Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:36:45.068Z Has data issue: false hasContentIssue false

Part II - Climate change in cold environments and general implications for contemporary solute and sedimentary fluxes

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, R. S. (2002). Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 3558.CrossRefGoogle Scholar
Anderson, R. S., Drever, J. I., and Humphrey, N. F. (1997). Chemical weathering in glacial environments. Geology, 25, 399402.2.3.CO;2>CrossRefGoogle Scholar
Anderson, S. P. (2005). Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphology, 67, 147157.CrossRefGoogle Scholar
Anderson, S. P. (2007). Biogeochemistry of glacial landscape systems. Annual Review of Earth and Planetary Sciences, 35, 375399.CrossRefGoogle Scholar
Azocar, G. F., and Brenning, A. (2010). Hydrological and geomorphological significance of rock glaciers in the Dry Andes, Chile (27–33° S). Permafrost and Periglacial Processes, 21, 4253.CrossRefGoogle Scholar
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. Holocene, 12, 371376.CrossRefGoogle Scholar
Barry, R., and Gan, T. Y. (2011). The Global Cryosphere: Past, Present and Future, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barsch, D. (1977). Nature and importance of mass-wasting by rock glaciers in alpine permafrost environments. Earth Surface Processes, 2, 231245.CrossRefGoogle Scholar
Barsch, D., Gude, M., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie, Suppl.-Band, 97, 111122.Google Scholar
Beltaos, S., and Burrell, B. C. (2005). Field measurements of ice-jam-release surges. Canadian Journal of Civil Engineering, 32, 699711.CrossRefGoogle Scholar
Beltaos, S., and Prowse, T. (2009). River-ice hydrology in a shrinking cryosphere. Hydrological Processes, 23, 122144.CrossRefGoogle Scholar
Berthling, I., Eiken, T., and Sollid, J. L. (2000). Continuous measurements of solifluction using carrier-phase differential GPS. Norwegian Journal of Geography, 54, 182185.Google Scholar
Berthling, I., and Etzelmüller, B. (2007). Holocene rockwall retreat and the estimation of rock glacier age, Prins Karls Forland, Svalbard. Geografiska Annaler Series A-Physical Geography, 89A, 8393.CrossRefGoogle Scholar
Berthling, I., Etzelmüller, B., Larsen, C. K., and Nordahl, K. (2002). Sediment fluxes from creep processes at Jomfrunut, southern Norway. Norwegian Journal of Geography, 56, 6773.Google Scholar
Berthling, I. T., and Etzelmüller, B. (2011). The concept of cryo-conditioning in landscape evolution. Quaternary Research, 75, 378384.CrossRefGoogle Scholar
Blikra, L. H., and Christiansen, H. H. (2014). A field-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology, 208, 3449.CrossRefGoogle Scholar
Blikra, L. H., and Nemec, W. (1998). Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology, 45, 909959.CrossRefGoogle Scholar
Brown, R. D., and Robinson, D. A. (2011). Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. The Cryosphere, 5, 219229.CrossRefGoogle Scholar
Caine, N. (1986). Sediment movement and storage on alpine slopes in the Colorado Rocky Mountains. In Abrahams, A. D., ed. Hillslope Processes. Binghampton Symposium in Geomorphology: International Series No. 16. London: Allen & Unwin: 115137.Google Scholar
Carey, S. K., and Woo, M. K. (2000). The role of soil pipes as a slope runoff mechanism, Subarctic Yukon, Canada. Journal of Hydrology, 233, 206222.CrossRefGoogle Scholar
Chorley, R. J., and Kennedy, B. A. (1971). Physical geography – A systems approach. London: Prentice Hall.Google Scholar
Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H., Farbrot, H., Humlum, O., Johansson, M., Ingeman-Nielsen, T., Kristensen, L., Hjort, J., Holmlund, P., Sannel, A. B. K., Sigsgaard, C., Åkerman, H. J., Foged, N., Blikra, L. H., Pernosky, M. A., and Ødegård, R. (2010). The thermal state of permafrost in the Nordic area during the International Polar Year 2007–2009. Permafrost and Periglacial Processes, 21, 156181.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull., 83, 30593071.CrossRefGoogle Scholar
Coussy, O. (2005). Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53, 16891718.CrossRefGoogle Scholar
Davies, M. C. R., Hamza, O., and Harris, C. (2001). The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafrost and Periglacial Processes, 12, 137144.CrossRefGoogle Scholar
