Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T20:36:08.960Z Has data issue: false hasContentIssue false

5 - Physiological adaptations to seasonality in nocturnal primates

Published online by Cambridge University Press:  10 August 2009

Jutta Schmid
Affiliation:
Department of Experimental Ecology University of Ulm Albert Einstein Allee 11 D-89069 Ulm Germany
Peter M. Kappeler
Affiliation:
Deutsches Primatenzentrum Kellnerweg 4 37077 Göttingen Germany
Diane K. Brockman
Affiliation:
University of North Carolina, Charlotte
Carel P. van Schaik
Affiliation:
Universität Zürich
Get access

Summary

Introduction

The current geographic distribution of primates is confined largely to tropical and subtropical regions, where they have colonized a variety of habitats. The majority of primate taxa inhabit tropical forests with little annual fluctuation in environmental conditions. Some species, however, live in habitats characterized by pronounced seasonal fluctuations in climate and or resource availability. These primates tend to live at relatively high latitudes or altitudes, or both. Primates in such seasonal habitats provide an opportunity to identify behavioral and physiological adaptations that enable them to cope with fluctuating environmental conditions. Furthermore, it is interesting to ask whether and how schedules of growth and reproduction are adapted to maximize individual reproductive success under such seasonal conditions, because they may have to be traded off against maintenance requirements during the lean part of the year.

Primates living in seasonal environments exhibit a number of specific behavioral, ecological, and physiological adaptations. For example, during the climatically and or energetically most stressful time of year, they may reduce energy expenditure, e.g. by reducing overall activity, and many have scheduled periods of growth and infant weaning to coincide with seasons of relative abundance. Behavioral and physiological mechanisms of thermoregulation play especially important roles in maintaining homeostasis in seasonally stressed primates. These mechanisms are importantly influenced by circadian activity patterns because diurnal and nocturnal animals are exposed to fundamentally different constraints and options in this respect.

Type
Chapter
Information
Seasonality in Primates
Studies of Living and Extinct Human and Non-Human Primates
, pp. 129 - 156
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, G. H., Jenkins, P. D., & Godfrey, L. R. (1990). Ecogeographic size variation among the living and subfossil prosimians of Madagascar. American Journal of Primatology, 22, 1–50.CrossRefGoogle Scholar
Atsalis, S. (1999). Seasonal fluctuations in body fat and activity levels in a rain-forest species of mouse lemur, Microcebus rufus. International Journal of Primatology, 20, 883–910.CrossRefGoogle Scholar
Aujard, F., Perret, M., & Vannier, G. (1998). Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character?Journal of Comparative Physiology B, 168, 540–48.CrossRefGoogle ScholarPubMed
Bearder, S. K. & Doyle G. A. (1974). Ecology of bushbabies Galago senegalensis and Galago crassicaudatus, with some notes on their behaviour in the field. In Prosimian Biology, ed. Martin, R. D., Doyle, G. A., & Walker, A. C.. London: Duckworth, pp. 109–30.Google Scholar
Bourlière, F. & Petter-Rousseaux, A. (1966). Existence probable d'un rythme métabolique saisonnier chez les cheirogaleinae (Lemuroidea). Folia Primatologica, 4, 249–56.CrossRefGoogle Scholar
Charles-Dominique, P. (1972). Ecologie et vie sociale de Galago demidovii (Fischer 1808; Prosimii). Fortschritte der Verhaltensforschung, 9, 7–41.Google Scholar
Charles-Dominique, P.(1977). Ecology and Behaviour of Nocturnal Primates. New York: Columbia University Press.Google Scholar
Chévillard, M.-C. (1976). Capacités thermorégulatrices d'un lémurien malgache, Microcebus murinus (Miller, 1777). Ph.D. thesis, University of Paris.
