Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T06:46:37.261Z Has data issue: false hasContentIssue false

Chapter 7 - Storm surges, meteotsunamis and other meteorological effects on sea level

Published online by Cambridge University Press:  05 May 2014

David Pugh
Affiliation:
National Oceanography Centre, Liverpool
Philip Woodworth
Affiliation:
National Oceanography Centre, Liverpool
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sea-Level Science
Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes
, pp. 155 - 188
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wunsch, C. and Stammer, D. 1997. Atmospheric loading and the oceanic “inverted barometer” effect. Reviews of Geophysics, 35, 1, .CrossRefGoogle Scholar
Ponte, R. M., Salstein, D. A. and Rosen, R. D. 1991. Sea level response to pressure forcing in a barotropic numerical model. Journal of Physical Oceanography, 21, 1043–1057, ;2.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. 1982. Atmosphere–Ocean Dynamics. New York: Academic Press.Google Scholar
(1) Willebrand, J., Philander, S. G. H. and Pacanowski, R. C. 1980. The oceanic response to large-scale atmospheric disturbances. Journal of Physical Oceanography, 10, 411–429, . (2) Vinogradova, N. T., Ponte, R. M. and Stammer, D. 2007. Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophysical Research Letters, 34, L03608, doi:10.1029/2006GL028588.2.0.CO;2>CrossRefGoogle Scholar
Wu, J. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research, 87, C12, .CrossRefGoogle Scholar
(1) Heaps, N. S. 1967. Storm surges. In Oceanography and Marine Biology: An Annual Review: Volume 5 (ed. Barnes, H.), pp. 11–47. London: Allen and Unwin. (2) Heaps, N. S. 1983. Storm surges 1967–1982. Geophysical Journal of the Royal Astronomical Society, 74, 331–376, .Google Scholar
Flather, R. A. 1988. Storm surge modelling. Lecture notes during the Course on Ocean Waves and Tides at the International Centre for Theoretical Physics, Trieste, 26 September–28 October 1988.
Woodworth, P. L. and Horsburgh, K. J. 2011. Surge models as providers of improved “inverse barometer corrections” for coastal altimetry users. In Coastal Altimetry (eds. Vignudelli, S., Kostianoy, A., Cipollini, P. and Benveniste, J.), pp. 177–189. Berlin: Springer-Verlag. .CrossRefGoogle Scholar
Mathers, E. L. and Woodworth, P. L. 2001. Departures from the local inverse barometer model observed in altimeter and tide gauge data and in a global barotropic numerical model. Journal of Geophysical Research, 106(C4), 6957–6972, .CrossRefGoogle Scholar
(1) Baxter, P. J. 2005. The east coast Big Flood, 31 January–1 February 1953: a summary of the human disaster. Philosophical Transactions of the Royal Society, A, 363, 1293–1312, . (2) Gerritsen, H. 2005. What happened in 1953? The Big Flood in the Netherlands in retrospect. Philosophical Transactions of the Royal Society, A, 363, 1271–1291, doi:10.1098/rsta.2005.1568. (3) McRobie, A., Spencer, T. and Gerritsen, H. 2005. The Big Flood: North Sea storm surge. Philosophical Transactions of the Royal Society, A, 363, 1263–1270, doi:10.1098/rsta.2005.1567.CrossRefGoogle ScholarPubMed
Wolf, J. and Flather, R. A. 2005. Modelling waves and surges during the 1953 storm. Philosophical Transactions of the Royal Society, A, 363, 1359–1375, .CrossRefGoogle ScholarPubMed
Lamb, H. H. and Frydendahl, K. 2005. Historic Storms of the North Sea, British Isles and Northwest Europe. Cambridge: Cambridge University Press.Google Scholar
