Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T07:10:06.160Z Has data issue: false hasContentIssue false

2 - The History of the Species–Area Relationship

from Part I - Introduction and History

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

The discovery of the species-area relationship, or SAR, cannot be attributed to a single person or time. Rather, and as true of the description and analysis of many patterns in nature, the story started with the realization of a phenomenon which, over time, and through many individual contributions, evolved into a developed theory. The history of the SAR thus concerns both the origins and the different forms and uses of SARs. We describe how the discovery of the phenomenon eventually led to the first proposed mathematical models of the relationship in the early twentieth century. This initiated the ongoing debates on the shape of the species–area curve, the factors that underpin SARs and the most appropriate model(s) for fitting. Alongside these debates, we review the history of the uses of the SAR and the central role it has played in the development of various fields within biogeography, from island biogeography through to conservation biogeography.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 20 - 48
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrhenius, O. (1918) En studie över yta och arter. Svensk Botanisk Tidsskrift, 12, 180188.Google Scholar
Arrhenius, O. (1920a) Distribution of the species over the area. Meddelanden från Kungliga Vetenskapsakademiens Nobelinstitut, 4, 16.Google Scholar
Arrhenius, O. (1920b) Öcologisher Studien in den Stockholmer Scären. Dissertation, University of Stockholm, Stockholm (Svea).Google Scholar
Arrhenius, O. (1920c) Yta och arter. I. Svensk Botanisk Tidsskrift, 14, 327329.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Arrhenius, O. (1923) On the relation between species and area – A reply. Ecology, 4, 9091.Google Scholar
Bascompte, J., Luque, B., Olarrea, J. & Lacasa, L. (2007) A probabilistic model of reserve design. Journal of Theoretical Biology, 247, 205211.Google Scholar
Boecklen, W. J. & Gotelli, N. J. (1984) Island biogeographic theory and conservation practice: Species–area or specious–area relationships? Biological Conservation, 29, 6380.Google Scholar
Bolgovics, Á., Ács, É., Várbíró, G., Görgényi, J. & Borics, G. (2015) Species area relationship (SAR) for benthic diatoms: A study on aquatic islands. Hydrobiologia, 764, 91102.Google Scholar
Brenner, W. (1921) Växtgeografiska studier i Barõsunds skärgård. Acta Sociatatis pro Fauna et Flora Fennica, 49, 1151.Google Scholar
Brook, B. W., Sodhi, N. S. & Ng, P. K. L. (2003) Catastrophic extinctions follow deforestation in Singapore. Nature, 424, 420423.Google Scholar
Brooks, T. & Balmford, A. (1996) Atlantic forest extinctions. Nature, 380, 115.Google Scholar
Brown, J. H. (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467478.Google Scholar
Brown, J. H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology, 58, 445449.Google Scholar
Brown, J. H. & Lomolino, M. V. (1989) Independent discovery of the equilibrium theory of island biogeography. Ecology, 70, 19541957.Google Scholar
Burns, K. C., Paul McHardy, R. & Pledger, S. (2009) The small-island effect: Fact or artefact? Ecography, 32, 269276.Google Scholar
Bush, M. B. (2003) Ecology of a changing planet, 3rd ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R., Rosindell, J. & He, F. (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecology Letters, 21, 804813.Google Scholar
Clench, H. K. (1979) How to make regional lists of butterflies: Some thoughts. Journal of the Lepidopterists’ Society, 33, 216231.Google Scholar
Coleman, B. (1981) On random placement and species–area relations. Mathematical Biosciences, 54, 191215.Google Scholar
Coleman, B. D., Mares, M. A., Willig, M. R. & Hsieh, Y.-H. (1982) Randomness, area and species richness. Ecology, 64, 11211133.Google Scholar
Colwell, R. K. & Coddington, J. A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 345, 101118.Google Scholar
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Cowles, H. C. (1901) The plant societies of Chicago and vicinity. The Geographical Society of Chicago, Bulletin No. 2.Google Scholar
Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. (2003) Countryside biogeography of Neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conservation Biology, 17, 18141826.Google Scholar
Darlington, P. J. (1957) Zoogeography: The geographical distribution of animals. New York: John Wiley.Google Scholar
De Camargo, R. X. & Currie, D. J. (2015) An empirical investigation of why species–area relationships overestimate species losses. Ecology, 96, 12531263.Google Scholar
de Candolle, A. (1855) Géographie botanique raisonnée: Ou l’exposition des faits principaux et des lois concernant la distribution géographique des plates de l’epoque actuelle. Paris: Maisson.Google Scholar
