S, et al. Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell lung proliferations with special interest in carcinoids. Hum Pathol 2002;33(2):175–82.CrossRefGoogle ScholarPubMed
Barbareschi, M, Roldo, C, Zamboni, G, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol 2004;28(9):1169–76.CrossRefGoogle ScholarPubMed
Folpe, AL, Gown, AM, Lamps, LW, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol 1999;12(1):5–8.Google ScholarPubMed
Carlson, JW, Nucci, MR, Brodsky, J, Crum, CP, Hirsch, MS.Biomarker-assisted diagnosis of ovarian, cervical and pulmonary small cell carcinomas: the role of TTF-1, WT-1 and HPV analysis. Histopathology 2007;51(3):305–12.CrossRefGoogle ScholarPubMed
Lin, X, Saad, RS, Luckasevic, TM, Silverman, JF, Liu, Y.Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol 2007;15(4):407–14.CrossRefGoogle Scholar
Puglisi, F, Barbone, F, Damante, G, Bruckbauer, M, Di Lauro, V, Beltrami, CA, et al. Prognostic value of thyroid transcription factor-1 in primary, resected, non-small cell lung carcinoma. Modern Pathol 1999;12(3):318–24.Google ScholarPubMed
Du, EZ, Goldstraw, P, Zacharias, J, et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 2004;35(7):825–31.CrossRefGoogle ScholarPubMed
Oliveira, AM, Tazelaar, HD, Myers, JL, Erickson, LA, Lloyd, RV.Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 2001;25(6):815–9.CrossRefGoogle ScholarPubMed
Cai, YC, Banner, B, Glickman, J, Odze, RD.Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol 2001;32(10):1087–93.CrossRefGoogle ScholarPubMed
Saqi, A, Alexis, D, Remotti, F, Bhagat, G.Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 2005;123(3):394–404.CrossRefGoogle ScholarPubMed
Yoo, SH, Han, J, Kim, TJ, Chung, DH.Expression of CD99 in pleomorphic carcinomas of the lung. J Korean Med Sci 2005;20(1):50–5.CrossRefGoogle ScholarPubMed
Garcia-Escudero, A, Gonzalez-Campora, R, Villar-Rodriguez, JL, Lag-Asturiano, E.Thyroid transcription factor-1 expression in pulmonary blastoma. Histopathology 2004;44(5):507–8.CrossRefGoogle ScholarPubMed
Zhang, GQ, Fang, XZ, Wang, BQ, Sun, W, Salai, AD.[Clinicopathological and immunohistochemical features of pulmonary blastoma: analysis of 4 cases and review of the literature]. Zhonghua Yi Xue Za Zhi 2007;87(15):1040–2.Google Scholar
Devouassoux-Shisheboran, M, Hayashi, T, Linnoila, RI, Koss, MN, Travis, WD.A clinicopathologic study of 100 cases of pulmonary sclerosing hemangioma with immunohistochemical studies: TTF-1 is expressed in both round and surface cells, suggesting an origin from primitive respiratory epithelium. Am J Surg Pathol 2000;24(7):906–16.CrossRefGoogle ScholarPubMed
Chan, AC, Chan, JK.Pulmonary sclerosing hemangioma consistently expresses thyroid transcription factor-1 (TTF-1): a new clue to its histogenesis. Am J Surg Pathol 2000;24(11):1531–6.CrossRefGoogle ScholarPubMed
Sheppard, MN, Burke, L, Kennedy, M.TTF-1 is useful in the diagnosis of pulmonary papillary adenoma. Histopathology 2003;43(4):404–5.CrossRefGoogle Scholar
Lewis, JS, Ritter, JH, El-Mofty, S.Alternative epithelial markers in sarcomatoid carcinomas of the head and neck, lung, and bladder-p63, MOC-31, and TTF-1. Mod Pathol 2005;18(11):1471–81.CrossRefGoogle ScholarPubMed
Nakamura, N, Miyagi, E, Murata, S, Kawaoi, A, Katoh, R.Expression of thyroid transcription factor-1 in normal and neoplastic lung tissues. Mod Pathol 2002;15(10):1058–67.CrossRefGoogle ScholarPubMed
Park, SY, Kim, BH, Kim, JH, Lee, S, Kang, GH.Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch Pathol Lab Med 2007;131(10):1561–7.Google ScholarPubMed
