Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T02:42:20.913Z Has data issue: false hasContentIssue false

Chapter 3 - Measurement of Olfaction

Published online by Cambridge University Press:  17 January 2018

Christopher H. Hawkes
Affiliation:
Barts and the London School of Medicine and Surgery
Richard L. Doty
Affiliation:
University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acta Oto-Laryngologica Vol. 120, Iss. 2, 2000.Google Scholar
Akerlund, A., Bende, M., Murphy, C., 1995. Olfactory threshold and nasal mucosal changes in experimentally induced common cold. Acta Otolaryngologica (Stockh) 115, 8892.CrossRefGoogle ScholarPubMed
Amoore, J.E., Ollman, B.G., 1983. Practical test kits for quantitatively evaluating the sense of smell. Rhinology 21, 4954.Google ScholarPubMed
Aronzon, A., Hanson, C.W., Thaler, E.R., 2005. Differentiation between cerebrospinal fluid and serum with electronic nose. Otolaryngology-Head and Neck Surgery. 133(1), 1619.CrossRefGoogle ScholarPubMed
Baba, T., Kikuchi, A., Hirayama, K., et al. 2012. Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: A 3 year longitudinal study. Brain 135, 161169.CrossRefGoogle ScholarPubMed
Bajaj, S., Ammini, A.C., Marwaha, R., et al. 1993. Magnetic resonance imaging of the brain in idiopathic hypogonadotropic hypogonadism. Clinical Radiology 48, 122124.CrossRefGoogle ScholarPubMed
Bensafi, M., Rouby, C., Farget, V., et al. 2002. Autonomic nervous system responses to odours: The role of pleasantness and arousal. Chemical Senses 27, 703709.CrossRefGoogle ScholarPubMed
Bonfils, P., Faulcon, P., Avan, P., 2004. Screening of olfactory function using the Biolfa olfactory test: Investigations in patients with dysosmia. Acta Otolaryngologica (Stockh) 124, 10631071.CrossRefGoogle ScholarPubMed
Brodoehl, S., Klingner, C, Volk, G.F., et al. 2012. Decreased olfactory bulb volume in idiopathic Parkinson’s disease detected by 3.0-Tesla magnetic resonance imaging. Movement Disorders 27, 10191025.CrossRefGoogle Scholar
Bromley, S.M., Doty, R.L., 1995. Odor recognition memory is better under bilateral than unilateral test conditions. Cortex 31, 2540.CrossRefGoogle ScholarPubMed
Brown, K.S., MacLean, C.M., Robinette, R.R., 1968. The distribution of the sensitivity to chemical odors in man. Human Biology 40, 456472.Google ScholarPubMed
Bruins, M., Rahim, Z., Bos, A., et al. 2013. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis. 93(2), 232238.CrossRefGoogle ScholarPubMed
Burlingame, G.A., Doty, R.L., 2015. The Smell and Taste of Public Drinking Water. Page 1079, Chapter 49 In: Doty, RL, editor. Handbook of Olfaction and Gustation. New York Wiley-Liss.Google Scholar
Burmeister, H.P., Bitter, T., Heiler, P.M., et al. 2012. Imaging of lamination patterns of the adult human olfactory bulb and tract: In vitro comparison of standard- and high-resolution 3T MRI, and MR microscopy at 9.4 T. Neuroimage 60, 16621670.CrossRefGoogle Scholar
Cain, W.S., Gent, J., Catalanotto, F.A., Goodspeed, R.B., 1983; Clinical evaluation of olfaction. American Journal of Otolaryngology 4, 252256.CrossRefGoogle ScholarPubMed
Cameron, E.L., Doty, R.L., 2013. Odor identification testing in children and young adults using the smell wheel. International Journal of Pediatric Otorhinolaryngology. 77(3), 346350.CrossRefGoogle Scholar
Cardesin, A., Alobid, I., Benitez, P., et al. 2006. Barcelona Smell Test – 24 (BAST-24): Validation and smell characteristics in the healthy Spanish population. Rhinology 44, 8389.Google ScholarPubMed
Carrasco, M., Ridout, J.B., 1993. Olfactory perception and olfactory imagery: A multidimensional analysis. Journal of Experimental Psychology: Human Perception and Performance 19, 287301.Google ScholarPubMed
Chemical Senses 27: A23 (This was an abstract in proceedings)Google Scholar
Chhabra, N., Houser, S.M., 2009. The diagnosis and management of empty nose syndrome. Otolaryngologic Clinics of North America. 42(2), 311330.CrossRefGoogle ScholarPubMed
Choudhury, E.S., Moberg, P., Doty, R.L., 2003. Influences of age and sex on a microencapsulated odor memory test. Chemical Senses 28, 799805.CrossRefGoogle ScholarPubMed
Christian, A. Mueller, Elisabeth, Grassinger, Asami, Naka, Andreas, F.P. Temmel, Thomas, Hummel,Gerd, Kobal; A Self-administered Odor Identification Test Procedure Using the “Sniffin’ Sticks”, Chemical Senses, Volume 31, Issue 6, 1 July 2006, Pages 595598.Google Scholar
Collet, S., Grulois, V., Bertrand, B., Rombaux, P., 2009. Post-traumatic olfactory dysfunction: A cohort study and update. B-ENT 5 Suppl 13, 97107.Google ScholarPubMed