Dausmann, K. H., Ganzhorn, J. U., & Heldmaier, G. (2000). Body temperature and metabolic rate of a hibernating primate in Madagascar: preliminary results from a field study. In Life in the Cold. Eleventh International Hibernation Symposium, ed. Heldmaier, G. & Klingenspor, M.. New York: Springer-Verlag, pp. 41–7.Google Scholar
Dawson, T. J., Grant, T. R., & Fanning, D. (1979). Standard metabolism of monotremes and the evolution of homeothermy. Australian Journal of Zoology, 27, 511–15.CrossRefGoogle Scholar
Deerenberg, C., Apanius, V. A., Daan, S., & Bos, N. (1997). Reproductive effort decreases antibody responsiveness. Proceedings of the Royal Society of London, B, 264, 1021–9.CrossRefGoogle Scholar
Dewar, R. E. & Wallis, J. R. (1999). Geographical patterning of interannual rainfall variability in the tropics and near tropics: an L-moments approach. Journal of Climate, 12, 3457–66.2.0.CO;2>CrossRefGoogle Scholar
Dobler, H.-J. (1978). Untersuchungen über die Temperatur- und Stoffwechselregulation von Galagos (Lorisiformes: Galagidae). Ph.D. thesis, University of Tübingen.
Fietz, J. (1998). Body mass in wild Microcebus murinus over the dry season. Folia Primatologica, 69, 183–90.CrossRefGoogle Scholar
Fietz, J.(1999). Monogamy as a rule rather than exception in nocturnal lemurs: the case of the fat-tailed dwarf lemur, Cheirogaleus medius. Ethology, 105, 259–72.CrossRefGoogle Scholar
Fietz, J. & Ganzhorn, J. U. (1999). Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat?Oecologia, 121, 157–64.CrossRefGoogle ScholarPubMed
French, A. R. (1988). The patterns of mammalian hibernation. American Scientist, 76, 568–75.Google Scholar
French, A. R.(1992). Mammalian dormancy. In Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction, ed. Tomasi, T. E. & Horton, T. H.. Ithaca: Cornell University Press, pp. 105–121.Google Scholar
Ganzhorn, J. U. (1995). Cyclones over Madagascar: fate or fortune?Ambio, 24, 124–5.Google Scholar
Ganzhorn, J. U. & Schmid, J. (1998). Different population dynamics of Microcebus murinus in primary and secondary deciduous dry forests of Madagascar. International Journal of Primatology, 19, 785–96.CrossRefGoogle Scholar
Garbutt, N. (1999). Mammals of Madagascar. Tonbridge, UK: Pica Press.Google Scholar
Geiser, F. & Ruf, T. (1995). Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology, 68, 935–66.CrossRefGoogle Scholar
Génin, F. & Perret, M. (2000). Photoperiod-induced changes in energy balance in gray mouse lemurs. Physiology and Behavior, 71, 315–21.CrossRefGoogle ScholarPubMed
Genoud, M., Martin, R. D., & Glaser, D. (1997). Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). American Journal of Primatology, 41, 229–45.3.0.CO;2-Z>CrossRefGoogle Scholar
Glander, K. (1994). Morphometrics and growth in captive aye-ayes (Daubentonia madagascariensis). Folia Primatologica, 62, 108–14.CrossRefGoogle Scholar
Glatston, A. R. H. (1979). Reproduction and Behaviour of the Lesser Mouse Lemur (Microcebus murinus) in Captivity. London: University of London.Google Scholar
Goodman, S. M., Langrand, O., & Raxworthy, C. J. (1993). Food habits of the Madagascar long-eared owl Asio madagascariensis in two habitats in southern Madagascar. Ostrich, 64, 79–85.CrossRefGoogle Scholar
Groves, C. (2000). The genus Cheirogaleus: unrecognized biodiversity in dwarf lemurs. International Journal of Primatology, 21, 943–62.CrossRefGoogle Scholar
Gursky, S. (2000). Effect of seasonality on the behavior of an insectivorous primate, Tarsus spectrum. International Journal of Primatology, 20, 69–84.Google Scholar
Harcourt, C. S. & Nash, L. T. (1986). Social organization of galagos in Kenyan coastal forest: I. Galago zanzibaricus. American Journal of Primatology, 10, 339–55.CrossRefGoogle Scholar
Harvey, P. H. & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559–81.