Quddus, MR.Expression of TTF-1 in primary ovarian surface epithelial carcinomas: a study of 53 cases. Mod Pathology 2004;17(1):211A.Google Scholar
Graham, AD, Williams, AR, Salter, DM.TTF-1 expression in primary ovarian epithelial neoplasia. Histopathology 2006;48(6):764–5.CrossRefGoogle ScholarPubMed
Kubba, LA, McCluggage, WG, Liu, J, et al. Thyroid transcription factor-1 expression in ovarian epithelial neoplasms. Mod Pathol 2008;21(4):485–90.CrossRefGoogle ScholarPubMed
Siami, K, McCluggage, WG, Ordonez, NG, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol 2007;31(11):1759–63.CrossRefGoogle ScholarPubMed
Alkushi, A, Irving, J, Hsu, F, et al. Immunoprofile of cervical and endometrial adenocarcinomas using a tissue microarray. Virchows Arch 2003;442(3):271–7.Google ScholarPubMed
Deavers, MT.Immunohistochemistry in gynecologic pathology. Arch Pathol Lab Med 2008;132(2):175–80.Google ScholarPubMed
Barnetson, RJ, Burnett, RA, Downie, I, Harper, CM, Roberts, F.Immunohistochemical analysis of peritoneal mesothelioma and primary and secondary serous carcinoma of the peritoneum: antibodies to estrogen and progesterone receptors are useful. Am J Clin Pathol 2006;125(1):67–76.CrossRefGoogle ScholarPubMed
Leite, KR, Mitteldorf, CA, Srougi, M, et al. Cdx2, cytokeratin 20, thyroid transcription factor 1, and prostate-specific antigen expression in unusual subtypes of prostate cancer. Ann Diagn Pathol 2008;12(4):260–6.CrossRefGoogle ScholarPubMed
Lim, TK, Teo, C, Giron, DM, et al. Thyroid transcription factor-1 may be expressed in ductal adenocarcinoma of the prostate: a potential pitfall. J Clin Pathol 2007;60(8):941–3.CrossRefGoogle ScholarPubMed
Carrizo, F, Luna, MA.Thyroid transcription factor-1 expression in thyroid-like nasopharyngeal papillary adenocarcinoma: report of 2 cases. Ann Diagn Pathol 2005;9(4):189–92.CrossRefGoogle ScholarPubMed
Wu, PY, Huang, CC, Chen, HK, Chien, CY.Adult thyroid-like low-grade nasopharyngeal papillary adenocarcinoma with thyroid transcription factor-1 expression. Otolaryngol Head Neck Surg 2007;137(5):837–8.CrossRefGoogle ScholarPubMed
Zeizafoun, N EG, Wenig, BM.Thyroid transcription factor 1 (TTF-1) immunoreactivity in low-grade nasopharyngeal papillary adenocarcinoma (LCNPPA): a report of three cases. Mod Pathol 2007;20:231A.Google Scholar
Shin, SJ, DeLellis, RA, Rosen, PP.Small cell carcinoma of the breast – additional immunohistochemical studies. Am J Surg Pathol 2001;25(6):831–2.CrossRefGoogle ScholarPubMed
Yamamoto, J, Ohshima, K, Nabeshima, K, et al. Comparative study of primary mammary small cell carcinoma, carcinoma with endocrine features and invasive ductal carcinoma. Oncol Rep 2004;11(4):825–31.Google ScholarPubMed
Kitakata, H, Yasumoto, K, Sudo, Y, Minato, H, Takahashi, Y.A case of primary small cell carcinoma of the breast. Breast Cancer 2007;14(4):414–9.CrossRefGoogle ScholarPubMed
Zhang, W, Hoda, SA.Mammary small-cell carcinoma with dimorphic phenotype. Breast J 2007;13(5):529–30.CrossRefGoogle ScholarPubMed
Mariscal, A, Balliu, E, Diaz, R, Casas, JD, Gallart, AM.Primary oat cell carcinoma of the breast: imaging features. AJR Am J Roentgenol 2004;183(4):1169–71.CrossRefGoogle ScholarPubMed
Christie, M, Chin-Lenn, L, Watts, MM, Tsui, AE, Buchanan, MR.Primary small cell carcinoma of the breast with TTF-1 and neuroendocrine marker expressing carcinoma in situ. Int J Clin Exp Pathol 2010;3(6):629–33.Google ScholarPubMed
Ersahin, C, Bandyopadhyay, S, Bhargava, R.Thyroid transcription factor-1 and “basal marker” – expressing small cell carcinoma of the breast. Int J Surg Pathol 2009;17(5):368–72.CrossRefGoogle ScholarPubMed
Yun, JP, Zhang, MF, Hou, JH, et al. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer 2007;7:38.CrossRefGoogle ScholarPubMed