Croy, I., Hummel, T., Pade, A., Pade, J., 2010. Quality of life following nasal surgery. Laryngoscope 120, 826831.CrossRefGoogle ScholarPubMed
Croy, I., Negoias, S., Novakova, L., Landis, B.N., Hummel, T., 2012. Learning about the functions of the olfactory system from people without a sense of smell. PLoS One e33365.CrossRefGoogle ScholarPubMed
Damm, M., Eckel, H.E., Jungehulsing, M., Hummel, T., 2003. Olfactory changes at threshold and suprathreshold levels following septoplasty with partial inferior turbinectomy. Annals of Otology, Rhinology, and Laryngology 112, 9197.CrossRefGoogle ScholarPubMed
Davidson, T.M., Murphy, C., 1997. Rapid clinical evaluation of anosmia: The alcohol sniff test. Archives of Otolaryngology – Head and Neck Surgery 123, 591594.CrossRefGoogle ScholarPubMed
Davidson, T.M., Freed, C., Healy, M.P., Murphy, C., 1998. Rapid clinical evaluation of anosmia in children: The alcohol Sniff Test. Annals of the New York Academy of Sciences 855, 787792.CrossRefGoogle ScholarPubMed
De, P.C., Schwarzbauer, C., 2005. Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI. Neuroimage 25, 112121.Google Scholar
Deichmann, R., Gottfried, J.A., Hutton, C., Turner, R., 2003. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430441.CrossRefGoogle ScholarPubMed
Di Nardo, W., Di Girolamo, W., Galli, A., et al. 2000. Olfactory function evaluated by SPECT. American Journal of Rhinology 14, 5761.CrossRefGoogle ScholarPubMed
Doty, R.L., 1975. An examination of relationships between the pleasantness, intensity, and concentration of 10 odorous stimuli. Perception and Psychophysics 17, 492496.CrossRefGoogle Scholar
Doty, R.L., Deems, D.A., Frye, R.E., Pelberg, R., Shapiro, A., 1988. Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Archives of Otolaryngology – Head and Neck Surgery 114, 14221427.CrossRefGoogle ScholarPubMed
Deems, D.A., Doty, R.L., Settle, R.G., et al. 1991. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Archives of Otolaryngology – Head and Neck Surgery 117, 519528.CrossRefGoogle ScholarPubMed
Doty, R.L., 1976. Reproductive endocrine influences upon human chemoreception: A review. Mammalian Olfaction, Reproduction, Processes & Behavior. NY: Academic Press.Google Scholar
Doty, R.L., 1994. Tests of human olfactory function: Principal components analysis suggests that most measure a common source of variance. Attention, Perception, & Psychophysics  56 (6), 701707.CrossRefGoogle Scholar
Doty, R.L., 1995 The Smell Identification Test™ Administration Manual. 3rd Edition. Haddon Hts., NJ: Sensonics, Inc.Google Scholar
Doty, R.L., Marcus, A., Lee, W.W., 1996. Development of the 12-item cross-cultural smell identification test (CC-SIT). Laryngoscope 106, 353356.CrossRefGoogle ScholarPubMed
Doty, R.L., Yousem, D.M., Pham, L.T., et al. 1997. Olfactory dysfunction in patients with head trauma. Archives of Neurology 54, 11311140.CrossRefGoogle ScholarPubMed
Doty, R.L., 2000. Odor Threshold Test™ Administration Manual. Haddon Hts., NJ: Sensonics, Inc.Google Scholar
Doty, R.L., 2003.The Odor Memory Test™ Administration Manual. Haddon Hts., NJ: Sensonics, Inc.Google Scholar
Doty, R.L., Cometto-Muniz, J.E., Jalowayski, A.A., et al. 2004. Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Critical Reviews in Toxicology 34, 85142.CrossRefGoogle ScholarPubMed
Doty, R.L., Crastnopol, B., 2010. Correlates of chemosensory malingering. Laryngoscope 120, 707711.CrossRefGoogle ScholarPubMed
Doty, R.L., Kamath, V., 2014. The influences of age on olfaction: A review. Applied Olfactory Cognition 5, 213.Google ScholarPubMed
Doty, R.L., Shaman, P., Dann, M., 1984. Development of the University of Pennsylvania Smell Identification Test: A standardized microencapsulated test of olfactory function. Physiology & Behavior 32, 489502.CrossRefGoogle Scholar
Doty, R.L., Snyder, P.J., Huggins, G.R., Lowry, L.D., 1981. Endocrine, cardiovascular, and psychological correlates of olfactory sensitivity changes during the human menstrual cycle. Journal of Comparative and Physiological Physiology 95, 4560.Google ScholarPubMed
Doty, R.L., Kerr, K-L., 2005. Episodic odor memory: Influences of handedness, sex, and side of nose. Neuropsychologia 43(12), 17491753.CrossRefGoogle ScholarPubMed
Doty, R.L., Tourbier, I., Ng, V., et al., 2015. Influences of hormone replacement therapy on olfactory and cognitive function in postmenopausal women. Neurobiol Aging. 36(6), 20532059.CrossRefGoogle ScholarPubMed
Drake, B., Johansson, B., von Sydow, D., Doving, K.B., 1969. Quantitative psychophysical and electrophysiological data on some odorous compounds. Scandinavian Journal of Psychology 10, 8996.CrossRefGoogle ScholarPubMed