Harvey, P. H., Martin, R. D., & Clutton-Brock, T. H. (1987). Life histories in comparative perspective. In Primate Societies, ed. Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T.. Chicago: University of Chicago Press, pp. 181–96.Google Scholar
Harvey, P., Pagel, M., & Rees, J. (1991). Mammalian metabolism and life histories. American Naturalist, 137, 556–66.CrossRefGoogle Scholar
Heldmaier, G. & Ruf, T. (1992). Body temperature and metabolic rate during natural hypothermia in endotherms. Journal of Comparative Physiology B, 162, 696–706.CrossRefGoogle ScholarPubMed
Hildwein, G. & Goffart, M. (1975). Standard metabolism and thermoregulation in a prosimian, Perodicticus potto. Comparative Biochemistry and Physiology A, 50, 201–13.CrossRefGoogle Scholar
Hiley, P. G. (1976). The thermoregulatory responses of the galago (G. crassicaudatus), the baboon (Papio ursinus) and the chimpanzee (Pan satyrus) to heat stress. Journal of Physiology, London, 254, 657–71.CrossRefGoogle Scholar
Hladik C. M., Charles-Dominique, P., & Petter, J. J. (1980). Feeding strategies of nocturnal prosimians. In Nocturnal Malagasy Primates: Ecology, Physiology and Behaviour, ed. Charles-Dominique, P., Cooper, H. M., Hladik, C. M., et al. New York: Academic Press, pp. 41–72.Google Scholar
Hudson, J. W. (1973). Torpidity in mammals. In Comparative Physiology of Thermoregulation, ed. Whittow, G. C.. London: Academic Press, pp. 97–165.Google Scholar
Kappeler, P. M. (1995). Life history variation among nocturnal prosimians. In Creatures of the Dark: The Nocturnal Prosimians, ed. Alterman, L., Izard, M. K., & Doyle, G. A.. New York: Plenum Press, pp. 75–92.CrossRefGoogle Scholar
Kappeler, P. (1996). Causes and consequences of life history variation among strepsirhine primates. American Naturalist, 148, 868–91.CrossRefGoogle Scholar
Kappeler, P. M. (1998). Nests, tree holes, and the evolution of primate life histories. American Journal of Primatology, 46, 7–33.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kappeler, P. M.(2004). The natural history of Mirza coquereli. In The Natural History of Madagascar, ed. Goodman, S. M. & Benstead, J. P.. Chicago: University of Chicago Press, pp. 1316–18.Google Scholar
Kappeler, P. M. & Pereira, M. E. (2003). Primate Life History and Socioecology. Chicago: University of Chicago Press.Google Scholar
Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–53.CrossRefGoogle Scholar
Knox, C. M. & Wright, P. G. (1989). Thermoregulation and energy metabolism in the lesser bushbaby, Galago senegalensis moholi. South African Journal of Zoology 24, 89–94.CrossRefGoogle Scholar
Lee, P. C. & Kappeler, P. M. (2003). Socio-ecological correlates of phenotypic plasticity in primate life histories. In Primate Life History and Socioecology, ed. Kappeler, P. M. & Pereira, M. E.. Chicago: University of Chicago Press, pp. 41–65.Google Scholar
Maho, Y., Goffart, M., Rochas, A., Felbalbel, H., & Chatonnet, C. (1981). Thermoregulation in the only nocturnal simian: the night monkey Aotus trivirgatus. American Journal of Primatology, 240, 156–65.Google ScholarPubMed
Lyman, C. P., Willis, J. S., Malan, A., & Wang, L. C. H. (1982). Hibernation and Torpor in Mammals and Birds. London: Academic Press.Google Scholar