Lu, J, Xue, LY, Lu, N, et al. Superficial primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical analysis of 15 cases. Dis Esophagus 2010;23(2):153–9.CrossRefGoogle ScholarPubMed
Rossi, G, Bertolini, F, Sartori, G, et al. Primary mixed adenocarcinoma and small cell carcinoma of the appendix: a clinicopathologic, immunohistochemical, and molecular study of a hitherto unreported tumor. Am J Surg Pathol 2004;28(9):1233–9.CrossRefGoogle ScholarPubMed
Ryu, SH, Han, SY, Suh, SH, et al. [A case of primary small cell carcinoma of the liver]. Korean J Hepatol 2005;11(3):289–92.Google Scholar
Choi, SJ, Kim, JM, Han, JY, et al. Extrapulmonary small cell carcinoma of the liver: clinicopathological and immunohistochemical findings. Yonsei Med J 2007;48(6):1066–71.CrossRefGoogle ScholarPubMed
Soriano, P, Navarro, S, Gil, M, Llombart-Bosch, A.Small-cell carcinoma of the urinary bladder. A clinico-pathological study of ten cases. Virchows Arch 2004;445(3):292–7.CrossRefGoogle ScholarPubMed
Jones, TD, Kernek, KM, Yang, XJ, et al. Thyroid transcription factor 1 expression in small cell carcinoma of the urinary bladder: an immunohistochemical profile of 44 cases. Hum Pathol 2005;36(7):718–23.CrossRefGoogle ScholarPubMed
Alijo, Serrano F, Sanchez-Mora, N, Angel, Arranz J, Hernandez, C, Alvarez-Fernandez, E.Large cell and small cell neuroendocrine bladder carcinoma: immunohistochemical and outcome study in a single institution. Am J Clin Pathol 2007;128(5):733–9.Google Scholar
McCluggage, WG, Oliva, E, Connolly, LE, McBride, HA, Young, RH.An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol 2004;23(4):330–6.CrossRefGoogle ScholarPubMed
Grandjean, M, Legrand, L, Waterkeyn, M, et al. Small cell carcinoma of pulmonary type inside a microinvasive mucinous cystadenocarcinoma of the ovary: a case report. Int J Gynecol Pathol 2007;26(4):426–31.CrossRefGoogle ScholarPubMed
Bing, Z, Levine, L, Lucci, JA, Hatch, SS, Eltorky, MA.Primary small cell neuroendocrine carcinoma of the vagina: a clinicopathologic study. Arch Pathol Lab Med 2004;128(8):857–62.Google ScholarPubMed
Yang, DT, Holden, JA, Florell, SR.CD117, CK20, TTF-1, and DNA topoisomerase II-alpha antigen expression in small cell tumors. J Cutan Pathol 2004;31(3):254–61.CrossRefGoogle ScholarPubMed
Srivastava, A, Hornick, JL.Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 2009;33(4):626–32.CrossRefGoogle ScholarPubMed
McCluggage, WG, Sargent, A, Bailey, A, Wilson, GE.Large cell neuroendocrine carcinoma of the uterine cervix exhibiting TTF1 immunoreactivity. Histopathology 2007;51(3):405–7.CrossRefGoogle ScholarPubMed
Corrado, S, Montanini, V, De Gaetani, C, Borghi, F, Papi, G.Primary paraganglioma of the thyroid gland. J Endocrinol Invest 2004;27(8):788–92.CrossRefGoogle ScholarPubMed
Prok, AL, Prayson, RA.Thyroid transcription factor-1 staining is useful in identifying brain metastases of pulmonary origin. Ann Diagn Pathol 2006;10(2):67–71.CrossRefGoogle ScholarPubMed
Galloway, M, Sim, R.TTF-1 staining in glioblastoma multiforme. Virchows Arch 2007;451(1):109–11.CrossRefGoogle ScholarPubMed
Zamecnik, J, Chanova, M, Kodet, R.Expression of thyroid transcription factor 1 in primary brain tumours. J Clin Pathol 2004;57(10):1111–3.CrossRefGoogle ScholarPubMed
Yan, B, Seng, SC, Petersson, F.Thymoma with nuclear expression of thyroid transcription factor-1: a potential diagnostic pitfall on core biopsy. Appl Immunohistochem Mol Morphol 2011;19(1):76–81.CrossRefGoogle ScholarPubMed
Nordic immunohistochemistry Quality Control website: these data have not been published in a journal. .