(1) Murty, T. S., Flather, R. A. and Henry, R. F. 1986. The storm surge problem in the Bay of Bengal. Progress in Oceanography, 16, 195–233, . (2) Murty, T. S. and Flather, R. A. 1994. Impact of storm surges in the Bay of Bengal. Journal of Coastal Research, Special Issue, 12, 149–161. (3) Flather, R. A. 1994. A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. Journal of Physical Oceanography, 24, 172–190, doi:10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2. (4) Dube, S. K., Rao, A. D., Sinha, P. C., Murty, T. S. and Bahulayan, N. 1997. Storm surge in the Bay of Bengal and Arabian Sea: the problem and its prediction. Mausam, 48, 283–304.CrossRefGoogle Scholar
(1) FEMA. 2006. Reconstruction guidance using Hurricane Katrina surge inundation and advisory base flood elevation maps. Federal Emergency Management Agency. . (2) Needham, H. F. and Keim, B. D. 2012. A storm surge database for the US Gulf Coast. International Journal of Climatology, 32, 2108–2123, .Google Scholar
Sweet, W., Zervas, C., Gill, S. and Park, J. 2013. Hurricane Sandy inundation probabilities today and tomorrow. In Explaining Extreme Events of 2012 from a Climate Perspective (eds. Peterson, T. C., Hoerling, M. P., Stott, P. A. and Herring, S.), pp. 17–20. Bulletin of the American Meteorological Society, 94, S1–S74. Available from .Google Scholar
(1) Lowe, J. A., Woodworth, P. L., Knutson, T. et al. 2010. Past and future changes in extreme sea levels and waves.In Understanding Sea-Level Rise and Variability (eds. J. A. Church, P. L. Woodworth, T. Aarup and W. S. Wilson), Chapter 11. London: Wiley-Blackwell. (2) Woodworth, P. L., Menéndez, M. and Gehrels, W. R. 2011. Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels. Surveys in Geophysics, 32(4–5), 603–618 (erratum p. 619), . (3) IPCC, 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (eds. C. B. Field, V. Barros, T. F. Stocker et al.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pousa, J. L., D’Onofrio, E. E., Fiore, M. M. E. and Kruse, E. E. 2012. Environmental impacts and simultaneity of positive and negative storm surges on the coast of the Province of Buenos Aires, Argentina. Environmental Earth Sciences, 68, 2325–2335, .CrossRefGoogle Scholar
von Storch, H. and Woth, K. 2008. Storm surges: perspectives and options. Sustainability Science, 3, 33–43, .CrossRefGoogle Scholar
Ali, A. 1999. Climate change impacts and adaptation assessment in Bangladesh. Climate Research, 12, 109–116.CrossRefGoogle Scholar
Wolf, J. 2009. Coastal flooding: impacts of coupled wave–surge–tide models. Natural Hazards, 49, 241–260, .CrossRefGoogle Scholar
Wolf, J. 1981. Surge-tide interaction in the North Sea and River Thames. In Floods Due to High Winds and Tides (ed. Peregrine, D. H.), pp. 75–94. New York: Elsevier.Google Scholar
(1) Keers, J. F. 1968. An empirical investigation of interaction between storm surge and astronomical tide on the east coast of Great Britain. Ocean Dynamics, 21, 118–125, . (2) Prandle, D. and Wolf, J. 1978. The interaction of surge and tide in the North Sea and River Thames. Geophysical Journal of the Royal Astronomical Society, 55, 203–216, doi:10.1111/j.1365-246X.1978.tb04758.x. (3) Prandle, D. and Wolf, J. 1978. Surge-tide interaction in the southern North Sea. Hydrodynamics of Estuaries and Fjords (Proceedings of the 9th International Liege Colloquium on Ocean Hydrodynamics), pp. 161–185, doi:10.1016/S0422-9894(08)71277-7. (4) Wolf, J.1978. Interaction of tide and surge in a semi-infinite uniform channel, with application to surge propagation down the east coast of Britain. Applied Mathematical Modelling, 2, 245–253, doi:10.1016/0307-904X(78)90017-3.Google Scholar
Horsburgh, K. J. and Wilson, C. 2007. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. Journal of Geophysical Research, 112, C08003, .CrossRefGoogle Scholar
World Meteorological Organization. 2011. Guide to Storm Surge Forecasting. WMO Report No. 1076. Geneva: World Meteorological Organization. Available from .Google Scholar
Amin, M. 1982. On analysis and forecasting of surges on the west coast of Great Britain. Geophysical Journal of the Royal Astronomical Society, 68, 79–94, .CrossRefGoogle Scholar