Dugan, H. A., Lamoureux, S. F., Lafrenière, M. J., and Lewis, T. (2009). Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed. Hydrological Processes, 23, 15141526.CrossRefGoogle Scholar
Eckerstorfer, M., Christiansen, H., Rubensdotter, L., and Vogel, S. (2013). The role of cornice fall avalanches in the Longyeardalen valley, Svalbard. The Cryosphere, 7, 13611374.CrossRefGoogle Scholar
Etzelmüller, B., and Frauenfelder, R. (2009). Factors controlling the distribution of mountain permafrost in the Northern Hemisphere and their influence on sediment transfer. Arctic Antarctic and Alpine Research, 41, 4858.CrossRefGoogle Scholar
Etzelmüller, B., and Hagen, J. O. (2005). Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. Geological Society, London, Special Publications, 242, 1127.CrossRefGoogle Scholar
Etzelmüller, B., Hagen, J. O., Vatne, G., Ødegård, R. S., and Sollid, J. L. (1996). Glacier debris accumulation and sediment deformation influenced by permafrost, examples from Svalbard. Annals of Glaciology, 22, 5362.CrossRefGoogle Scholar
Farbrot, H., Hipp, T. F., Etzelmüller, B., Isaksen, K., Odegard, R. S., Schuler, T. V., and Humlum, O. (2011). Air and ground temperature variations observed along elevation and continentality gradients in Southern Norway. Permafrost and Periglacial Processes, 22, 343360.CrossRefGoogle Scholar
Fernandez, R. A., Anderson, J. B., Wellner, J. S., and Hallet, B. (2011). Timescale dependence of glacial erosion rates: a case study of Marinelli Glacier, Cordillera Darwin, southern Patagonia. Journal of Geophysical Research: Earth Surface, 116, F01020.CrossRefGoogle Scholar
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J. (2006). Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Natural Hazards and Earth System Sciences, 6, 761772.CrossRefGoogle Scholar
Fryirs, K. (2013). (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 3046.CrossRefGoogle Scholar
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857.CrossRefGoogle ScholarPubMed
Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T. V., and Westermann, S. (2013). CryoGRID 1.0: permafrost distribution in Norway estimated by a spatial numerical model. Permafrost and Periglacial Processes, 24, 2-19.CrossRefGoogle Scholar
González Trueba, J. J., Moreno, R. M., Martínez de Pisón, E., and Serrano, E. (2008). “Little Ice Age” glaciation and current glaciers in the Iberian Peninsula. The Holocene, 18, 551568.CrossRefGoogle Scholar
Goudie, A. S., and Viles, H. A. (2012). Weathering and the global carbon cycle: geomorphological perspectives. Earth-Science Reviews, 113, 5971.CrossRefGoogle Scholar
Gruber, S., and Haeberli, W. (2007). Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. Journal of Geophysical Research-Earth Surface, 112.CrossRefGoogle Scholar
Haeberli, W., Huggel, C., Kääb, A., Zgraggen-Oswald, S., Polkvoj, A., Galushkin, I., Zotikov, I., and Osokin, N. (2004). The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. Journal of Glaciology, 50, 533546.CrossRefGoogle Scholar
Hall, K., and Thorn, C. (2011). The historical legacy of spatial scales in freeze–thaw weathering: Misrepresentation and resulting misdirection. Geomorphology, 130, 8390.CrossRefGoogle Scholar
Hallet, B., Hunter, L., and Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change, 12, 213235.CrossRefGoogle Scholar
Harris, C., Davies, M. C. R., and Coutard, J.-P. (1995). Laboratory simulation of periglacial solifluction: significance of porewater pressure, moisture contents and undrained shear strength during thawing. Permafrost and Periglacial Processes, 6, 293312.CrossRefGoogle Scholar
Harris, C., Kern-Luetschg, M., Christiansen, H. H., and Smith, F. (2011). The role of interannual climate variability in controlling solifluction processes, Endalen, Svalbard. Permafrost and Periglacial Processes, 22, 239253.CrossRefGoogle Scholar
Harris, C., Kern-Luetschg, M., Murton, J., Font, M., Davies, M., and Smith, F. (2008). Solifluction processes on permafrost and non-permafrost slopes: results of a large-scale laboratory simulation. Permafrost and Periglacial Processes, 19, 359378.CrossRefGoogle Scholar
Harris, C., and Lewkowicz, A. G. (2000). An analysis of the stability of thawing slopes, Ellesmere Island, Nunavut, Canada. Canadian Geotechnical Journal, 37, 449462.CrossRefGoogle Scholar