Duchamp-Viret, P., Chaput, M.A., Duchamp, A., 1999. Odor response properties of rat olfactory receptor neurons. Science 284, 21712174.CrossRefGoogle ScholarPubMed
Eccles, R., Jawad, M.S., Morris, S., 1990. The effects of oral administration of (-)-menthol on nasal resistance to airflow and nasal sensation of airflow in subjects suffering from nasal congestion associated with the common cold. Journal of Pharmacy & Pharmacology 42, 652654.CrossRefGoogle ScholarPubMed
Engen, T., Kuisma, J.E., Eimas, P.D., 1973, Short-term memory of odors. Journal of Experimental Psychology 99, 222225.CrossRefGoogle ScholarPubMed
Engen, T., Ross, B.M., 1973. Long-term memory of odors with and without verbal descriptions. Journal of Experimental Psychology 100, 221227.CrossRefGoogle ScholarPubMed
Fend, R., Kolk, A.H., Bessant, C., et al., 2006.Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. Journal of Clinical Microbiology. 2006; 44(6): 2039–45.CrossRefGoogle ScholarPubMed
Fornazieri, M.A., Doty, R.L., Santos, C.A., et al. 2013. A new cultural adaptation of the University of Pennsylvania Smell Identification Test. Clinics (Sao Paulo) 68, 6568.CrossRefGoogle ScholarPubMed
Frank, R.A., Dulay, M.F., Gesteland, R.C., 2003. Assessment of the sniff magnitude test as a clinical test of olfactory function. Physiology & Behavior 78, 195204.CrossRefGoogle ScholarPubMed
Frank, R.A., Dulay, M.F., Niergarth, K.A., Gesteland, R.C., 2004. A comparison of the sniff magnitude test and the University of Pennsylvania Smell Identification Test in children and nonnative English speakers. Physiology & Behavior 81, 475480.CrossRefGoogle ScholarPubMed
Frank, R.A., Gesteland, R.C., Bailie, J., et al. 2006. Characterization of the sniff magnitude test. Archives of Otolaryngology – Head and Neck Surgery 132, 532536.CrossRefGoogle ScholarPubMed
Freiherr, J., Gordon, A.R., Alden, E.C. et al. 2012. The 40-item Monell Extended Sniffin’ Sticks Identification Test (MONEX-40). Journal of Neuroscience Methods 205, 1016.CrossRefGoogle ScholarPubMed
Frijters, J.E., 1980. Three-stimulus procedures in olfactory psychophysics: An experimental comparison of Thurstone-Ura and three-alternative forced-choice models of signal detection theory. Perception and Psychophysics 28, 390397.CrossRefGoogle ScholarPubMed
Frye, R.E., 1995. Nasal airway dynamics and olfactory function. In: Doty, RL, editor. Handbook of Olfaction and Gustation. New York: Marcel Dekker; pp. 471491.Google Scholar
Gevins, Alan S., and Rémond, Antoine, eds. Methods of Analysis of Brain Electrical and Magnetic Signals. Vol. 1. Elsevier Science Limited, 1987.Google Scholar
Geisler, M.W., Morgan, C.D., Covington, J.W., Murphy, C., 1999. Neuropsychological performance and cognitive olfactory event-related brain potentials in young and elderly adults. Journal of Clinical Experimental Neuropsychology 21, 108126.CrossRefGoogle Scholar
Geisler, M.W., Murphy, C., 2000. Event-related brain potentials to attended and ignored olfactory and trigeminal stimuli. International Journal of Psychophysiology 37, 309315.CrossRefGoogle ScholarPubMed
Gilbert, A.N., Popper, R., Kroll, J.J., Nicklin, L., Zellner, D.A., 2002. The Cranial 1 Quick Sniff®: A New Screening Test for Olfactory Function. Chemical Senses. 27, p. A23.Google Scholar
Green, B.G., Dalton, P., Cowart, B., et al. 1996. Evaluating the “Labeled Magnitude Scale” for measuring sensations of taste and smell. Chemical Senses 21, 323334.CrossRefGoogle ScholarPubMed
Green, P., Iverson, G., 1998. Exaggeration of anosmia in 80 litigating head injury cases. Archives of Clinical Neuropsychology 13, 138.CrossRefGoogle Scholar
Gudziol, V., Buschhuter, D., Abolmaali, N., et al. 2009. Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis – a longitudinal study. Brain 132, 30963101.CrossRefGoogle ScholarPubMed
Haehner, A., Mayer, A.M., Landis, B.N., et al. 2009. High test-retest reliability of the extended version of the “Sniffin’ Sticks” test. Chemical Senses 34, 705711.CrossRefGoogle ScholarPubMed
Haehner, A., Rodewald, A., Gerber, J.C., Hummel, T., 2008. Correlation of olfactory function with changes in the volume of the human olfactory bulb. Archives of Otolaryngology – Head and Neck Surgery 134, 621624.CrossRefGoogle ScholarPubMed
Hashimoto, Y., Fukazawa, K., Fujii, M., et al. 2004. Usefulness of the odor stick identification test for Japanese patients with olfactory dysfunction. Chemical Senses. 29(7), 565–71.CrossRefGoogle ScholarPubMed