La Rosa, S, Chiaravalli, AM, Placidi, C, et al. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 2010;457(4):497–507.CrossRefGoogle ScholarPubMed
Matoso, A, Singh, K, Jacob, R, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol 2010;18(2):142–9.CrossRefGoogle ScholarPubMed
Comperat, E, Zhang, F, Perrotin, C, et al. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod Pathol 2005;18(10):1371–6.CrossRefGoogle ScholarPubMed
Penman, D, Downie, I, Roberts, F.Positive immunostaining for thyroid transcription factor-1 in primary and metastatic colonic adenocarcinoma: a note of caution. J Clin Pathol 2006;59(6):663–4.CrossRefGoogle ScholarPubMed
Ueno, T, Linder, S, Elmberger, G.Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer 2003;88(8):1229–33.CrossRefGoogle ScholarPubMed
Suzuki, A, Shijubo, N, Yamada, G, et al. Napsin A is useful to distinguish primary lung adenocarcinoma from adenocarcinomas of other organs. Pathol Res Pract 2005;201(8–9):579–86.CrossRefGoogle ScholarPubMed
Inamura, K, Satoh, Y, Okumura, S, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol 2005;29(5):660–5.CrossRefGoogle ScholarPubMed
Noguchi, M, Nakajima, T, Hirohashi, S, Akiba, T, Shimosato, Y.Immunohistochemical distinction of malignant mesothelioma from pulmonary adenocarcinoma with anti-surfactant apoprotein, anti-Lewisa, and anti-Tn antibodies. Hum Pathol 1989;20(1):53–7.CrossRefGoogle ScholarPubMed
Kaufmann, O, Georgi, T, Dietel, M.Utility of 123C3 monoclonal antibody against CD56 (NCAM) for the diagnosis of small cell carcinomas on paraffin sections. Hum Pathol 1997;28(12):1373–8.CrossRefGoogle Scholar
Viberti, L, Bongiovanni, M, Croce, S, Bussolati, G.34betaE12 Cytokeratin Immunodetection in the differential diagnosis of small cell tumors of lung. Int J Surg Pathol 2000;8(4):317–22.CrossRefGoogle ScholarPubMed
Noguchi, M, Hirohashi, S, Shimosato, Y.Immunohistochemical detection of cluster 1 small cell lung cancer antigen and chromogranin A in lung carcinomas. Jpn J Clin Oncol 1992;22(1):6–9.Google Scholar
Al-Khafaji, B, Noffsinger, AE, Miller, MA, et al. Immunohistologic analysis of gastrointestinal and pulmonary carcinoid tumors. Hum Pathol 1998;29(9):992–9.CrossRefGoogle ScholarPubMed
Wang, NP, Zee, S, Zarbo, RJ, et al. Coordinate expression of cytokeratins 7 and 20 defines unique subsets of carcinomas. Appl Immunohist 1995;3:99–107.Google Scholar
Loy, TS, Calaluce, RD.Utility of cytokeratin immunostaining in separating pulmonary adenocarcinomas from colonic adenocarcinomas. Am J Clin Pathol 1994;102(6):764–7.CrossRefGoogle ScholarPubMed
Amin, MB, Tamboli, P, Merchant, SH, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol 2002;26(3):358–64.CrossRefGoogle ScholarPubMed
Chu, P, Wu, E, Weiss, LM.Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13(9):962–72.CrossRefGoogle ScholarPubMed
Werling, RW, Yaziji, H, Bacchi, CE, Gown, AM.CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27(3):303–10.CrossRefGoogle ScholarPubMed
Moskaluk, CA, Zhang, H, Powell, SM, et al. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16(9):913–9.CrossRefGoogle ScholarPubMed
Mazziotta, RM, Borczuk, AC, Powell, CA, Mansukhani, M.CDX2 immunostaining as a gastrointestinal marker: expression in lung carcinomas is a potential pitfall. Appl Immunohistochem Mol Morphol 2005;13(1):55–60.CrossRefGoogle ScholarPubMed