Harrison, S., Rowan, A. V., Glasser, N. F., Knight, J., Plummer, M. A., and Mills, S. C. (2014). Little Ice Age glaciers in Britain: glacier–climate modelling in the Cairngorm Mountains. The Holocene, 24, 135140.CrossRefGoogle Scholar
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J. (2014). Global chemical weathering and associated P-release – The role of lithology, temperature and soil properties. Chemical Geology, 363, 145163.CrossRefGoogle Scholar
Hewitt, K. (2009). Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology, 103, 6679.CrossRefGoogle Scholar
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C., and Schlunegger, F. (2013). River loads and modern denudation of the Alps – A review. Earth-Science Reviews, 118, 1144.CrossRefGoogle Scholar
Hipp, T., Etzelmüller, B., Farbrot, H., Schuler, T., and Westermann, S. (2012). Modelling borehole temperatures in southern Norway – insights into permafrost dynamics during the 20th and 21st century. The Cryosphere, 6, 553571.CrossRefGoogle Scholar
Holmes, R. M., Coe, M. T., Fiske, G. J., Gurtovaya, T., McClelland, J. W., Shiklomanov, A. I., Spencer, R. G., Tank, S. E., and Zhulidov, A. V. (2013). Climate change impacts on the hydrology and biogeochemistry of Arctic rivers. In Goldman, C. R., Kumagai, M., and Robarts, R. D., eds., Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies. Hoboken, NJ: Wiley, pp. 326.Google Scholar
Huggel, C., Clague, J. J., and Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37, 7791.CrossRefGoogle Scholar
Humlum, O. (2000). The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland. Geomorphology, 35, 4167.CrossRefGoogle Scholar
Humlum, O., Christiansen, H. H., and Juliussen, H. (2007). Avalanche‐derived rock glaciers in Svalbard. Permafrost and Periglacial Processes, 18, 7588.CrossRefGoogle Scholar
Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35, 245296.CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des bündnerischen Rheingebietes: ein Beitrag zur exogenen Dynamik alpiner Gebirgslandschaften. Beiträge zur Geologie der Schweiz, Geotechnische Serie 36. Bern: Kümmerly und Frey.Google Scholar
Jasek, M. (2003). Ice jam release surges, ice runs, and breaking fronts: field measurements, physical descriptions, and research needs. Canadian Journal of Civil Engineering, 30, 113127.CrossRefGoogle Scholar
Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., and Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36, L03503.CrossRefGoogle Scholar
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498.CrossRefGoogle ScholarPubMed
Kääb, A., Frauenfelder, R., and Roer, I. (2007). On the response of rockglacier creep to surface temperature increase. Global and Planetary Change, 56, 172187.CrossRefGoogle Scholar
Keller, K., Blum, J. D., and Kling, G. W. (2007). Geochemistry of soils and streams on surfaces of varying ages in Arctic Alaska. Arctic, Antarctic, and Alpine Research, 39, 8498.CrossRefGoogle Scholar
Korup, O., and Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26, 34063422.CrossRefGoogle Scholar
Krautblatter, M., Funk, D., and Günzel, F. K. (2013). Why permafrost rocks become unstable: a rock–ice‐mechanical model in time and space. Earth Surface Processes and Landforms, 38, 876887.CrossRefGoogle Scholar
Lantuit, H., Overduin, P., and Wetterich, S. (2013). Recent progress regarding permafrost coasts. Permafrost and Periglacial Processes, 24, 120130.CrossRefGoogle Scholar
Lantuit, H., and Pollard, W. H. (2008). Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology, 95, 84-102.CrossRefGoogle Scholar
Lantuit, H., Pollard, W. H., Couture, N., Fritz, M., Schirrmeister, L., Meyer, H., and Hubberten, H. W. (2012). Modern and late Holocene retrogressive thaw slump activity on the Yukon Coastal Plain and Herschel Island, Yukon Territory, Canada. Permafrost and Periglacial Processes, 23, 3951.CrossRefGoogle Scholar
Leibman, M., Khomutov, A., and Kizyakov, A. (2014). Cryogenic landslides in the West-Siberian Plain of Russia: classification, mechanisms, and landforms. In Shan, W., Guo, Y., Wang, F., Marui, H., and Strom, A., eds., Landslides in Cold Regions in the Context of Climate Change. New York: Springer International Publishing, pp. 143162.CrossRefGoogle Scholar
Leonard, E. M. (1997). The relationship between glacial activity and sediment production: evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology, 17, 319330.CrossRefGoogle Scholar