Malan, A. (1996). The origins of hibernation: a reappraisal. In Adaptations to the Cold: Tenth International Hibernation Symposium, ed. Geiser, F., Hulbert, A. J., & Nichol, S. C.. Hanover, NH: University of New England Press, pp. 1–66.Google Scholar
Martin, R. D. (1972). A preliminary field-study of the lesser mouse lemur (Microcebus murinus J. F. Miller 1777). Zeitschrift für Tierpsychologic Supplement, 9, 43–89.Google Scholar
Martin, R. D.(1973). A review of the behaviour and ecology of the lesser mouse lemur (Microcebus murinus). In Ecology and Behaviour of Primates, ed. Crook, M.. London: Academic Press, pp. 1–68.Google Scholar
Martin, R. D. & Bearder, S. K. (1979). Radio bushbaby. Natural History 88, 77–81.Google Scholar
McCormick, S. A. (1981). Oxygen consumption and torpor in the fat-tailed dwarf lemur (Cheirogaleus medius): rethinking prosimian metabolism. Comparative Biochemistry and Physiology A, 68, 605–10.CrossRefGoogle Scholar
McNab, B. K. (1980). Food habits, energetics, and the population biology of mammals. American Naturalist, 116, 106–24.CrossRefGoogle Scholar
McNab, B. K.(1983). Energetics, body size, and the limits to endothermy. Journal of Zoology, London, 199, 1–29.CrossRefGoogle Scholar
McNab, B. K.(1988). Complications inherent in scaling the basal rate of metabolism in mammals. Quarterly Review of Biology, 63, 25–54.CrossRefGoogle ScholarPubMed
McNab, B. K. & Wright, P. C. (1987). Temperature regulation and oxygen consumption in the Philippine tarsier Tarsius syrichta. Physiological Zoology, 60, 596–600.CrossRefGoogle Scholar
Morland, H. S. (1993). Determinants of seasonal behavioral variation in ruffed lemurs (Varecia variegata variegata). In Lemur Social Systems and Their Ecological Basis, ed. Kappeler, P. M. & Ganzhorn, J. U.. New York: Plenum Press, pp. 193–204.CrossRefGoogle Scholar
Morrison, P. & Middleton, E. H. (1967). Body temperature and metabolism in the pygmy marmoset. Folia Primatologica, 6, 70–82.CrossRefGoogle Scholar
Müller, E. F. (1979). Energy metabolism, thermoregulation and water budget in the slow loris (Nycticebus coucang, Boddaert 1785). Comparative Biochemistry and Physiology A, 64, 109–19.CrossRefGoogle Scholar
Müller, E. (1985). Basal metabolic rates in primates: the possible role of phylogenetic and ecological factors. Comparative Biochemistry and Physiology A, 81, 707–11.CrossRefGoogle ScholarPubMed
Müller, E. F.& Jaschke, H. (1980). Thermoregulation, oxygen consumption, heart rate and evaporative water loss in the thick-tailed bushbaby (Galago crassicaudatus Geoffroy, 1812). Zeitschrift fur Säugetierk, 45, 269–78.Google Scholar
Müller, E. F., Kamau, J. M. Z., & Maloiy, G. M. O. (1983). A comparative study of basal metabolism and thermoregulation in a folivorous (Colobus guereza) and an ominivorous (Cercopithecus mitis) primate species. Comparative Biochemistry and Physiology A, 74, 319–22.CrossRefGoogle Scholar
Nash, L. T. (1998). Vertical clingers and sleepers: seasonal influences on the activities and substrate use of Lepilemur leucopus at Beza Mahafaly Special Reserve, Madagascar. Folia Primatologica, 69 (Suppl. 1), 204–17.CrossRefGoogle Scholar
Nekaris, K. (2000). Socioecology of the slender loris (Loris tardigradus lydykkerianus) in Dindigul (DT), Tamil Nadu, South India. Ph.D. thesis, Washington University.