Hedner, M., Larsson, M., Arnold, N., Zucco, G.M., Hummel, T., 2010. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. Journal of Clinical Experimental Neuropsychology. 32(10), 10621067.CrossRefGoogle ScholarPubMed
Helson, H., 1964. Adaptation-level theory: an experimental and systematic approach to behavior. New York: Harper and Row.Google Scholar
Hendriks, A.P., 1988. Olfactory dysfunction. Rhinology 26, 229251.Google ScholarPubMed
Hockstein, N.G., Thaler, E.R., Lin, Y., Lee, D.D., Hanson, C.W., 2005. Correlation of pneumonia score with electronic nose signature: A prospective study. Annals of Otology, Rhinology, and Laryngology. 114(7), 504508.CrossRefGoogle ScholarPubMed
Hornung, D.E., 2006. Nasal anatomy and the sense of smell. Advances in Oto-Rhino-Laryngology 63, 122.CrossRefGoogle ScholarPubMed
Hosoya, Y., Yashida, H., 1937. Über die bioelektrische Erscheinungen an der Riechschleimhaut. Japanese Journal of Medical Science III Biophysics 5, 2223.Google Scholar
Hsu, J.J., Glover, G.H., 2005, Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils. Magnetic Resonance in Medicine 53, 243248.CrossRefGoogle ScholarPubMed
Huart, C., Legrain, V., Hummel, T., Rombaux, P., Mouraux, A., 2012. Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans. PLoS One 7, e33221.CrossRefGoogle ScholarPubMed
Hummel, T., Kobal, G., Gudziol, H., kay-Sim, A., 2007; Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects. European Archives of Oto-Rhino-Laryngology 264, 237243.CrossRefGoogle Scholar
Hummel, T., Konnerth, C.G., Rosenheim, K., Kobal, G., 2001. Screening of olfactory function with a four-minute odor identification test: reliability, normative data, and investigations in patients with olfactory loss. Annals of Otology, Rhinology & Laryngology 110, 976981.CrossRefGoogle ScholarPubMed
Hummel, T., Sekinger, B., Wolf, S.R., Pauli, E., Kobal, G., 1997. “Sniffin’ sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chemical Senses 22, 3952.CrossRefGoogle ScholarPubMed
Ikeda, K., Tabata, K., Oshima, T., et al. 1999. Unilateral examination of olfactory threshold using the Jet Stream Olfactometer. Auris Nasus Larynx 26, 435439.CrossRefGoogle ScholarPubMed
Jackman, A.H., Doty, R.L., 2005. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope 115, 22092212.CrossRefGoogle ScholarPubMed
Jacquot, L., Monnin, J., Brand, G., 2004. Unconscious odor detection could not be due to odor itself. Brain Research 1002, 5154.CrossRefGoogle ScholarPubMed
Jehl, C., Royet, J.P., Holley, A., 1997. Role of verbal encoding in short- and long-term odor recognition. Perception & Psychophysics 59(1), 100110.CrossRefGoogle Scholar
Jones, F.N., 1955a. Olfactory absolute thresholds and their implications for the nature of the receptor process. Journal of Psychology 40, 223227.CrossRefGoogle Scholar
Jones, F.N., 1955b. The reliability of olfactory thresholds obtained by sniffing. The American Journal of Psychology 68, 289290.CrossRefGoogle ScholarPubMed
Kareken, D.A., Doty, R.L., Moberg, P.J., et al. 2001. Olfactory-evoked regional cerebral blood flow in Alzheimer’s disease. Neuropsychology 15, 1829.`CrossRefGoogle ScholarPubMed
Kern, R.C., 2000. Chronic sinusitis and anosmia: Pathologic changes in the olfactory mucosa. Laryngoscope 110, 10711077.CrossRefGoogle ScholarPubMed
Kettenmann, B., Jousmaki, V., Portin, K., et al. 1996. Odorants activate the human superior temporal sulcus. Neuroscience Letters 203, 143145.CrossRefGoogle ScholarPubMed
Kim, J.Y., Lee, W.Y., Chung, E.J., Dhong, H.J., 2007. Analysis of olfactory function and the depth of olfactory sulcus in patients with Parkinson’s disease. Movement Disorders 22, 15631566.CrossRefGoogle ScholarPubMed
Kobal, G., Hummel, T., Sekinger, B., Barz, S., Roscher, S., and Wolf, S., 1996. “Sniffin’ sticks”: screening of olfactory performance. Rhinology 34, 222226.CrossRefGoogle Scholar
Kobal, G., Hummel, C., 1988. Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalography and Clinical Neurophysiology 71, 241250.CrossRefGoogle ScholarPubMed
Kobal, G., 2003. Electrophysiological measurement of olfactory function. Neurological Disease and Therapy. 57, 229250.Google Scholar
Kobal, G., Plattig, K.H., 1978. Methodische Anmerkungen zur Gewinnung olfaktorischer EEG-Antworten des wachen Menschen (objektive Olfaktometrie). Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete 9, 135145.Google Scholar
Koenigkam-Santos, M., Santos, A.C., Versiani, B.R., Diniz, P.R., Junior, J.E., de, C.M., 2011. Quantitative magnetic resonance imaging evaluation of the olfactory system in Kallmann syndrome: Correlation with a clinical smell test. Neuroendocrinology 94, 209217.CrossRefGoogle ScholarPubMed