Lesack, L. F. W., Marsh, P., Hicks, F. E., and Forbes, D. L. (2014). Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophysical Research Letters, 41, 15601567.CrossRefGoogle Scholar
Lewis, T., Lafrenière, M. J., and Lamoureux, A. F. (2012). Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost disturbance, Cape Bounty, Melville Island, Canada. Hydrological Processes, 26, 20032018.CrossRefGoogle Scholar
Lewkowicz, A. G. (2007). Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafrost and Periglacial Processes, 18, 89-103.CrossRefGoogle Scholar
Lewkowicz, A. G., and Kokelj, S. V. (2002). Slope sediment yield in arid lowland continuous permafrost environments, Canadian Arctic Archipelago. Catena, 46, 261283.CrossRefGoogle Scholar
Lilleøren, K. S., Etzelmüller, B., Schuler, T. V., Gisnås, K., and Humlum, O. (2012). The relative age of mountain permafrost – estimation of Holocene permafrost limits in Norway. Global and Planetary Change, 92–93, 209223.CrossRefGoogle Scholar
Lilleøren, K. S., Humlum, O., Nesje, A., and Etzelmüller, B. (2013). Holocene development and geomorphic processes at Omnsbreen, southern Norway: evidence for glacier–permafrost interactions. The Holocene, 23, 796809.CrossRefGoogle Scholar
Marchenko, S., and Etzelmüller, B. (2013). Permafrost: formation and distribution, thermal and mechanical properties. In Shroder, J. F., Giardino, R., and Harbor, J., eds., Treatise on Geomorphology. San Diego, CA: Academic Press. Volume 8, Glacial and Periglacial Geomorphology: pp. 202222.CrossRefGoogle Scholar
Matthews, J. A., Dahl, S.-O., Berrisford, M. S., Nesje, A., Dresser, P. Q., and Dumayne-Peaty, L. (1997). A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. Journal of Quaternary Science, 12, 117129.3.0.CO;2-1>CrossRefGoogle Scholar
Matthews, J. A., Harris, C., and Ballantyne, C. K. (1986). Studies on a gelifluction lobe, Jotunheimen, Norway: 14C chronology, stratigraphy, sedimentology and palaeoenvironment. Geografiska Annaler. Series A. Physical Geography, 68(4), 345360.Google Scholar
McCarroll, D., and Viles, H. (1995). Rock-weathering by the lichen Lecidea auriculata in an Arctic alpine environment. Earth Surface Processes & Landforms, 20, 199206.CrossRefGoogle Scholar
Milliman, J. D., and Farnsworth, K. L. (2011). River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge, England: Cambridge University PressCrossRefGoogle Scholar
Montross, S., Skidmore, M., Christner, B., Samyn, D., Tison, J. L., Lorrain, R., Doyle, S., and Fitzsimons, S. (2014). Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica. Geomicrobiology Journal, 31, 7681.CrossRefGoogle Scholar
Murton, J. B., and Belshaw, R. K. (2011). A conceptual model of valley incision, planation and terrace formation during cold and arid permafrost conditions of Pleistocene southern England. Quaternary Research, 75, 385394.CrossRefGoogle Scholar
Nesje, A. (2009). Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews, 28, 21192136.CrossRefGoogle Scholar
Nuth, C., Kohler, J., Konig, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., and Pettersson, R. (2013). Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere, 7, 16031621.CrossRefGoogle Scholar
Overduin, P., Strzelecki, M., Grigoriev, M., Couture, N., Lantuit, H., St-Hilaire-Gravel, D., Günther, F., and Wetterich, S. (2014). Coastal changes in the Arctic. Geological Society, London, Special Publications, 388, SP388. 313.CrossRefGoogle Scholar
Parker, G., and Klingeman, P. C. (1982). On why gravel bed streams are paved. Water Resources Research, 18, 14091423.CrossRefGoogle Scholar
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G. (2014). Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42, 3758.CrossRefGoogle Scholar
Radic, V., and Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4, 9194.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler, 42, 1200.Google Scholar
Ridefelt, H., Etzelmüller, B., and Boelhouwers, J. (2010). Spatial analysis of solifluction landforms and process rates in the Abisko Mountains, northern Sweden. Permafrost and Periglacial Processes, 21, 241255.CrossRefGoogle Scholar
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost and Periglacial Processes, 21, 106116.CrossRefGoogle Scholar
Shiklomanov, A., and Lammers, R. (2014). River ice responses to a warming Arctic – recent evidence from Russian rivers. Environmental Research Letters, 9(3), 035008.CrossRefGoogle Scholar