Ortmann, S., Schmid, J., Ganzhorn, J. U., & Heldmaier, G. (1996). Body temperature and torpor in a Malagasy small primate, the mouse lemur. In Adaptations to the Cold: The Tenth International Hibernation Symposium, ed. Geiser, F., Hulbert, A. J., & Nicol, S. C.. Armidale: University of New England Press, pp. 55–61.Google Scholar
Ortmann, S., Heldmaier, G., Schmid, J., & Ganzhorn, J. U. (1997). Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften, 84, 28–32.CrossRefGoogle ScholarPubMed
Overdorff, D. J. (1993). Similarities, differences, and seasonal patterns in the diets of Eulemur rubriventer and Eulemur fulvus rufus in the Ranomafana National Park, Madagascar. International Journal of Primatology, 14, 721–53.CrossRefGoogle Scholar
Pereira, M. E., Strohecker, R., Cavigelli, S., Hughes, C., & Pearson, D. (1999). Metabolic strategy and social behavior in Lemuridae. In New Directions in Lemur Studies, ed. Rasamimanana, H., Rakotosamimanana, B., Ganzhorn, J., & Goodman, S.. New York: Plenum Press, pp. 93–118.
Perret, M. (1990). Influence of social factors on sex ratio at birth, maternal investment and young survival in a prosimian primate. Behavioral Ecology and Sociobiology, 27, 447–54.CrossRefGoogle Scholar
Perret, M.(1992). Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatologica, 59, 1–25.Google Scholar
Perret, M.(1996). Manipulation of sex ratio at birth by urinary cues in a prosimian primate. Behavioral Ecology and Sociobiology, 38, 259–66.CrossRefGoogle Scholar
Perret, M.(1998). Energetic advantage of nest-sharing in a solitary primate, the lesser mouse lemur (Microcebus murinus). Journal of Mammalogy, 79, 1093–102.CrossRefGoogle Scholar
Perret, M., Aujard, F., & Vannier, G. (1998). Influence of daylength on metabolic rate and daily water loss in the male prosimian primate Microcebus murinus. Comparative Biochemistry and Physiology A, 119, 981–9.CrossRefGoogle ScholarPubMed
Petter, J.-J., Albignac, R., & Rumpler, Y. (1977). Mammifères lémuriens (Primates prosimiens). Paris: ORSTOM-CNRS.Google Scholar
Petter-Rousseaux, A. (1962). Recherche sur la biologie de la reproduction des primates inférieurs. Mammalia 26 Supplement, 1, 1–88.Google Scholar
Petter-Rousseaux, A. (1980). Seasonal activity rhythms, reproduction, and body weight variations in five sympatric nocturnal prosimians, in simulated light and climatic conditions. In Nocturnal Malagasy Primates: Ecology, Physiology and Behaviour, ed. Charles-Dominique, P., Cooper, H. M., Hladik, A.. New York: Academic Press, pp. 137–51.Google Scholar
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, London, 220, 417–37.CrossRefGoogle Scholar
Radespiel, U., Cepok, S., Zietemann, V., & Zimmermann, E. (1998). Sex-specific usage patterns of sleeping sites in grey mouse lemurs (Microcebus murinus) in Northwestern Madagascar. American Journal of Primatology, 46, 77–84.3.0.CO;2-S>CrossRefGoogle Scholar
Rakotoarison, N., Zimmermann, H., & Zimmermann, E. (1997). First discovery of the hairy-eared dwarf lemur (Allocebus trichotis) in a highland rain forest of eastern Madagascar. Folia Primatologica, 68, 86–94.CrossRefGoogle Scholar
Rasmussen, D. T. (1985). A comparative study of breeding seasonality and litter size in eleven taxa of captive lemurs (Lemur and Varecia). International Journal of Primatology, 6, 501–17.CrossRefGoogle Scholar
Rasoazanabary, E. (2001). Stratégie adaptive chez les males de Microcebus murinus pendant la saison sèche, dans la forêt de Kirindy, Morondava. DEA thesis, Universite d'Antananarivo.
