Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T10:05:49.162Z Has data issue: false hasContentIssue false

30 - Priming and retouch in flash-lag and other phenomena of the streaming perceptual input

from Part V - Space–time and awareness

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

When rapidly successive objects or object replicas are presented as sensory streams, a stimulus within a stream is perceptually facilitated relative to an otherwise identical stimulus not within the stream. Experiments on perceptual latency priming and flash-lag have convincingly shown this. Unfortunately, no consensus exists on what is (are) the mechanism(s) responsible for in-stream facilitation. Here, I discuss several alternative explanations: perceptual extrapolation of change in the specific properties of continuous stimulation, time-saving for target processing due to the early microgenetic/formation stages for target being completed on pretarget in-stream items, control of focused selective attention by the onsets of stimulus input, and preparation of the nonspecific perceptual retouch by the preceding nontarget input in stream for the succeeding target input in stream. Revisions are outlined to overcome the explanatory difficulties that the retouch theory has encountered in the face of new phenomena of perceptual dissociation.

Introduction

Objects that do not occur in isolation are processed differently compared to when they appear as separate entities. If we compare the visual latency of an object presented alone with the latency of its replica that is presented after another object (which is presented nearby in space and time), we see that the object that comes after having been primed by other input achieves awareness faster (Neumann 1982; Bachmann 1989; Scharlau & Neumann 2003a & b; Scharlau 2004). In a typical experiment, a visual prime stimulus is presented, followed by another stimulus that acts as a backward mask to the prime.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Curr Biol 13: 59–63.CrossRefGoogle ScholarPubMed
Arrighi, R., Alais, D., & Burr, D. (2005). Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Res 45: 2917–2925.CrossRefGoogle Scholar
Baars, B. (1995). Surprisingly small subcortical structures are needed for the state of waking consciousness, while cortical projection areas seem to provide perceptual contents of consciousness. Conscious Cogn 4: 159–162.CrossRefGoogle ScholarPubMed
Baars, B. J. (1997). In the Theater of Consciousness: The Workspace of the Mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bachmann, T. (1984). The process of perceptual retouch: nonspecific afferent activation dynamics in explaining visual masking. Percept Psychophys 35: 69–84.CrossRefGoogle ScholarPubMed
Bachmann, T. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica 70: 3–17.CrossRefGoogle ScholarPubMed
Bachmann, T. (1994). Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience. Commack, NY: Nova Science Publishers.Google Scholar
Bachmann, T. (1997). Visibility of brief images: The dual-process approach. Conscious Cogn 6: 491–518.CrossRefGoogle ScholarPubMed
Bachmann, T. (1999). Twelve spatiotemporal phenomena, and one explanation. In G., Aschersleben, T., Bachmann, & J., Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events. (173–206). Amsterdam: Elsevier.CrossRefGoogle Scholar
Bachmann, T. (2000). Microgenetic Approach to the Conscious Mind. Amsterdam/Philadelphia: John Benjamins.CrossRefGoogle Scholar
Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Conscious Cogn 12: 279–297.CrossRefGoogle ScholarPubMed
Bachmann, T., & Oja, A. (2003). Flash-lag without change in feature space is alive and well at late intervals after stream onset. Perception 32(Suppl.): 126–127.Google Scholar
Bachmann, T., & Põder, E. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Res 41: 1103–1106.CrossRefGoogle Scholar
Bachmann, T., Põder, E., & Luiga, I. (2004). Illusory reversal of temporal order: the bias to report a dimmer stimulus as the first. Vision Res 44: 241–246.CrossRefGoogle ScholarPubMed
Bachmann, T., & Sikka, P. (2005). Perception of successive targets presented in invariant-item streams. Acta Psychologica 120: 19–34.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.CrossRefGoogle ScholarPubMed