Krantz, E.M., Schubert, C.R., Dalton, D.S., et al. 2009. Test-retest reliability of the San Diego Odor Identification Test and comparison with the brief smell identification test. Chemical Senses 34, 435440.CrossRefGoogle Scholar
Kremer, B., Klimek, L., Mosges, R., 1998. Clinical validation of a new olfactory test. European Archives of Oto-Rhino-Laryngology 255, 355358.CrossRefGoogle ScholarPubMed
Kurtz, D.B., White, T.L., Sheehe, P.R., Hornung, D.E., Kent, P.F., 2001. Odorant confusion matrix: The influence of patient history on patterns of odorant identification and misidentification in hyposmia. Physiology & Behavior 72, 595602.CrossRefGoogle ScholarPubMed
Laing, D.G., Francis, G.W., 1989. The capacity of humans to identify odors in mixtures. Physiology & Behavior 46, 809814.CrossRefGoogle ScholarPubMed
Laing, D.G., Segovia, C., Fark, T., et al. 2008. Tests for screening olfactory and gustatory function in school-age children. Otolaryngology – Head and Neck Surgery 139, 7482.CrossRefGoogle ScholarPubMed
Lane, A.P., Zweiman, B., Lanza, D.C., et al. 1996. Acoustic rhinometry in the study of the acute nasal allergic response. Annals of Otology, Rhinology, and Laryngology 105, 811818.Google Scholar
Lawless, H.T., Malone, G.T. 1986a. A comparison of rating scales: sensitivity, replicates and relative measurement. Journal of Sensory Studies. 1, 155174.CrossRefGoogle Scholar
Lawless, H.T., Malone, G.T. 1986b. The discrimination efficiency of common scaling methods. Journal of Sensory Studies. 1, 8598.CrossRefGoogle Scholar
Lehrner, J., Deecke, L., 2000. The Viennese olfactory test battery – a new method for assessing human olfactory functions. Aktuelle Neurologie 27, 170177.CrossRefGoogle Scholar
Leopold, D.A., 1988. The relationship between nasal anatomy and human olfaction. Laryngoscope 98, 12321238.CrossRefGoogle ScholarPubMed
Linschoten, M.R., Harvey, L.O. Jr., Eller, P.M., Jafek, B.W., 2001. Fast and accurate measurement of taste and smell thresholds using a maximum-likelihood adaptive staircase procedure. Perception & Psychophysics 63, 13301347.CrossRefGoogle ScholarPubMed
Liu, H.C., Wang, S.J., Lin, K.P., et al. 1995. Performance on a smell screening test (the MODSIT): A study of 510 predominantly illiterate Chinese subjects. Physiology & Behavior 58, 12511255.CrossRefGoogle ScholarPubMed
London, B., Nabet, B., Fisher, A.R., et al. 2008. Predictors of prognosis in patients with olfactory disturbance. Annals of Neurology 63, 159166.CrossRefGoogle ScholarPubMed
Lorig, T.S., Elmes, D.G., Zald, D.H., Pardo, J.V., 1999. A computer-controlled olfactometer for fMRI and electrophysiological studies of olfaction. Behavior Research Methods, Instruments, & Computers 31, 370375.CrossRefGoogle ScholarPubMed
Lötsch, J., Reichmann, H., Hummel, T., 2008. Different odor tests contribute differently to the evaluation of olfactory loss. Chemical Senses 3(1), 1721.CrossRefGoogle Scholar
Maremmani, C., Rossi, G., Tambasco, N., et al. 2012. The validity and reliability of the Italian Olfactory Identification Test (IOIT) in healthy subjects and in Parkinson’s disease patients. Parkinsonism & Related Disorders 18, 788793.CrossRefGoogle ScholarPubMed
Maruniak, J.A., Silver, W.L., Moulton, D.G., 1983. Olfactory receptors respond to blood-borne odorants. Brain Research 265, 312316.CrossRefGoogle ScholarPubMed
McCaffrey, T.V., 1991. Rhinomanometry and vasoactive drugs affecting nasal patency. In: Getchell, TV, Doty, R.L., Bartoshuk, L.M., Snow, JB Jr, editors. Smell and Taste in Health and Disease. New York: Raven Press pp. 493502.Google Scholar
McMahon, C., Scadding, G,K., 1996. Le Nez du Vin–a quick test of olfaction. Clin Otolaryngol Allied Sci 21, 278280.CrossRefGoogle ScholarPubMed
McReynolds, P., Ludwig, K., 1987. On the history of rating scales. Personality & Individual Differences 8, 281283.CrossRefGoogle Scholar
Mueller, C.A., Grassinger, E., Naka, A., Temmel, A.F., Hummel, T. Kobal, G. 2006. A self-administered odor identification test procedure using the “Sniffin’ Sticks”. Chemical Senses 31, 595598.Google Scholar
Neely, G., Ljunggren, G., Sylven, C., Borg, G., 1992. Comparison between the Visual Analogue Scale (VAS) and the Category Ratio Scale (CR-10) for the evaluation of leg exertion. International Journal of Sports Medicine 13, 133136.CrossRefGoogle ScholarPubMed
Nguyen, A.D., Pelavin, P.E., Shenton, M.E., et al. 2011. Olfactory sulcal depth and olfactory bulb volume in patients with schizophrenia: An MRI study. Brain Imaging and Behavior 5: 252261.CrossRefGoogle ScholarPubMed