Silverman, JF, Zhu, B, Liu, Y, Lin, X.Distinctive immunohistochemical profile of mucinous cystic neoplasms of pancreas, ovary and lung. Histol Histopathol 2009;24(1):77–82.Google Scholar
Freund, JN, Domon-Dell, C, Kedinger, M, Duluc, I.The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1998;76(6):957–69.CrossRefGoogle ScholarPubMed
Makretsov, NA, Hayes, M, Carter, BA, et al. Stromal CD10 expression in invasive breast carcinoma correlates with poor prognosis, estrogen receptor negativity, and high grade. Mod Pathol 2007;20(1):84–9.CrossRefGoogle ScholarPubMed
McGregor, DK, Khurana, KK, Cao, C, et al. Diagnosing primary and metastatic renal cell carcinoma: the use of the monoclonal antibody ‘Renal Cell Carcinoma Marker’. Am J Surg Pathol 2001;25(12):1485–92.CrossRefGoogle ScholarPubMed
Wennerberg, AE, Nalesnik, MA, Coleman, WB.Hepatocyte paraffin 1: a monoclonal antibody that reacts with hepatocytes and can be used for differential diagnosis of hepatic tumors. Am J Pathol 1993;143(4):1050–4.Google ScholarPubMed
Zimmerman, RL, Burke, MA, Young, NA, Solomides, CC, Bibbo, M.Diagnostic value of hepatocyte paraffin 1 antibody to discriminate hepatocellular carcinoma from metastatic carcinoma in fine-needle aspiration biopsies of the liver. Cancer 2001;93(4):288–91.CrossRefGoogle ScholarPubMed
Fan, Z.HepPar-1 stain for the differential diagnosis of hepatocellular carcinoma: 613 tumors tested using tissue microarrays and conventional sections. Mod Pathology 2002;15:1178A.Google Scholar
Muir, T.Immunoreacitivity for hepatocyte paraffin 1 antibody in hepatic and extrahepatic tumors. Mod Pathology 2002;15:290A.Google Scholar
Chu, PG, Ishizawa, S, Wu, E, Weiss, LM.Hepatocyte antigen as a marker of hepatocellular carcinoma: an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein. Am J Surg Pathol 2002;26(8):978–88.CrossRefGoogle ScholarPubMed
Morgan, M.Sensitivity and specificity of PSA immunohistochemistry: a detailed comparison of monoclonal and polyclonal antibodies. J Pathol. 2001(January):abstract 184.Google Scholar
Freeman, NJ, Doolittle, C.Elevated prostate markers in metastatic small cell carcinoma of unknown primary. Cancer 1991;68(5):1118–20.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Haines, AM, Larkin, SE, Richardson, AP, Stirling, RW, Heyderman, E.A novel hybridoma antibody (PASE/4LJ) to human prostatic acid phosphatase suitable for immunohistochemistry. Br J Cancer 1989;60(6):887–92.CrossRefGoogle ScholarPubMed
Azumi, N, Traweek, ST, Battifora, H.Prostatic acid phosphatase in carcinoid tumors. Immunohistochemical and immunoblot studies. Am J Surg Pathol 1991;15(8):785–90.CrossRefGoogle ScholarPubMed
Lee, BH, Hecht, JL, Pinkus, JL, Pinkus, GS.WT1, estrogen receptor, and progesterone receptor as markers for breast or ovarian primary sites in metastatic adenocarcinoma to body fluids. Am J Clin Pathol 2002;117(5):745–50.CrossRefGoogle ScholarPubMed
Ollayos, CW, Riordan, GP, Rushin, JM.Estrogen receptor detection in paraffin sections of adenocarcinoma of the colon, pancreas, and lung. Arch Pathol Lab Med 1994;118(6):630–2.Google Scholar