Bogen, J. E. (1995). On the neurophysiology of consciousness: I. An overview. Conscious Cogn 4: 52–62.CrossRefGoogle ScholarPubMed
Bonneh, Y., Cooperman, A., & Sagi, D. (2001). Motion-induced blindness in normal observers. Nature 411: 798–801.CrossRefGoogle ScholarPubMed
Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci U S A 102: 7002–7007.CrossRefGoogle ScholarPubMed
Bregman, A. S., & Rudnicky, A. J. (1975). Auditory segregation: stream or streams? J Exp Psychol Hum Percept Perform 104: 263–267.CrossRefGoogle Scholar
Breitmeyer, B. G., & Öğmen, H. (2006). Visual Masking: Time Slices Through Conscious and Unconscious Vision. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brenner, E., & Smeets, J. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.CrossRefGoogle Scholar
Brooks, B., & Jung, R. (1973). Neuronal physiology of the visual cortex. In R., Jung (ed.), Handbook of Sensory Physiology. Vol. VII/.3 (325–440). New York: Springer-Verlag.Google Scholar
Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. J Vis 1: 127a.CrossRefGoogle Scholar
Carretie, L., Hinojosa, J. A., Mercado, F., & Tapia, M. (2005). Cortical response to subjectively unconscious danger. NeuroImage 24: 615–623.CrossRefGoogle ScholarPubMed
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A 81: 4586–4590.CrossRefGoogle ScholarPubMed
Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391: 245–250.CrossRefGoogle ScholarPubMed
Crick, F., & Koch, C. (2003). A framework for consciousness. Nat Neurosci 6: 119–126.CrossRefGoogle ScholarPubMed
DiLollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J Exp Psychol Gen 129: 481–507.CrossRefGoogle Scholar
Eagleman, D. M. (2010). How does the timing of neural signals map onto the timing of perception? In R., Nijhawan & B., Khurana (eds.), Space and Time in Perception and Action (216–231). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Percep Psychophys 12: 201–204.CrossRefGoogle Scholar
Herrmann, C. S., & Mecklinger, A. (2001). Gamma activity in human EEG is related to high-speed memory comparisons during object selective attention. Vis Cogn 8: 593–608.CrossRefGoogle Scholar
Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.CrossRefGoogle ScholarPubMed
Hommuk, K., Bachmann, T., & Oja, A. (2008). Precuing an isolated stimulus temporarily outweighs in-stream stimulus facilitation. J Gen Psychol 135: 167–181.CrossRefGoogle ScholarPubMed
Jaśkowski, P., van der Lubbe, R., Schlotterbeck, E., & Verleger, R. (2002). Traces left on visual selective attention by stimuli that are not consciously identified. Psychol Sci 13: 48–54.CrossRefGoogle Scholar
John, E. R. (2005). From synchronous neuronal discharges to subjective awareness? In S., Laureys (ed.), Progress in Brain Research. 150: 143–171.Google Scholar
Kanwisher, N. (2001). Neural events and perceptual awareness. Cognition 79: 89–113.CrossRefGoogle ScholarPubMed
Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologia 42: 831–835.CrossRefGoogle ScholarPubMed
Khurana, B., & Nijhawan, R. (1995). Extrapolation or attention shift? Nature 378: 566.CrossRefGoogle Scholar
Khurana, B., Watanabe, K., & Nijhawan, R. (2000). The role of attention in motion extrapolation: are moving objects “corrected” of flashed objects attentionally delayed? Perception 29: 675–692.CrossRefGoogle ScholarPubMed
Kirschfeld, K. (2006). Stopping motion and the flash-lag effect. Vision Res 46: 1547–1551.CrossRefGoogle ScholarPubMed
Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: two distinct brain processes. Trends Cogn Sci 11: 16–22.CrossRefGoogle ScholarPubMed
Kreegipuu, K., & Allik, J. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43: 1625–1635.CrossRefGoogle ScholarPubMed
Krekelberg, B. (2001). The persistence of position. Vision Res 41: 529–539.CrossRefGoogle Scholar
Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Res 39: 2669–2679.CrossRefGoogle Scholar
LaBerge, D. (1997). Attention, awareness, and the triangular circuit. Conscious Cogn 6: 149–181.CrossRefGoogle ScholarPubMed
Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends Cogn Sci 7: 12–18.CrossRefGoogle ScholarPubMed
Lamme, V. A. F. (2004). Separate neural definitions of visual consciousness and visual attention; a case for phenomenal awareness. Neural Netw 17: 861–872.CrossRefGoogle ScholarPubMed
Libet, B. (2004). Mind Time. The Temporal Factor in Consciousness. Cambridge, MA: Harvard University Press.Google Scholar