Woodworth, P. L. and Blackman, D. L. 2002. Changes in extreme high waters at Liverpool since 1768. International Journal of Climatology, 22, 697–714, .CrossRefGoogle Scholar
(1) Proudman, J. 1955. The propagation of tide and surge in an estuary. Proceedings of the Royal Society London, A, 231, 8–24, . (2) Proudman, J. 1955. The effect of friction on a progressive wave of tide and surge in an estuary. Proceedings of the Royal Society London, A, 233, 407–418, doi:10.1098/rspa.1955.0276. (3) Proudman, J. 1957. Oscillations of tide and surge in an estuary of finite length. Journal of Fluid Mechanics, 2, 371–382, doi:10.1017/S002211205700018X.CrossRefGoogle Scholar
Bernier, N. B. and Thompson, K. R. 2007. Tide-surge interaction off the east coast of Canada and northeastern United States. Journal of Geophysical Research, 112, C06008, .CrossRefGoogle Scholar
Haigh, I. D., MacPherson, L. R., Mason, M. S. et al. 2014. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges. Climate Dynamics, 42, 139–157. .CrossRefGoogle Scholar
Valle-Levinson, A., Olabarrieta, M. and Valle, A. 2013. Semidiurnal perturbations to the surge of Hurricane Sandy. Geophysical Research Letters, 40, 2211–2217, .CrossRefGoogle Scholar
Pugh, D. T. and Vassie, J. M. 1976. Tide and surge propagation off-shore in the Dowsing region of the North Sea. Deutsche Hydrographische Zeitschrift, 29, 163–213, .CrossRefGoogle Scholar
Amin, M. 1982. On analysis and prediction of tides on the west coast of Great Britain. Geophysical Journal of the Royal Astronomical Society, 68, 57–78, .CrossRefGoogle Scholar
Rossiter, J. R. 1959. Research on methods of forecasting storm surges on the east and south coasts of Great Britain. Quarterly Journal of the Royal Meteorological Society, 365, 262–277, .CrossRefGoogle Scholar
Flather, R. A. 2000. Existing operational oceanography. Coastal Engineering, 41, 13–40, .CrossRefGoogle Scholar
Murty, T. S. 1984. Storm Surges: Meteorological Ocean Tides. Canadian Journal of Fisheries and Aquatic Sciences, Bulletin No. 12.
For example, Greenberg, D. A. 1979. A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Marine Geodesy, 2, 161–187, .CrossRefGoogle Scholar
For example, see Jones, J. E. and Davies, A. M. 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research, 18, 201–251, .CrossRefGoogle Scholar
de Vries, H., Breton, M., de Mulder, T. et al. 1995. A comparison of 2D storm surge models applied to three shallow European seas. Environmental Software, 10, 23–42, .CrossRefGoogle Scholar
Álvarez Fanjul, E., Pérez Gómez, B. and Rodríguez Sánchez-Arévalo, I. 2001. Nivmar: A storm surge forecasting system for Spanish Waters. Scientia Marina, 65 (Suppl. 1), 145–154.CrossRefGoogle Scholar
Gonnert, G., Dube, S. K., Murty, T. S. et al. 2001. Global Storm Surges: Theory, Observations and Applications. German Coastal Engineering Research Council.Google Scholar
Examples include (1) Flather, R. A., Smith, J. A., Richards, J. D., Bell, C. and Blackman, D. L. 1998. Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. The Global Atmosphere and Ocean System, 6, 165–176. (2) Bernier, N. B. and Thompson, K. R. 2006. Predicting the frequency of storm surges and extreme sea levels in the northwest Atlantic. Journal of Geophysical Research, 111, C10009, . (3) Weisse, R. and Plüβ, A. 2006. Storm-related sea level variations along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dynamics, 56, 16–25, doi:10.1007/s10236-005-0037-y. (4) Haigh, I. D., Wijeratne, E. M. S., MacPherson, L. R. et al. 2014. Estimating present day extreme total water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level. Climate Dynamics, 42, 139–157, doi:10.1007/s00382-012-1652-1.Google Scholar
Munk, W. H. 1955. Wind stress on water: an hypothesis. Quarterly Journal of the Royal Astronomical Society, 81, 320–332, .CrossRefGoogle Scholar