Di Nunno, L, Larsson, LG, Rinehart, JJ, Beissner, RS.Estrogen and progesterone receptors in non-small cell lung cancer in 248 consecutive patients who underwent surgical resection. Arch Pathol Lab Med 2000;124(10):1467–70.Google ScholarPubMed
Vargas, SO, Leslie, KO, Vacek, PM, Socinski, MA, Weaver, DL.Estrogen-receptor-related protein p29 in primary nonsmall cell lung carcinoma: pathologic and prognostic correlations. Cancer 1998;82(8):1495–500.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Canver, CC, Memoli, VA, Vanderveer, PL, Dingivan, CA, Mentzer, RM Jr.Sex hormone receptors in non-small-cell lung cancer in human beings. J Thorac Cardiovasc Surg 1994;108(1):153–7.Google ScholarPubMed
Brown, RW, Campagna, LB, Dunn, JK, Cagle, PT.Immunohistochemical identification of tumor markers in metastatic adenocarcinoma. A diagnostic adjunct in the determination of primary site. Am J Clin Pathol 1997;107(1):12–9.CrossRefGoogle ScholarPubMed
Bhargava, R, Beriwal, S, Dabbs, DJ.Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol 2007;127(1):103–13.CrossRefGoogle ScholarPubMed
Hishima, T, Fukayama, M, Fujisawa, M, et al. CD5 expression in thymic carcinoma. Am J Pathol 1994;145(2):268–75.Google ScholarPubMed
Dorfman, DM, Shahsafaei, A, Chan, JK.Thymic carcinomas, but not thymomas and carcinomas of other sites, show CD5 immunoreactivity. Am J Surg Pathol 1997;21(8):936–40.CrossRefGoogle Scholar
Pan, CC, Chen, PC, Chou, TY, Chiang, H.Expression of calretinin and other mesothelioma-related markers in thymic carcinoma and thymoma. Hum Pathol 2003;34(11):1155–62.CrossRefGoogle ScholarPubMed
Hishima, T, Fukayama, M, Hayashi, Y, et al. CD70 expression in thymic carcinoma. Am J Surg Pathol 2000;24(5):742–6.CrossRefGoogle ScholarPubMed
Tigrani, DY WJ.Expression of inhibin-alpha in primary pulmonary non-small cell carcinoma by immunohisochemistry. Mod Pathol 2008;21:352A.Google Scholar
Zhang, K SJ, Lin, F.Expression of inhibin-alpha in non-small cell carcinoma of the lung with a focus on adenocarcinoma – a diagnostic pitfall in the evaluation of metastatic pulmonary carcinoma. Mod Pathology 2008;21:353A.Google Scholar
Morice, WG, Ferreiro, JA.Distinction of basaloid squamous cell carcinoma from adenoid cystic and small cell undifferentiated carcinoma by immunohistochemistry. Hum Pathol 1998;29(6):609–12.CrossRefGoogle ScholarPubMed
Chu, PG, Lyda, MH, Weiss, LM.Cytokeratin 14 expression in epithelial neoplasms: a survey of 435 cases with emphasis on its value in differentiating squamous cell carcinomas from other epithelial tumours. Histopathology 2001;39(1):9–16.CrossRefGoogle ScholarPubMed
Wu, M, Wang, B, Gil, J, et al. p63 and TTF-1 immunostaining. A useful marker panel for distinguishing small cell carcinoma of lung from poorly differentiated squamous cell carcinoma of lung. Am J Clin Pathol 2003;119(5):696–702.Google ScholarPubMed
Kalhor, N, Zander, DS, Liu, J.TTF-1 and p63 for distinguishing pulmonary small-cell carcinoma from poorly differentiated squamous cell carcinoma in previously pap-stained cytologic material. Mod Pathol 2006;19(8):1117–23.CrossRefGoogle ScholarPubMed
Wu, M, Szporn, AH, Zhang, D, et al. Cytology applications of p63 and TTF-1 immunostaining in differential diagnosis of lung cancers. Diagn Cytopathol 2005;33(4):223–7.CrossRefGoogle ScholarPubMed