Rasoloarison, R. M., Rasolonadrasana, B. P. N., Ganzhorn, J. U., & Goodman, S. M. (1995). Predation on vertebrates in the Kirindy Forest, Western Madagascar. Ecotropica, 1, 59–65.Google Scholar
Rasoloarison, R. M., Goodman, S. M., & Ganzhorn, J. U. (2000). A taxonomic revision of mouse lemurs (Microcebus) occurring in the western portions of Madagascar. International Journal of Primatology, 21, 963–1019.CrossRefGoogle Scholar
Richard, A. F. & Dewar, R. E. (1991). Lemur ecology. Annual Review of Ecology and Systematics, 22, 145–75.CrossRefGoogle Scholar
Russel, R. J. (1975). Body temperature and behavior of captive cheirogaleids. In Lemur Biology, ed. Tattersall, I. & Sussman, R. W.. New York: Plenum Press, pp. 193–206.CrossRefGoogle Scholar
Schmelting, B., Ehresmann, P., Lutermann, H., Randrianambinina, B., & Zimmermann, E. (2000). Reproduction of two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in north-west Madagascar: first results of a long term study. In Mémoires de la Société de Biogéographie, ed. Lourenco, W. R. & Goodman, S. M.. Paris: ORSTOM, pp. 165–75.Google Scholar
Schmid, J. (1996). Oxygen consumption and torpor in mouse lemurs (Microcebus murinus and Microcebus myoxinus): preliminary results of a study in western Madagascar. In Adaptations to the Cold: The Tenth Hibernation Symposium, ed. Geiser, F., Hulbert, A. J., & Nicol, S. C.. Armidale: University of New England Press, pp. 47–54.Google Scholar
Schmid, J.(1997). Torpor beim Grauen Mausmaki (Microcebus murinus) in Madagascar: Energetische Konsequenzen und ökologische Bedeutung. Ph.D. thesis, University of Tübingen.
Schmid, J.(1998). Tree holes used for resting by gray mouse lemur (Microcebus murinus) in Madagascar: insulation capacities and energetic consequences. International Journal of Primatology, 19, 797–809.CrossRefGoogle Scholar
Schmid, J.(1999). Sex-specific differences in activity patterns and fattening in the gray mouse lemur (Microcebus murinus) in Madagascar. Journal of Mammalogy, 80, 749–57.CrossRefGoogle Scholar
Schmid, J.(2000). Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetical consequences and biological significance. Oecologia, 123, 175–83.CrossRefGoogle Scholar
Schmid, J. & Ganzhorn, J. U. (1996). Resting metabolic rates of Lepilemur ruficaudatus. American Journal of Primatology, 38, 169–74.3.0.CO;2-X>CrossRefGoogle Scholar
Schmid, J. & Kappeler, P. M. (1994). Sympatric mouse lemurs (Microcebus spp.) in western Madagascar. Folia Primatologica, 63, 162–70.CrossRefGoogle Scholar
Schmid, J. & Kappeler, P. M.(1998). Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murnius). Behavioral Ecology and Sociobiology, 43, 125–32.CrossRefGoogle Scholar
Schmid, J. & Speakman, J. R. (2000). Daily energy expenditure of the gray mouse lemur (Microcebus murinus): a small primate that uses torpor. Journal of Comparative Physiology B, 170, 633–41.CrossRefGoogle Scholar
Schmid, J. & Stephenson, P. J. (2004). Physiological adaptations of Malagasy mammals: lemurs and tenrecs compared. In The Natural History of Madagascar, ed. Goodman, S. M. & Benstead, J. P.. Chicago: University of Chicago Press, pp. 1198–203.Google Scholar
Schmid, J., Ruf, T., & Heldmaier, G. (2000). Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemur (Microcebus myoxinus) in Madagascar. Journal of Comparative Physiology B, 170, 59–68.CrossRefGoogle Scholar