Shur, Y., Hinkel, K. M., and Nelson, F. E. (2005). The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes, 16, 517.CrossRefGoogle Scholar
Slaymaker, O., and Kelly, R. E. J. (2007). The Cryosphere and Global Environmental Change Malden, MA: Blackwell PublishingGoogle Scholar
Solomon, S. M. (2005). Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, Northwest Territories, Canada. Geo-Marine Letters, 25, 127137.CrossRefGoogle Scholar
Stallard, R. F. (1995). Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annual Review of Earth and Planetary Sciences, 23, 1139.CrossRefGoogle Scholar
Stoffel, M., and Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography, 36, 421439.CrossRefGoogle Scholar
Stumpf, A. R., Madden, M. E. E., Soreghan, G. S., Hall, B. L., Keiser, L. J., and Marra, K. R. (2012). Glacier meltwater stream chemistry in Wright and Taylor Valleys, Antarctica: Significant roles of drift, dust and biological processes in chemical weathering in a polar climate. Chemical Geology, 322, 7990.CrossRefGoogle Scholar
Surdu, C., Duguay, C., Brown, L., and Fernández Prieto, D. (2014). Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. The Cryosphere, 8, 167180.CrossRefGoogle Scholar
Syvitski, J. P. (2002). Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Research, 21, 323330.CrossRefGoogle Scholar
Turcotte, B., Morse, B., Bergeron, N. E., and Roy, A. G. (2011). Sediment transport in ice-affected rivers. Journal of Hydrology, 409, 561577.CrossRefGoogle Scholar
Van Everdingen, R. O. (1998). Multi-language glossary of permafrost and related ground-ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish, Potsdam, Germany: International Permafrost Association, Terminology Working Group.Google Scholar
Waller, R. I., Murton, J. B., and Kristensen, L. (2012). Glacier–permafrost interactions: Processes, products and glaciological implications. Sedimentary Geology, 255–256, 128.CrossRefGoogle Scholar
Westermann, S., Schuler, T., Gisnås, K., and Etzelmüller, B. (2013). Transient thermal modeling of permafrost conditions in Southern Norway. Cryosphere, 7, 719739.CrossRefGoogle Scholar
Wohl, E., and Beckman, N. D. (2011). Leaky rivers: implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology, 205, 2735.CrossRefGoogle Scholar
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G. (2010). Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 103, 3144.CrossRefGoogle Scholar
Yang, M., Wang, S., Yao, T., Gou, X., Lu, A., and Guo, X. (2004). Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau. Cold Regions Science and Technology, 39, 4753.CrossRefGoogle Scholar
Yao, H., Samal, N. R., Joehnk, K. D., Fang, X., Bruce, L. C., Pierson, D. C., Rusak, J. A., and James, A. (2014). Comparing ice and temperature simulations by four dynamic lake models in Harp Lake: past performance and future predictions. Hydrological Processes, 28(16), 45874601.CrossRefGoogle Scholar
Yde, J. C., Finster, K. W., Raiswell, R., Steffensen, J. P., Heinemeier, J., Olsen, J., Gunnlaugsson, H. P., and Nielsen, O. B. (2010). Basal ice microbiology at the margin of the Greenland ice sheet. Annals of Glaciology, 51, 7179.CrossRefGoogle Scholar
Zhang, T., Barry, R. G., Knowles, K., Ling, F., and Armstrong, R. L. (2003). Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. 8th International Conference on Permafrost, Zürich, Switzerland, A. A. Balkema, Lisse, Netherlands.Google Scholar
Zhang, Y., Chen, W., and Riseborough, D. W. (2008). Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global and Planetary Change, 60, 443456.CrossRefGoogle Scholar
Zhao, L., and Gray, D. M. (1999). Estimating snowmelt infiltration into frozen soils. Hydrological Processes, 13, 18271842.3.0.CO;2-D>CrossRefGoogle Scholar

References

Arctic Monitoring and Assessment Programme (AMAP). (2011). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP)Google Scholar
Antonsson, H. Björk, R. G., and Molau, U. (2009). Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecology & Diversity, 2, 1725.CrossRefGoogle Scholar
Arctic Council. (2013). Arctic Resilience Interim Report 2013. Stockholm: Stockholm Environment Institute and Stockholm Resilience Centre.Google Scholar
Björk, R. G., and Molau, U. (2007). Ecology of alpine snowbeds and the impact of Global Change. Arctic, Antarctic, and Alpine Research, 39, 3443.CrossRefGoogle Scholar