Howell, NR, Zheng, W, Cheng, L, et al. Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis?Int J Gynecol Pathol 2007;26(2):134–40.CrossRefGoogle ScholarPubMed
Pan, CC, Chen, PC, Ho, DM.The diagnostic utility of MOC31, BerEP4, RCC marker and CD10 in the classification of renal cell carcinoma and renal oncocytoma: an immunohistochemical analysis of 328 cases. Histopathology 2004;45(5):452–9.CrossRefGoogle ScholarPubMed
Avery, AK, Beckstead, J, Renshaw, AA, Corless, CL.Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol 2000;24(2):203–10.CrossRefGoogle ScholarPubMed
Langner, C, Ratschek, M, Rehak, P, Schips, L, Zigeuner, R.CD10 is a diagnostic and prognostic marker in renal malignancies. Histopathology 2004;45(5):460–7.CrossRefGoogle ScholarPubMed
Wang, HY, Mills, SE.KIT and RCC are useful in distinguishing chromophobe renal cell carcinoma from the granular variant of clear cell renal cell carcinoma. Am J Surg Pathol 2005;29(5):640–6.CrossRefGoogle ScholarPubMed
Ingold, B, Wild, PJ, Nocito, A, et al. Renal cell carcinoma marker reliably discriminates central nervous system haemangioblastoma from brain metastases of renal cell carcinoma. Histopathology 2008;52(6):674–81.CrossRefGoogle ScholarPubMed
Young, AN, de Oliveira, Salles PG, Lim, SD, et al. Beta defensin-1, parvalbumin, and vimentin: a panel of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling studies using cDNA microarrays. Am J Surg Pathol 2003;27(2):199–205.CrossRefGoogle ScholarPubMed
Mazal, PR, Exner, M, Haitel, A, et al. Expression of kidney-specific cadherin distinguishes chromophobe renal cell carcinoma from renal oncocytoma. Hum Pathol 2005;36(1):22–8.CrossRefGoogle ScholarPubMed
Porcell, AI, De Young, BR, Proca, DM, Frankel, WL.Immunohistochemical analysis of hepatocellular and adenocarcinoma in the liver: MOC31 compares favorably with other putative markers. Mod Pathol 2000;13(7):773–8.CrossRefGoogle ScholarPubMed
Leong, AS, Sormunen, RT, Tsui, WM, Liew, CT.Hep Par 1 and selected antibodies in the immunohistological distinction of hepatocellular carcinoma from cholangiocarcinoma, combined tumours and metastatic carcinoma. Histopathology 1998;33(4):318–24.CrossRefGoogle Scholar
Maeda, T, Kajiyama, K, Adachi, E, et al. The expression of cytokeratins 7, 19, and 20 in primary and metastatic carcinomas of the liver. Mod Pathol 1996;9(9):901–9.Google Scholar
Tickoo, SK, Zee, SY, Obiekwe, S, et al. Combined hepatocellular-cholangiocarcinoma: a histopathologic, immunohistochemical, and in situ hybridization study. Am J Surg Pathol 2002;26(8):989–97.CrossRefGoogle ScholarPubMed
Wu, PC, Fang, JW, Lau, VK, et al. Classification of hepatocellular carcinoma according to hepatocellular and biliary differentiation markers. Clinical and biological implications. Am J Pathol 1996;149(4):1167–75.Google ScholarPubMed
Borscheri, N, Roessner, A, Rocken, C.Canalicular immunostaining of neprilysin (CD10) as a diagnostic marker for hepatocellular carcinomas. Am J Surg Pathol 2001;25(10):1297–303.CrossRefGoogle ScholarPubMed
Gaffey, MJ, Mills, SE, Zarbo, RJ, Weiss, LM, Gown, AM.Clear cell tumor of the lung. Immunohistochemical and ultrastructural evidence of melanogenesis. Am J Surg Pathol 1991;15(7):644–53.CrossRefGoogle ScholarPubMed