(1) Mastenbroek, C., Burgers, G. and Janssen, P. A. E. M. 1993. The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. Journal of Physical Oceanography, 23, 1856–1866, . (2) Brown, J. M., Bolaños, R. and Wolf, J. 2011. Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow-water application. Journal of Marine Systems, 87, 13–24, doi:10.1016/j.jmarsys.2011.02.006. (3) Brown, J. M. and Wolf, J. 2009. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Continental Shelf Research, 29, 1329–1342, doi:10.1016/j.csr.2009.03.004. (4) Janssen, P. 2009. The Interaction of Ocean Waves and Wind. Cambridge: Cambridge University Press.2.0.CO;2>CrossRefGoogle Scholar
Powell, M. D., Vickery, P. J. and Reinhold, T. A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 220, 279–283, .CrossRefGoogle Scholar
Prandle, D. 1997. The influence of bed friction and vertical eddy viscosity on tidal propagation. Continental Shelf Research, 17, 1367–1374, .CrossRefGoogle Scholar
(1) Flowerdew, J., Horsburgh, K., Wilson, C. and Mylne, K. 2010. Development and evaluation of an ensemble forecasting system for coastal storm surges. Quarterly Journal of the Royal Meteorological Society, Part B, 136, 1444–1456, . (2) Horsburgh, K. J., Williams, J. A., Flowerdew, J. and Mylne, K. 2008. Aspects of operational forecastmodel skill during an extreme storm surge event. Journal of Flood Risk Management, 1, 213–221, doi:10.1111/j.1753-318X.2008.00020.x.CrossRefGoogle Scholar
(1) Madsen, K. S., Høyer, J. L. and Tscherning, C. C. 2007. Near-coastal satellite altimetry: sea surface height variability in the North Sea–Baltic Sea area. Geophysical Research Letters, 34, L14601, . (2) Scharroo, R., Smith, W. H. F. and Lillibridge, J. L. 2005. Altimetry and the intensification of Hurricane Katrina. Eos, Transactions of the American Geophysical Union, 86, 40, doi:10.1029/2005EO400004.CrossRefGoogle Scholar
Goni, G., DeMaria, M., Knaff, J. et al. 2009. Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190–197, .CrossRefGoogle Scholar
See .
For example, see Allan, T. 2005. Detecting tsunamis: calling in the satellites. Marine Scientist, 13, 12–14.Google Scholar
(1) Benveniste, J. 2011. Radar altimetry: past, present and future. In Coastal Altimetry (eds. Vignudelli, S., Kostianoy, A., Cipollini, P. and Benveniste, J.), pp. 1–17. Berlin: Springer-Verlag. . (2) Fu, L.-L., Chelton, D. B., Le Traon, P.-Y. and Morrow, R. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23, 14–25, doi:10.5670/oceanog.2010.02.Google Scholar
Geng, J., Williams, S. D. P., Teferle, F. N. and Dodson, A. H. 2012. Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophysical Journal International, 191, 569–578, .CrossRefGoogle Scholar
Menéndez, M. and Woodworth, P. L. 2010. Changes in extreme high water levels based on a quasi-global tide-gauge dataset. Journal of Geophysical Research, 115, C10011, .CrossRefGoogle Scholar
Abeysirigunawardena, D. S. and Walker, I. J. 2008. Sea level responses to climatic variability and change in Northern British Columbia. Atmosphere-Ocean, 46, 277–296, . (2) Haigh, I., Nicholls, R. and Wells, N. 2010. Assessing changes in extreme sea levels: application to the English Channel, 1900–2006. Continental Shelf Research, 30, 1042–1055, doi:10.1016/j.csr.2010.02.002.CrossRefGoogle Scholar
For example, Lowe, J. A., Gregory, J. M. and Flather, R. A. 2001. Changes in the ocurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Climate Dynamics, 18, 179–188, .CrossRefGoogle Scholar
For example see, Wakelin, S. L., Woodworth, P. L., Flather, R. A. and Williams, J. A. 2003. Sea-level dependence on the NAO over the NW European Continental Shelf. Geophysical Research Letters, 30, 1403, .CrossRefGoogle Scholar