Callaghan, T. V., Jonasson, C., Thierfelder, T., Zhenlin, Y., Hedenås, H., Johansson, M., Molau, U., Van Bogaert, R., Olofsson, J., Jones, D., Bokhorst, S., Phoenix, G., Bjerke, J., Tømmervik, H., Christensen, T., Hanna, E., Koller, E., and Sloan, V. (2013). Ecosystem change and stability over multiple decades in the Swedish sub-Arctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society, B, Biological Sciences, 368, doi: 10.1098/rstb.2012.0488CrossRefGoogle Scholar
Cramer, W., Yohe, G., Auffhammer, M., Huggel, C., Molau, U., Assunção Faus da Silva Dias, M., Solow, A., Stone, D., and Tibig, L. (2014). Chapter 18: Detection and Attribution of Observed Impacts. Climate Change 2014 – Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the IPCC. Cambridge: Cambridge University Press (available at http://www.ipcc.ch).Google Scholar
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., Keuper, F., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C.-H., Webber, P. J., Welker, J. M., and Wookey, P. A, (2012a). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164175.CrossRefGoogle ScholarPubMed
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone,, J. F. Jónsdóttir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnússon, B., May, J. L., Mercado-Díaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Schmidt, N. M., Shaver, G. R., Spasojevic, M. J., Thórhallsdóttir, Th. E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X., Webber, P. J., Welker, J. M., and Wipf, S. (2012b). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2, 453457.CrossRefGoogle Scholar
Forbes, D. L. (Ed.). (2011). State of the Arctic Coast 2010 – Scientific Review and Outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Geesthacht, Germany: Helmholtz-Zentrum.Google Scholar
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Benito Alonso, J. L., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.-P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I., and Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111115.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014. Synthesis Report. Cambridge University Press (available at http://www.ipcc.ch).Google Scholar
Larsen, J. N., Anisimov, O. A., Constable, A., Hollowed, A., Maynard, N., Prestrud, P., Prowse, T., and Stone, J. (2014). Chapter 28: Polar Regions. Climate Change 2014 – Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the IPCC. Cambridge: Cambridge University Press (available at http://www.ipcc.ch).Google Scholar
Larsson, B. (2014). Alpine arthropod diversity: spatial and environmental variation. Unpublished M.Sc. thesis, University of Gothenburg.Google Scholar
Lindblad, K. E. M., Nyberg, R., and Molau, U. (2006). Generalization of heterogeneous alpine vegetation in air photo-based image classification, Latnjajaure catchment, northern Sweden. Pirineos, 161, 324.CrossRefGoogle Scholar
Molau, U. (2010). Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity, 3, 2934.CrossRefGoogle Scholar
Molau, U. and Alatalo, J. M. (1998). Responses of sub-arctic plant communities to simulated environmental change: Biodiversity of bryophytes, lichens, and vascular plants. Ambio, 27, 322329.Google Scholar
Oberbauer, S. F., Elmendorf, S. C., Troxler, T. G., Hollister, R. D., Rocha, A. V., Bret-Harte, M. S., Dawes, M. A., Fosaa, A. M., Henry, G. H. R., Høye, T. T., Jarrad, F. C., Jónsdóttir, I. S., Klanderud, K., Klein, J. A., Molau, U., Rixen, C. Schmidt, N. M., Shaver, G. R., Slider, R. T., Totland, Ø., Wahren, C.-H., and Welker, J. M. (2013). Long-term changes in Arctic tundra ecosystems. Philosophical Transactions of the Royal Society, B, Biological Sciences, 368, doi: 10.1098/rstb.2012.0481Google Scholar
Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Ahhalkatsi, M., Benito Alonso, J. L. , Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R., Ghosn, D., Holten, J. I., Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, D., Moiseev, P., Molau, U., Molero Mesa, J., Nagy, L., B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A. O., Theurillat, J.-P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P., and Grabherr, G. (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336, 353355.CrossRefGoogle ScholarPubMed
Ridefelt, H., Etzelmüller, B., Boelhouwers, B., and Jonasson, C. (2008). Statistic-empirical modeling of mountain permafrost distribution in the Abisko region, sub-Arctic northern Sweden. Norwegian Journal of Geography, 62(4), 278289.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×