de Caprariis, P., Lindemann, R. H. & Collins, C. M. (1976) A method for determining optimum sample size in species diversity studies. Mathematical Geology, 8, 575581.Google Scholar
Dengler, J. (2009) Which function describes the species–area relationship best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.Google Scholar
Dengler, J., Matthews, T. J., Steinbauer, M. J., Wolfrum, S., Boch, S., Chiarucci, A., Conradi, T., Dembicz, I., Marcenò, C., García‐Mijangos, I., Nowak, A., Storch, D., Ulrich, W., Campos, J. A., Cancellieri, L., Carboni, M., Ciaschetti, G., De Frenne, P., Dolezal, J., Dolnik, C., Essl, F., Fantinato, E., Filibeck, G., Grytnes, J.-A., Guarino, R., Güler, B., Janišová, M., Klichowska, E., Kozub, L., Kuzemko, A., Manthey, M., Mimet, A., Naqinezhad, A., Pedersen, C., Peet, R. K., Pellissier, V., Pielech, R., Potenza, G., Rosati, L., Terzi, M., Valkó, O., Vynokurov, D., White, H., Winkler, M. & Biurrun, I. (2020) Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 47, 7286.Google Scholar
Desmet, P. & Cowling, R. (2004) Using the species–area relationship to set baseline targets for conservation. Ecology and Society, 9, article 11.Google Scholar
Diamond, J. M. (1975) The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129146.Google Scholar
Diamond, J. M. (1984) ‘Normal’ extinctions of isolated populations. Extinctions (ed. by Nitecki, M. H.), pp. 191246. Chicago: Chicago Press.Google Scholar
Du Rietz, G. E. (1921) Zur methodologischen Grundlage der modernen Pflanzensociologie, Akademishe Abhandlung. Uppsala: Uppsala Universitet.Google Scholar
Fahrig, L. (2002) Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12, 346353.Google Scholar
Fahrig, L. (2013) Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 16491663.Google Scholar
Fattorini, S. (2007) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species–area relationship is used to locate hotspots. Biological Conservation, 16, 25312538.Google Scholar
Fattorini, S., Borges, P. A. V., Dapporto, L. & Strona, G. (2017) What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography, 44, 10181028.Google Scholar
Flahaut, C. & Schröter, C. (1910) Phytogeographischer Nomenklatur. Beriche Und Worschläge. Zürich: Zürcher & Rurrer.Google Scholar
Flather, C. H. (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. Journal of Biogeography, 23, 155168.Google Scholar
Forster, G. (1777) A voyage around the world in his Majesty's sloop, Resolution, commanded by Captain James Cook, during the years 1772, 3, 4, and 5. B. Volume 1. London: B. White, J. Robson, P. Elmsly, & G. Robinson.Google Scholar
Forster, J. R. (1778) Observations made during a voyage round the world. London: G. Robinson.Google Scholar
Fridley, J. D., Peet, R. K., Wentworth, T. R. & White, P. S. (2005) Connecting fine- and broad-scale species–area relationships of southeastern U.S. flora. Ecology, 86, 11721177.Google Scholar
Gleason, H. A. (1922) On the relation between species and area. Ecology, 3, 158162.Google Scholar
Gleason, H. A. (1925) Species and area. Ecology, 6, 6674.Google Scholar
Gould, S. J. (1979) An allometric interpretation of species–area curves: The meaning of the coefficient. The America Naturalist, 114, 335343.Google Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Danschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D.-X. & Townshend, J. R. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Haddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J. & Damschen, E. I. (2017) Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 40, 4855.Google Scholar
Halley, J. M., Sgardeli, V. & Triantis, K. A. (2014) Extinction debt and the species–area relationship: A neutral perspective. Global Ecology & Biogeography, 23, 113123.Google Scholar
Hanski, I. (1999) Metapopulation ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
Harte, J., Blackburn, T. & Ostling, A. (2001) Self-Similarity and the relationship between abundance and range size. The American Naturalist, 157, 374386.Google Scholar
Harte, J., Kinzig, A. & Green, J. (1999) Self-similarity in the distribution and abundance of species. Science, 284, 334336.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.Google Scholar
He, F. & Legendre, P. (1996) On species–area relations. The American Naturalist, 148, 719737.Google Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. Jr. (1971) Forest environments in tropical life zones. A pilot study. Oxford: Pergamon Press.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Humboldt, A. von (1807) Ideen zur einer Geographie der Pflanstzen nebst einem Naturgemälde der Tropenländer. Tübringen: Cotta.Google Scholar
Jaccard, P. (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles, 44, 223270.Google Scholar
Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. (2010) An overhaul of the species–area approach for predicting biodiversity loss: Incorporating matrix and edge effects. Journal of Applied Ecology, 47, 10631070.Google Scholar