Llinás, R., Leznik, E., & Urbano, F. J. (2002). Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99: 449–454.CrossRefGoogle ScholarPubMed
Llinás, R., & Ribary, U. (2001). Consciousness and the brain. The thalamocortical dialogue in health and disease. Ann N Y Acad Sci 929: 166–175.CrossRefGoogle ScholarPubMed
Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841–1849.CrossRefGoogle ScholarPubMed
Llinás, R., Urbano, F. J., Leznik, E., Ramirez, R. R., & van Merle, H. J. F. (2005). Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28: 325–333.CrossRefGoogle ScholarPubMed
Magoun, H. W. (1958). The Waking Brain. Springfield, IL: C. C. Thomas.CrossRefGoogle Scholar
McDonald, J. J., Teder-Sälejärvi, W. A., Di Russo, F., & Hillyard, S. A. (2005). Neural basis of auditory-induced shifts in visual time-order perception. Nat Neurosci 8: 1197–1202.CrossRefGoogle ScholarPubMed
Melcher, D., Papathomas, T. V., & Vidnyansky, Z. (2005). Implicit attentional selection of bound visual features. Neuron 46: 723–729.CrossRefGoogle ScholarPubMed
Mitroff, S. R., & Scholl, B. J. (2004). Last but not least: seeing the disappearance of unseen objects. Perception 33: 1267–1273.CrossRefGoogle Scholar
Mitroff, S. R., & Scholl, B. J. (2005). Forming and updating object representations without awareness: evidence from motion-induced blindness. Vision Res 45: 961–967.CrossRefGoogle ScholarPubMed
Montaser-Kouhsari, L., & Rajimehr, R. (2005). Subliminal attentional modulation in crowding condition. Vision Res 45: 839–844.CrossRefGoogle ScholarPubMed
Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive system. Proc R Soc Lond B Biol Sci 264: 1407–1414.CrossRefGoogle Scholar
Murakami, I. (2001). A flash-lag effect in random motion. Vision Res 41: 3101–3119.CrossRefGoogle ScholarPubMed
Naccache, L., Blandin, E., & Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychol Sci 13: 416–424.CrossRefGoogle ScholarPubMed
Neumann, O. (1982). Experimente zum Fehrer-Raab-Effekt und das Wetterwart-Modell der visuellen Maskierung. Report No. 24/1982, Psychological Institute, Ruhr-University Bochum.Google Scholar
Newman, J. (1995). Thalamic contributions to attention and consciousness. Conscious Cogn 4: 172–193.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.CrossRefGoogle ScholarPubMed
Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T., Metzinger (ed.), Neural Correlates of Consciousness. (203–219). Cambridge, MA: MIT Press.Google Scholar
Öğmen, H., Patel, S. S., Bedell, H. E., & Camuz, K. (2004). Differential latencies and the dynamics of the position computation process of moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.CrossRefGoogle ScholarPubMed
Purpura, D. (1970). Operations and processes in thalamic and synaptically related neural subsystems. In F. O., Schmitt (ed.), The Neurosciences. Second Study Program (458–470). New York: Rockefeller University Press.Google Scholar
Rees, G., Kreiman, G., & Koch, C. (2002). Neural correlates of consciousness in humans. Nat Rev Neurosci 3: 261–270.CrossRefGoogle ScholarPubMed
Reichardt, W. (1961). Autocorrelation: a principle for the evaluation of sensory information by the central nervous system. In W. A., Rosenblith (ed.), Principles of Sensory Communication. New York: Wiley.Google Scholar
Ribary, U. (2005). Dynamics of thalamo-cortical network oscillations and human perception. In S., Laureys (ed.), Progress in Brain Research, Vol. 150 (127–142).Google Scholar
Rose, D. (2006). Consciousness. Oxford: Oxford University Press.Google Scholar
Salminen, N., Koivisto, M., & Revonsuo, A. (2005). Independence of visual awareness from attention at early processing stages. Paper presented at ASSC9, June 24–27, Pasadena, CA.
Scharlau, I. (2004a). Evidence against response bias in temporal order tasks with attention manipulation by masked prime. Psychol Res 68: 224–236.CrossRefGoogle Scholar
Scharlau, I. (2004b). The spatial distribution of attention in perceptual latency priming. Q J Exp Psychol 57: 1411–1436.CrossRefGoogle ScholarPubMed
Scharlau, I. (2007). Temporal processes in prime-mask interaction. Advances in Cognitive Psychology 3: 241–255.CrossRefGoogle Scholar
Scharlau, I., & Ansorge, U. (2003). Intention-mediated control of attention by nonconscious information (paper presented at ASSC8).