Nordin, S., Bramerson, A., Liden, E., Bende, M., 1999. The Scandinavian Odor-Identification Test: development, reliability, validity and normative data. Acta Otolaryngologica 118, 226234.Google Scholar
Nordin, S., Lotsch, J., Kobal, G., Murphy, C., 1998.Effects of nasal-airway volume and body temperature on intranasal chemosensitivity. Physiology & Behavior 63, 463466.CrossRefGoogle ScholarPubMed
O’Mahony, M., Gardner, L., Long, D., et al. 1979. Salt taste detection: An R-index approach to signal-detection measurements. Perception 8, 497506.CrossRefGoogle ScholarPubMed
Osman, A., Silas, J., 2015. Electrophysiological measurement of olfactory function. In: Doty, RL, editor. Handbook of Olfaction and Gustation. New York: Wiley-Liss. pp. 263279.Google Scholar
Ottoson, D., 1956. Analysis of the electrical activity of the olfactory epithelium. Acta Physiologica Scandinavica 35, 183.Google Scholar
Patel, S.J., Bollhoefer, A.D., Doty, R.L., 2004. Influences of ethanol ingestion on olfactory function in humans. Psychopharmacology 171, 429434.CrossRefGoogle ScholarPubMed
Pavlou, A.K., Magan, N., Sharp, D., et al. 2000. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosensors and Bioelectronics. 15(7), 333342.CrossRefGoogle ScholarPubMed
Persaud, K., Dodd, G., 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881), 352355.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., Lopes da Silva, F.H., 1999. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110, 18421857.CrossRefGoogle ScholarPubMed
Potter, H., Butters, N., 1980. An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 18, 621628.CrossRefGoogle ScholarPubMed
Punter, P.H., 1983; Measurement of human olfactory thresholds for several groups of structurally related compounds. Chemical Senses 7, 215235.CrossRefGoogle Scholar
Rawal, S., et al. 2015. The taste and smell protocol in the 2011–2014 US National Health and Nutrition Examination Survey (NHANES): Test–retest reliability and validity testing. Chemosensory Perception 8(3), 138148.CrossRefGoogle ScholarPubMed
Reese, T.S., Stevens, S.S., 1960. Subjective intensity of coffee odor. The American Journal of Psychology 73, 424428.CrossRefGoogle ScholarPubMed
Richard, K. Eyman, P. John Kim, Tom Call. Perceptual and Motor Skills. Volume: 40 issue: 2, page(s): 415423.Google Scholar
Robson, A.K., Woollons, A.C., Ryan, J., et al. 1996, Validation of the combined olfactory test. Clinical Otolaryngology 21, 512518.CrossRefGoogle ScholarPubMed
Rombaux, P., Mouraux, A., Bertrand, B., et al. 2006a. Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with post-traumatic loss of smell. Laryngoscope 116, 901905.CrossRefGoogle Scholar
Rombaux, P., Mouraux, A., Bertrand, B., et al. 2006b. Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116, 436439.CrossRefGoogle ScholarPubMed
Rombaux, P., Huart, C., De Volder, A.G., et al. 2010. Increased olfactory bulb volume and olfactory function in early blind subjects. Neuroreport 21, 10691073.CrossRefGoogle ScholarPubMed
Rombaux, P., Huart, C., Deggouj, N., Duprez, T., Hummel, T., 2012. Prognostic value of olfactory bulb volume measurement for recovery in postinfectious and post-traumatic olfactory loss. Otolaryngology – Head and Neck Surgery 147, 11361141.CrossRefGoogle Scholar
Rovee, C.K., Cohen, R.Y., Shlapack, W., 1975. Life-span stability in olfactory sensitivity. Developmental Psychology 11, 311318.CrossRefGoogle Scholar
Saito, S., yabe-Kanamura, S., Takashima, Y., et al. 2006. Development of a smell identification test using a novel stick-type odor presentation kit. Chemical Senses 31, 379391.CrossRefGoogle ScholarPubMed
Sakuma, K., Kakigi, R., Kaneoke, Y. et al. 1997. Odorant evoked magnetic fields in humans. Neuroscience Research 27, 115122.CrossRefGoogle ScholarPubMed
Schiff, S.J., Aldroubi, A., Unser, M., Sato, S., 1994. Fast wavelet transformation of EEG. Electroencephalography and Clinical Neurophysiology 91, 442455.CrossRefGoogle ScholarPubMed
Schiffman, S.S., Reynolds, M.L., Young, F.W., 1981. Introduction to Multidimensional Scaling: Theory, Methods, and Applications. Orlando, FL: Academic Press.Google Scholar
Schmidt, F.A., Goktas, O., Harms, L., et al. 2011. Structural correlates of taste and smell loss in encephalitis disseminata. PLoS One 6, e19702.CrossRefGoogle ScholarPubMed
Scott, J.W., Brierley, T., Schmidt, FH., 2000. Chemical determinants of the rat electro-olfactogram. Journal of Neuroscience 20, 47214731.CrossRefGoogle ScholarPubMed