Krebs, C. J. (2009) Ecology, the experimental analysis of distribution and abundance, 6th ed. San Francisco, CA: Benjamin Cummings.Google Scholar
Kunin, W. E., Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., Polce, C., Šizling, A., Smith, A. B., Smith, K., Smart, S. M., Storch, D., Tjørve, E., Ugland, K.-I., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Kylin, H. (1923) Växtsociologiska randanmärkningar. Botaniska Notiser, 1923, 161234.Google Scholar
Kylin, H. (1926) Über begriffsbildung und statistik in der pflanzensoziologie. Botaniska Notiser, 1926, 81180.Google Scholar
Ladle, R. J. & Whittaker, R. J. (eds.) (2011) Conservation biogeography. Chichester: Wiley-Blackwell.Google Scholar
Lagerberg, T. (1914) Markflorans analys på objektiv grund. Meddelanden från Statens Skogsförsöksanstalt, 1914, 129200, XV–XXIV.Google Scholar
Lawrey, J. D. (1991) The species–area curve as an index of disturbance in saxicolous lichen communities. The Bryologist, 94, 377382.Google Scholar
Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: The species–area relationship. Journal of Biogeography, 27, 1726.Google Scholar
Lomolino, M. V. & Brown, J. H. (2009) The reticulating phylogeny of island biogeography theory. The Quarterly Review of Biology, 84, 357390.Google Scholar
Lomolino, M. V. & Weiser, M. D. (2001) Towards a more general species–area relationship: Diversity on all islands, great and small. Journal of Biogeography, 28, 431445.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
Martins, I. S. & Pereira, H. M. (2017) Improving extinction projections across scales and habitats using the countryside species–area relationship. Scientific Reports, 7, article 12899.Google Scholar
Matter, S. F., Hanski, I. & Gyllenberg, M. (2002) A test of the metapopulation model of the species–area relationship. Journal of Biogeography, 29, 977983.Google Scholar
Matthews, T. J. (2015) Analysing and modelling the impact of habitat fragmentation on species diversity: A macroecological perspective. Frontiers of Biogeography, 7, 6068.CrossRefGoogle Scholar
Matthews, T. J. & Aspin, T. W. H. (2019) Model averaging fails to improve the extrapolation capability of the island species–area relationship. Journal of Biogeography, 46, 15581568.Google Scholar
Matthews, T. J., Borregaard, M. K., Guilhaumon, F., Triantis, K. A. & Whittaker, R. J. (2016a) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. (2019a) A global model of island species–area relationships. Proceedings of the National Academy of Sciences USA, 116, 1233712342.Google Scholar
Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F. & Whittaker, R. J. (2016b) Island species–area relationships and species accumulation curves are not equivalent: An analysis of habitat island datasets. Global Ecology & Biogeography, 25, 607618.Google Scholar
Matthews, T. J., Triantis, K., Whittaker, R. J. & Guilhaumon, F. (2019b) Sars: An R package for fitting, evaluating and comparing species–area relationship models. Ecography, 42, 14461455.Google Scholar
May, R. M. (1975) Island biogeography and the design of wildlife preserves. Nature, 254, 177178.Google Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213217.Google Scholar
Palmgren, A. (1916) Studier över lövengsområdena på Åland. Acta Societatis pro Fauna et Flora Fennica, 42, 1634.Google Scholar
Pereira, M. & Daily, G. C. (2006) Biodiversity dynamics in countryside landscapes. Ecology, 87, 18771885.Google Scholar
Pound, R. & Clements, F. E. (1898) A method for determining the abundance of secondary species. Minnesota Botanical Studies, 2, 1924.Google Scholar
Preston, F. W. (1960) Time and space and the variation of species. Ecology, 41, 611627.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I & II. Ecology, 43, 185215, 410–432.Google Scholar
Raunkiær, C. (1908) Livsformenes Statistik som Grundlag for biologisk Plantegeografi. Botanisk Tidsskrift, 29, 4283.Google Scholar
Raunkiær, C. (1909) Formationsundersøgelse og formationsstatistik. Botanisk Tidsskrift (København), 30, 20132.Google Scholar
Raunkiær, C. (1918) Recherches statistiques sur les formations vegetales. Biologiske Meddelelser / Det Kongelige Danske Videnskabernes Selskab, 1, 180.Google Scholar
Romell, L. G. (1920) Sur la régle de distribution de fréquences. Svensk Botanisk Tidsskrift, 14, 120.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Rosenzweig, M. L. (2001) Loss of speciation rate will impoverish future diversity. Proceedings of the National Academy of Sciences USA, 98, 54045410.Google Scholar
Rosenzweig, M. L. (2004) Applying species–area relationships to the conservation of diversity. Frontiers of biogeography: New directions in the geography of nature (ed. by Lomolino, M. V. and Heaney, L. R.), pp. 325343. Sunderland, MA: Sinauer Associates.Google Scholar