For example see, Woodworth, P. L., Flather, R. A., Williams, J. A., Wakelin, S. L. and Jevrejeva, S. 2007. The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Continental Shelf Research, 27, 935–946. .CrossRefGoogle Scholar
Pratt, I. 1995. The storm surge of 21 February 1993. Weather, 50, 42–48, .CrossRefGoogle Scholar
For an example of asymmetry between positive and negative surges in tropical areas, see Peng, M., Xie, L. and Pietrafesa, L. J. 2006. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean Modelling, 14, 81–101, .CrossRefGoogle Scholar
Bjerknes, J. and Solberg, H. 1922. Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofysiker Publikationer, 3, 3–18.Google Scholar
Forel, F.-A. 1901. Handbuch der Seenkunde: Allgemeine Limnologie. Stuttgart, Germany: J. Engelhorn.Google Scholar
Heaps, N. S., Mortimer, C. H. and Fee, E. J. 1982. Numerical models and observations of water motion in Green Bay, Lake Michigan. Philosophical Transactions of the Royal Society of London, A, 306, 371–398, .CrossRefGoogle Scholar
Donn, W. L. and Wolf, D. M. 1972. Seiche and water level fluctuations in Grindavik Harbor, Iceland. Limnology and Oceanography, 17, 639–643.CrossRefGoogle Scholar
Golmen, L. G., Molvaer, J. and Magnusson, J. 1994. Sea level oscillations with super-tidal frequency in a coastal embayment of western Norway. Continental Shelf Research, 14, 1439–1454, .CrossRefGoogle Scholar
(1) Chapman, D. C. and Giese, G. S. 1990. A model for the generation of coastal seiches by deep sea internal waves. Journal of Physical Oceanography, 20, 1459–1467, . (2) Giese, G. S. and Chapman, D. C. 1993. Coastal seiches. Oceanus, 36(1), 38–46.2.0.CO;2>CrossRefGoogle Scholar
Okihiro, M., Guza, R. T. and Seymour, R. J. 1993. Excitation of seiche observed in a small harbor. Journal of Geophysical Research, 98, C10, .CrossRefGoogle Scholar
Muir-Wood, R. and Mignan, A. 2009. A phenomenological reconstruction of the Mw 9 November 1st 1755 earthquake source. In The 1755 Lisbon Earthquake: Revisited (eds. Mendes-Victor, L. A. et al.), pp. 121–146. Geotechnical, Geological, and Earthquake Engineering 7, . Springer Publishing.CrossRefGoogle Scholar
Bondevik, S., Gjevik, B. and Sørensen, M. B. 2013. Norwegian seiches from the giant 2011 Tohoku earthquake. Geophysical Research Letters, 40, 3374–3378, .CrossRefGoogle Scholar
Kulikov, E. A., Rabinovich, A. B., Thomson, R. E. and Bornhold, B. D. 1996. The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101, C3, .CrossRefGoogle Scholar
(1) Wilson, B. W. 1972. Seiches. Advances in Hydroscience, 8, 1–94. (2) Sorensen, R. M. 1978. Basic Coastal Engineering. Hoboken, NJ: John Wiley.CrossRefGoogle Scholar
Proudman, J. 1953. Dynamical Oceanography. London: Methuen.Google Scholar
(1) Murty, T. S. 1977. Seismic Sea Waves: Tsunamis. Ottawa: Department of Fisheries and the Environment, Fisheries and Marine Service. (2) Giese, G. S., Chapman, D. C., Black, P. G. and Fornshell, J. A. 1990. Causation of large-amplitude coastal seiches on the Caribbean coast of Puerto Rico. Journal of Physical Oceanography, 20, 1449–1458, .Google Scholar
Rabinovich, A. B. 2010. Seiches and harbor oscillations. In Handbook of Coastal Engineering (ed. Kim, Y. C.), pp. 193–236. Hackensack, NJ: World Scientific Publishing.Google Scholar
Joseph, A. 2011. Tsunamis: Detection, Monitoring, and Early-Warning Technologies. Burlington, MA: Academic Press.Google Scholar
Woodworth, P. L., Pugh, D. T., Meredith, M. P. and Blackman, D. L. 2005. Sea level changes at Port Stanley, Falkland Islands. Journal of Geophysical Research, 110, C06013, .CrossRefGoogle Scholar
Dragani, W. C., Mazio, C. A. and Nuñez, M. N. 2002. Sea level oscillations in coastal waters of the Buenos Aires province, Argentina. Continental Shelf Research, 22, 779–790, .CrossRefGoogle Scholar