Sensors 2011, 11(1), 11051176; Advances in Electronic-Nose Technologies Developed for Biomedical Applications Alphus, D. Wilson 1,* and Manuela Baietto 2, .CrossRefGoogle Scholar
Siderowf, A., Jennings, D., Connolly, J., et al. 2007. Risk factors for Parkinson’s disease and impaired olfaction in relatives of patients with Parkinson’s disease. Movement Disorders 22, 22492255.CrossRefGoogle ScholarPubMed
Silveira-Moriyama, L, Carvalho Mde, J,Katzenschlager, R, Petrie, A, Ranvaud, R, Barbosa, ER, Lees, AJ. 2008. The use of smell identification tests in the diagnosis of Parkinson’s Disease in Brazil. Movement Disorders. 23, 23282334.Google Scholar
Simmen, D., Briner, H.R., Hess, K., 1999. Screeningtest des Geruchssinnes mit Riechdisketten. Laryngorhinootologie 78, 125130.CrossRefGoogle Scholar
Sobel, N., Johnson, B.N., Mainland, J., Yousem, D.M., 2003. Functional neuroimaging of human olfaction. In: Doty, RL, editor. Handbook of Olfaction and Gustation. New York: Marcel Dekker.Google Scholar
Sobel, N., Prabhakaran, V., Zhao, Z., et al. 2000. Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology 83, 537551.CrossRefGoogle ScholarPubMed
Stevens, J.C., Cruz, L.A., Marks, L.E., Lakatos, S., 1998. A multimodal assessment of sensory thresholds in aging. Journals of Gerontology. Series B, Psychological Sciences & Social Sciences. 53, 263272.CrossRefGoogle Scholar
Stinton, N., Atif, M.A., Barkat, N., Doty, R.L., 2010. Influence of smell loss on taste function. Behavioral Neuroscience 124, 256264.CrossRefGoogle ScholarPubMed
Sulsenti, G., Palma, P., 1989. [The nasal valve area: Structure, function, clinical aspects and treatment. Sulsenti’s technic for correction of valve deformities]. Acta Otorhinolaryngologica Italica 9 Suppl 22, 125.Google ScholarPubMed
Tabert, M.H., Steffener, J., Albers, M.W. et al. 2007. Validation and optimization of statistical approaches for modeling odorant-induced fMRI signal changes in olfactory-related brain areas. Neuroimage 34, 13751390.CrossRefGoogle ScholarPubMed
Takagi, S.F., 1989. Human Olfaction. Tokyo: University of Tokyo Press.Google Scholar
Tanner, W.P. Jr, Swets, J.A., 1954. A decision-making theory of visual detection. Psychological Review 61, 401409.CrossRefGoogle ScholarPubMed
Tateyama, T., Hummel, T., Roscher, S., Post, H., Kobal, G., 1998. Relation of olfactory event-related potentials to changes in stimulus concentration. Electroencephalography and Clinical Neurophysiology 108, 449455.CrossRefGoogle ScholarPubMed
Thaler, E.R., Hanson, C.W., 2006. Use of an electronic nose to diagnose bacterial sinusitis. American Journal of Rhinology. 20(2), 170–2.CrossRefGoogle ScholarPubMed
Thomann, P.A., Dos, S.V., Seidl, U., et al. 2009. MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease 17, 213221.CrossRefGoogle ScholarPubMed
Thomas-Danguin, T., Rouby, C., Sicard, G., et al. 2003. Development of the ETOC: a European test of olfactory capabilities. Rhinology 41, 142151.Google Scholar
Tonoike, M., Yamaguchi, M., Kaetsu, I., et al. 1998. Ipsilateral dominance of human olfactory activated centers estimated from event-related magnetic fields measured by 122-channel whole-head neuromagnetometer using odorant stimuli synchronized with respirations. Annals of the New York Academy of Sciences 855, 579590.CrossRefGoogle ScholarPubMed
Tourbier, I.A., Doty, R.L., 2007. Sniff magnitude test: Relationship to odor identification, detection, and memory tests in a clinic population. Chemical Senses 32, 515523.CrossRefGoogle Scholar
Turetsky, B.I., Moberg, P.J., Yousem, D.M., Doty, R.L., Arnold, S.E., Gur, R.E., 2000. Reduced olfactory bulb volume in patients with schizophrenia. American Journal of Psychiatry 157, 828830.CrossRefGoogle ScholarPubMed
Turetsky, B.I., Moberg, P.J., Arnold, S.E., Doty, R.L., Gur, R.E., 2003. Low olfactory bulb volume in first-degree relatives of patients with schizophrenia. American Journal of Psychiatry 160, 703708.CrossRefGoogle ScholarPubMed
Turetsky, B.I., Hahn, C.G., Arnold, S.E., Moberg, P.J., 2009. Olfactory receptor neuron dysfunction in schizophrenia. Neuropsychopharmacology 34, 767774.CrossRefGoogle ScholarPubMed
Turner, A.P., Magan, N., 2004. Electronic noses and disease diagnostics. Nature Reviews Microbiology 2(2), 161166.CrossRefGoogle ScholarPubMed
Van Toller, C., Kirk-Smith, M., Wood, N., Lombard, J., Dodd, G.H., 1983. Skin conductance and subjective assessments associated with the odour of 5-alpha-androstan-3-one. Biological Psychology 16, 85107.CrossRefGoogle ScholarPubMed
Veyseller, B., Aksoy, F., Yildirim, Y.S., et al. 2011. Reduced olfactory bulb volume in total laryngectomy patients: A magnetic resonance imaging study. Rhinology 49, 112116.CrossRefGoogle ScholarPubMed