Schoener, T. W. (1976) The species–area relations within archipelagoes: Models and evidence from island land birds. Proceedings of the XVI International Ornithological Conference (ed. by Firth, H. J. and Calaby, J. H), pp. 629642. Canberra: Australian Academy of Science.Google Scholar
Simberloff, D. (1988) The contribution of population and community biology to conservation science. Annual Review of Ecology and Systematics, 19, 473511.Google Scholar
Simberloff, D. S. & Abele, L. G. (1976) Island biogeography and conservation practice. Science, 191, 285286.Google Scholar
Smith, A. B. (2010) Caution with curves: Caveats for using the species–area relationship in conservation. Biological Conservation, 143, 555564.Google Scholar
Svedberg, T. (1922) Statistisk vegetationsanalys, några synspunkter. Svensk Botanisk Tidsskrift, 16, 197205.Google Scholar
Terborgh, J. (1976) Island biogeography and conservation: Strategy and limitations. Science, 193, 10291030.Google Scholar
Tjørve, E. (2002) Habitat size and number in multi-habitat landscapes: A model approach based on species–area curves. Ecography, 25, 1724.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.Google Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.Google Scholar
Tjørve, E. (2010) How to resolve the SLOSS debate: Lessons from species-diversity models. Journal of Theoretical Biology, 264, 604612.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2008) The species–area relationship, self-similarity, and the true meaning of the z-value. Ecology, 89, 35283533.Google Scholar
Tjørve, E. & Turner, W. R. (2009) The importance of samples and isolates for species–area relationships. Ecography, 32, 391400.Google Scholar
Tjørve, E., Kunin, W. E., Polce, C. & Tjørve, K. M. C. (2008) The species–area relationship: Separating the effects of species-abundance and spatial distribution. Journal of Ecology, 96, 11411151.Google Scholar
Tjørve, E., Tjørve, K. C. M., Šizlingová, E. & Šizling, A. L. (2018) Great theories of species diversity in space and why they were forgotten: The beginnings of a spatial ecology and the Nordic early 20th-century botanists. Journal of Biogeography, 45, 530540.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A.Mylonas, M.Lika, K. & Vardinoyannis, K. (2003A model for the species–area–habitat relationshipJournal of Biogeography301927.Google Scholar
Triantis, K. A.Mylonas, M. & Whittaker, R. J. (2008Evolutionary species–area curves as revealed by single‐island endemics: Insights for the interprovincial species–area relationshipEcography31401407.Google Scholar
Ulrich, W. & Buszko, J. (2003) Species–area relationships of butterflies in Europe and species richness forecasting. Ecography, 26, 365373.Google Scholar
Ulrich, W. & Buszko, J. (2004) Habitat reduction and patterns of species loss. Basic and Applied Ecology, 5, 231240.Google Scholar
Wallace, A. R. (1869) The Malay Archipelago: The land of the orang-utan, and the bird of paradise. A narrative of travel, with studies of man and nature. London: Macmillan and Co.Google Scholar
Wallace, A. R. (1876) The geographical distribution of animals: With a study of the relations of living and extinct Faunas Volume 1. Cambridge: Cambridge University Press.Google Scholar
Wallace, A. R. (1914) The world of life: A manifestation of creative power, directive mind and ultimate purpose. London: Chapman and Hall.Google Scholar
Watling, J. I. & Donnelly, M. A. (2006) Fragments as islands: A synthesis of faunal responses to habitat patchiness. Conservation Biology, 20, 10161025.Google Scholar
Watson, H. C. (1835) Remarks on the geographical distribution of British plants, chiefly in connection with latitude, elevation, and climate. London: Longman.Google Scholar
Watson, H. C. (1859) Cybele Britannica, or British plants and their geographical relations. London: Longman and Company.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Whittaker, R. J. & Matthews, T. J. (2014) The varied form of species–area relationships. Journal of Biogeography, 41, 209210.Google Scholar
Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M. & Willis, K. J. (2005) Conservation biogeography: Assessment and prospect. Diversity and Distributions, 11, 323.Google Scholar
Williams, C. B. (1943Area and the number of speciesNature152262265.Google Scholar
Williams, M. R. (1995) An extreme-value function model of the species incidence and species–area relations. Ecology, 76, 26072616.Google Scholar
Williamson, M. (1975) The design of wildlife preserves. Nature, 256, 519.Google Scholar
Williamson, M., Gaston, K. J. & Lonsdale, W. M. (2001) The species–area relationship does not have an asymptote! Journal of Biogeography, 28, 827830.Google Scholar
Wilson, E. O. & Willis, E. O. (1975) Applied biogeography. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 522534. Cambridge: Belknap Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×