Gal, AA, Koss, MN, Hochholzer, L, Chejfec, G.An immunohistochemical study of benign clear cell (‘sugar’) tumor of the lung. Arch Pathol Lab Med 1991;115(10):1034–8.Google Scholar
Lantuejoul, S, Isaac, S, Pinel, N, et al. Clear cell tumor of the lung: an immunohistochemical and ultrastructural study supporting a pericytic differentiation. Mod Pathol 1997;10(10):1001–8.Google ScholarPubMed
Gaffey, MJ, Mills, SE, Askin, FB, et al. Clear cell tumor of the lung. A clinicopathologic, immunohistochemical, and ultrastructural study of eight cases. Am J Surg Pathol 1990;14(3):248–59.CrossRefGoogle ScholarPubMed
Hinoi, T, Tani, M, Lucas, PC, et al. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am J Pathol 2001;159(6):2239–48.CrossRefGoogle ScholarPubMed
Kende, AI, Carr, NJ, Sobin, LH.Expression of cytokeratins 7 and 20 in carcinomas of the gastrointestinal tract. Histopathology 2003;42(2):137–40.CrossRefGoogle ScholarPubMed
Park, SY, Kim, HS, Hong, EK, Kim, WH.Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol 2002;33(11):1078–85.CrossRefGoogle ScholarPubMed
Chen, ZM, Wang, HL.Alteration of cytokeratin 7 and cytokeratin 20 expression profile is uniquely associated with tumorigenesis of primary adenocarcinoma of the small intestine. Am J Surg Pathol 2004;28(10):1352–9.CrossRefGoogle ScholarPubMed
Vang, R, Gown, AM, Barry, TS, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol 2006;30(9):1130–9.CrossRefGoogle ScholarPubMed
Ormsby, AH, Goldblum, JR, Rice, TW, Richter, JE, Gramlich, TL.The utility of cytokeratin subsets in distinguishing Barrett's-related oesophageal adenocarcinoma from gastric adenocarcinoma. Histopathology 2001;38(4):307–11.CrossRefGoogle ScholarPubMed
Jiang, J, Ulbright, TM, Younger, C, et al. Cytokeratin 7 and cytokeratin 20 in primary urinary bladder carcinoma and matched lymph node metastasis. Arch Pathol Lab Med 2001;125(7):921–3.Google ScholarPubMed
Bassily, NH, Vallorosi, CJ, Akdas, G, Montie, JE, Rubin, MA.Coordinate expression of cytokeratins 7 and 20 in prostate adenocarcinoma and bladder urothelial carcinoma. Am J Clin Pathol 2000;113(3):383–8.CrossRefGoogle ScholarPubMed
Rullier, A, Le, Bail B, Fawaz, R, et al. Cytokeratin 7 and 20 expression in cholangiocarcinomas varies along the biliary tract but still differs from that in colorectal carcinoma metastasis. Am J Surg Pathol 2000;24(6):870–6.CrossRefGoogle ScholarPubMed
Kuo, T.Cytokeratin profiles of the thymus and thymomas: histogenetic correlations and proposal for a histological classification of thymomas. Histopathology 2000;36(5):403–14.CrossRefGoogle ScholarPubMed
Meer, S, Altini, M.CK7+/CK20- immunoexpression profile is typical of salivary gland neoplasia. Histopathology 2007;51(1):26–32.CrossRefGoogle ScholarPubMed
Nikitakis, NG, Tosios, KI, Papanikolaou, VS, Rivera, H, Papanicolaou, SI, Ioffe, OB.Immunohistochemical expression of cytokeratins 7 and 20 in malignant salivary gland tumors. Mod Pathol 2004;17(4):407–15.CrossRefGoogle ScholarPubMed
Khunamornpong, S, Siriaunkgul, S, Suprasert, P, et al. Intrahepatic cholangiocarcinoma metastatic to the ovary: a report of 16 cases of an underemphasized form of secondary tumor in the ovary that may mimic primary neoplasia. Am J Surg Pathol 2007;31(12):1788–99.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×