Vollmecke, T., Doty, R. L. 1985. Development of the Picture Identification Test (PIT): A research companion to the University of Pennsylvania Smell Identification Test. Chemical Senses 10, 413414.Google Scholar
Waggener, C.T., Coppola, D.M., 2007. Naris occlusion alters the electro-olfactogram: Evidence for compensatory plasticity in the olfactory system. Neuroscience Letters 427, 112116.CrossRefGoogle ScholarPubMed
Wang, L., Hari, C., Chen, L., Jacob, T., 2004. A new non-invasive method for recording the electro-olfactogram using external electrodes. Clinical Neurophysiology 115, 16311640.CrossRefGoogle ScholarPubMed
Weber, E.H., 1834. De Pulsu, Resorptione, Auditu et Tactu: Annotationes Anatomicae et Physiologiae. Leipzig: Koehler.Google Scholar
Weierstall, R., Pause, B.M., 2012. Development of a 15-item odour discrimination test (Dusseldorf Odour Discrimination Test). Perception 41, 193203.CrossRefGoogle ScholarPubMed
Weiffenbach, J.M., McCarthy, V.P., 1984. Olfactory deficits in cystic fibrosis: Distribution and severity. Chemical Senses 9, 193199.CrossRefGoogle Scholar
Weiskopf, N., Hutton, C., Josephs, O., Deichmann, R., 2006. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. Neuroimage 33, 493504.CrossRefGoogle ScholarPubMed
Weiskopf, N., Klose, U., Birbaumer, N., Mathiak, K., 2005; Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24, 10681079.CrossRefGoogle ScholarPubMed
Wilson, A.D., Baietto, M. 2011. Advances in electronic-nose technologies developed for biomedical applications. Sensors (Basel). 11, 11051176.Google Scholar
Wilson, A.D., Baietto, M., 2011. Advances in electronic-nose technologies developed for biomedical applications. Sensors 11(1), 1105–76.CrossRefGoogle ScholarPubMed
Wilson, D.A., 2001. Receptive fields in the rat piriform cortex. (Review) (82 refs). Chemical Senses 26, 577584.CrossRefGoogle ScholarPubMed
Wolfensberger, M., Schnieper, I., Welge-Lüssen, A. 2000. Sniffin’ Sticks: a new olfactory test battery. Acta Otolaryngologica. 120, 303306.Google Scholar
Wong, K.K., Muller, M.L., Kuwabara, H., Studenski, S.A., Bohnen, N.I., 2010. Olfactory loss and nigrostriatal dopaminergic denervation in the elderly. Neuroscience Letters, 484(3), 163167.CrossRefGoogle ScholarPubMed
Wright, H.N., 1987; Characterization of olfactory dysfunction. Archives of Otolaryngology – Head and Neck Surgery 113, 163168.CrossRefGoogle ScholarPubMed
Yoshida, M., 1984. Correlation analysis of detection threshold data for “standard test” odors. Bulletin of the Faculty of Science and Engineering Chuo University 27, 343353.Google Scholar
Yousem, D.M., Turner, W.J.D., Cheng, L., Snyder, P.J., Doty, R.L., 1993. Kallmann syndrome – Mr evaluation of olfactory system. American Journal of Neuroradiology 14, 839843.Google ScholarPubMed
Yousem, D.M., Geckle, R., Doty, R.L., 1995. MR of patients with post-traumatic olfactory deficits. Chemical Senses 20, 338.Google Scholar
Yousem, D.M., Geckle, R.J., Bilker, W., McKeown, D.A., Doty, R.L., 1996. MR evaluation of patients with congenital hyposmia or anosmia. American Journal of Roentgenology 166, 439443.CrossRefGoogle ScholarPubMed
Yousem, D.M., Williams, S.C., Howard, R.O., et al. 1997. Functional MR imaging during odor stimulation: Preliminary data. Radiology 204, 833838.CrossRefGoogle ScholarPubMed
Yousem, D.M., Geckle, R.J., Bilker, W.B., Doty, R.L., 1998. Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Annals of the New York Academy of Sciences 855, 546555.CrossRefGoogle ScholarPubMed
Yousem, D.M., Oguz, KK, Li, C., 2001. Imaging of the olfactory system. Seminars in Ultrasound, CT and MRI 22, 456472.CrossRefGoogle ScholarPubMed
Zald, D.H., Pardo, J.V., 1997. Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences of the United States of America 94, 41194124.CrossRefGoogle ScholarPubMed
Zatorre, R.J., Jones-Gotman, M., Evans, A.C., Meyer, E., 1992. Functional localization and lateralization of human olfactory cortex. Nature 360, 339340.CrossRefGoogle ScholarPubMed
Zhao, K., Scherer, P.W., Hajiloo, S.A., Dalton, P., 2004. Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction. Chemical Senses 29, 365379.CrossRefGoogle ScholarPubMed
Zwaardemaker, H., 1889. On measurement of the sense of smell in clinical examination. Lancet I, 13001302.CrossRefGoogle Scholar
Zwaardemaker, H., 1925. L’Odorat. Paris: Doin.Google Scholar
Zwaardemaker, H., 1927. The sense of smell. Acta Otolaryngologica (Stockh) 11, 315.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×