Schmidt-Nielsen, K. (1964). Desert Animals: Physiological Problems of Heat and Water. Oxford: Clarendon Press.Google Scholar
Schülke, O. (2004). Phaner furcifer. In The Natural History of Madagascar, ed. Goodman, S. M. & Benstead, J. P.. Chicago: University of Chicago Press, pp. 1318–80.Google Scholar
Schwab, D. (2000). A preliminary study of spatial distribution and mating system of pygmy mouse lemurs (Microcebus cf myoxinus). American Journal of Primatology, 51, 41–60.3.0.CO;2-7>CrossRefGoogle Scholar
Sorg, J.-P. & Rohner, U. (1996). Climate and tree phenology of the dry deciduous forest of the Kirindy forest. In Primate Report, ed. Ganzhorn, J. U. & Sorg, J.-P.. Göttingen, Germany: Kinze, pp. 57–80.Google Scholar
Speakman, J. R. & Racey, P. A. (1989). Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology, 58, 797–813.CrossRefGoogle Scholar
Stanger, K., Coffman, B., & Izard, M. (1995). Reproduction in Coquerel's dwarf lemur (Mirza coquereli). American Journal of Primatology, 36, 223–37.CrossRefGoogle Scholar
Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Quarterly Review of Biology, 51, 3–47.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.Google Scholar
Stephenson, P. J. & Racey, P. A. (1994). Seasonal variation in resting metabolic rate and body temperature of streaked tenrecs, Hemizentetes nigriceps and H . semispinosus (Insectivora: Tenrecidae). Journal of Zoology, London, 232, 285–94.CrossRefGoogle Scholar
Sterling, E. J. (1994). Evidence for nonseasonal reproduction in wild aye-ayes (Daubentonia madagascariensis). Folia Primatologica 62, 46–53.CrossRefGoogle Scholar
Thomas, D. W. & Cloutier, D. (1992). Evaporative water loss by hibernating little brown bats, Myotis lucifugus. Physiological Zoology, 65, 443–56.CrossRefGoogle Scholar
Vincent, F. (1978). Thermoregulation and behaviour in two sympatric galagos: an evolutionary factor. In Recent Advances in Primatology, Vol 3, ed. Chivers, D. A. & Joysey, K. A.. London: Academic Press, pp. 181–7.Google Scholar
Wang, L. C. H. (1989). Ecological, physiological, and biochemical aspects of torpor in mammals and birds. In Advances in Comparative and Environmental Physiology, ed. Wang, L. C. H. & Boulant, J. A.. New York: Springer-Verlag, pp. 361–93.Google Scholar
Willis, J. S. (1982). The mystery of periodic arousal. In Hibernation and Torpor in Mammals and Birds, ed. Lyman, C. P., Willis, J. S., Malan, A., & Wang, L. C. H.. New York: Academic Press, pp. 92–101.Google Scholar
Wright, P. C. (1981). The night monkeys, genus Aotus. In Ecology and Behavior of Neotropical Primates, Vol. 1, ed. Coimbra-Filho, A. F. & Mittermeier, R. A.. Rio de Janeiro: Academia Brasileira de Ciências, pp. 211–40.Google Scholar
Wright, P. C.(1999). Lemur traits and Madagascar ecology: coping with an island environment. Yearbook of Physical Anthropology, 42, 31–72.3.0.CO;2-0>CrossRefGoogle Scholar
Wright, P. C. & Martin, L. B. (1995). Predation, pollination and torpor in two nocturnal prosimians: Cheirogaleus major and Microcebus rufus in the rain forest of Madagascar. In Creatures of the Dark: The Nocturnal Prosimians, ed. Alterman, L., Doyle, G. A., & Izard, M. K., New York: Plenum Press, pp. 45–60.CrossRefGoogle Scholar
Yacoe, M. E. (1983). Protein metabolism in the pectoralis muscle and liver of hibernating bats, Eptesicus fuscus. Journal of Comparative Physiology B, 152, 137–44.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×