Scharlau, I., & Neumann, O. (2003a). Temporal parameters and time course of perceptual latency priming. Acta Psychologica 113: 185–203.CrossRefGoogle ScholarPubMed
Scharlau, I., & Neumann, O. (2003b). Perceptual latency priming by masked and unmasked stimuli: evidence for an attentional interpretation. Psychol Res 67: 184–196.CrossRefGoogle ScholarPubMed
Scheibel, A. (1980). Anatomical and physiological substrates of arousal: a view from the bridge. In J. A., Hobson & M. A. B., Brazier (eds.), The Reticular Formation Revisited: Specifying Function for a Nonspecific System (55–66). New York: Raven.Google Scholar
Schurger, A., Cowey, A., Cohen, J., Treisman, A., & Tallon-Baudry, C. (2008). Distinct and independent correlates of awareness and attention in a hemianopic patient. Neuropsychologia 46: 2189–2197.CrossRefGoogle Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.”Proc Natl Acad Sci U S A 95: 7121–7126.CrossRefGoogle ScholarPubMed
Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.CrossRefGoogle ScholarPubMed
Shore, D. J., Spence, C., & Klein, R. M. (2001). Visual prior entry. Psychol Sci 12: 205–212.CrossRefGoogle ScholarPubMed
Singer, W. (1998). Consciousness and the structure of neuronal representations. Philos Trans R Soc Lond B Biol Sci 353: 1829–1840.CrossRefGoogle ScholarPubMed
Steriade, M. (1996). Awakening the brain. Nature 383: 24–25.CrossRefGoogle Scholar
Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neurosci 101: 243–276.CrossRefGoogle ScholarPubMed
Steriade, M., Jones, E. G., & Llinás, R. R. (1990). Thalamic Oscillations and Signalling. New York: Wiley.Google Scholar
Steriade, M., Jones, E. G., & McCormick, D. A. (1997). Thalamus. Oxford: Elsevier.Google ScholarPubMed
Steriade, M., & McCarley, R. W. (2005). Brain Control of Wakefulness and Sleep. New York: Springer/Kluwer/Plenum.Google Scholar
Stone, A., & Valentine, T. (2005). Orientation of attention to nonconsciously recognised famous faces. Cogn Emot 19: 537–558.CrossRefGoogle Scholar
Summerfield, C., Jack, A. I., & Burgess, A. P. (2002). Induced gamma activity is associated with conscious awareness of pattern masked nouns. Int J Psychophysiol 44: 93–100.CrossRefGoogle ScholarPubMed
Taylor, K., Mandon, S., Freiwald, W. A., & Kreiter, A. K. (2005). Coherent oscillatory activity in monkey area V4 predicts successful allocation of attention. Cerebral Cortex 15: 1424–1437.CrossRefGoogle ScholarPubMed
Treisman, A. (1998). Feature binding, attention and object perception. Proc R Soc Lond B Biol Sci 353: 1295–1306.CrossRefGoogle ScholarPubMed
VanRullen, R., Reddy, L., & Koch, C. (2010). A motion illusion reveals the temporally discrete nature of visual awareness. In R., Nijhawan & B., Khurana (eds.), Space and Time in Perception and Action (521–535). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vibell, J., Klinge, C., Zampini, M., Spence, C., & Nobre, A. C. (2007). Temporal order is coded temporally in the brain: early event-related potential latency shifts underlying prior entry in a cross-modal TOJ task. J Cogn Neurosci 19: 109–120.CrossRefGoogle Scholar
Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1: 656–657.CrossRefGoogle Scholar
Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.CrossRefGoogle ScholarPubMed
Wright, R. D., & Richard, D. M. (2003). Sensory mediation of stimulus-driven attentional capture in multiple-cue displays. Percept Psychophys 65: 925–938.CrossRefGoogle ScholarPubMed
Wyart, V., & Tallon-Baudry, C. (2008). Neural dissociation between visual awareness and spatial attention. J Neurosci 28: 2667–2679.CrossRefGoogle ScholarPubMed
Zampini, M., Shore, D. I., & Spence, C. (2005). Audiovisual prior entry. Neurosci Lett 381: 217–222.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×