Cartwright, D. E. and Young, C. M. 1974. Seiches and tidal ringing in the sea near Shetland. Proceedings of the Royal Society of London, A, 338, 111–128, .CrossRefGoogle Scholar
Wijeratne, E. M. S., Woodworth, P. L. and Pugh, D. T. 2010. Meteorological and internal wave forcing of seiches along the Sri Lanka coast. Journal of Geophysical Research, 115, C03014, .CrossRefGoogle Scholar
Pugh, D. T. 1979. Sea levels at Aldabra Atoll, Mombasa and Mahe, western equatorial Indian Ocean, related to tides, meteorology and ocean circulation. Deep Sea Research Part A, 26, 237–258, .CrossRefGoogle Scholar
Lowry, R., Pugh, D. T. and Wijeratne, E. M. S. 2008. Observations of seiching and tides around the islands of Mauritius and Rodrigues. Western Indian Ocean Journal of Marine Science, 7, 15–28.Google Scholar
Morison, M. and Imberger, J. 1992. Water level oscillations in Esperance Harbour. Journal of Waterway, Port, Coastal and Ocean Engineering, 118, 352–367, .CrossRefGoogle Scholar
(1) Rabinovich, A. B. and Monserrat, S. 1996. Meteorological tsunamis near the Balearic and Kuril Islands: descriptive and statistical analysis. Natural Hazards, 13, 55–90, . (2) Rabinovich, A.B. and Monserrat, S. 1998. Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands. Natural Hazards, 18, 27–55, doi:10.1023/A:1008096627047.CrossRefGoogle Scholar
Drago, A. 2009. Sea level variability and the “Milghuba” seiche oscillations in the northern coast of Malta, Central Mediterranean. Physics and Chemistry of the Earth, 34, 948–970, .CrossRefGoogle Scholar
Airy, G. B. 1878. On the tides at Malta. Philosophical Transactions of the Royal Society of London, 169, 123–138, .CrossRefGoogle Scholar
Leder, N. and Orlić, M. 2004. Fundamental Adriatic seiche recorded by current meters. Annales Geophysicae, 22 1449–1464.CrossRefGoogle Scholar
Lionello, P., Cavaleri, L., Nissen, K. M. et al. 2012. Severe marine storms in the Northern Adriatic: characteristics and trends. Physics and Chemistry of the Earth, 40–41, 93–105, .CrossRefGoogle Scholar
Lisitzin, E. 1974. Sea-Level Changes. Amsterdam: Elsevier.Google Scholar
Defant, A. 1961. Physical Oceanography (Two volumes). Oxford: Pergamon Press.Google Scholar
Monserrat, S., Vilibić, I. and Rabinovich, A. B. 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051, .CrossRefGoogle Scholar
(1) Proudman, J. 1929. The effects on the sea of changes in atmospheric pressure. Monthly Notices of the Royal Astronomical Society Geophysical Supplement No.2, 197–209. (2) Doodson, A. T. and Warburg, H. D. 1941. Admiralty Manual of Tides. London: His Majesty’s Stationery Office. (3) Pugh, D. T. 1987. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. Chichester: Wiley.CrossRefGoogle Scholar
Vilibić, I. 2008. Numerical simulations of the Proudman resonance. Continental Shelf Research, 28, 574–581, .CrossRefGoogle Scholar
Orlić, M., 1980. About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica, 16(1), 79–88.Google Scholar
Vilibić, I. and Šepić, J. 2009. Destructive meteotsunamis along the eastern Adriatic coast: overview. Physics and Chemistry of the Earth, 34, 904–917, .CrossRefGoogle Scholar
Hibiya, T. and Kajiura, K. 1982. Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographical Society of Japan, 38, 172–182, .CrossRefGoogle Scholar
Mercer, D., Sheng, J., Greatbatch, R. J. and Bobanović, J. 2002. Barotropic waves generated by storms moving rapidly over shallow water. Journal of Geophysical Research, 107, 3152, .CrossRefGoogle Scholar
Vennell, R. 2007. Long barotropic waves generated by a storm crossing topography. Journal of Physical Oceanography, 37, 2809–2823, .CrossRefGoogle Scholar
(1) Greenspan, H. P. 1956. The generation of edge waves by moving pressure disturbances. Journal of Fluid Mechanics, 1, 574–592, . (2) Donn, W. L. and Ewing, M. 1956. Stokes’ edge waves in Lake Michigan. Science, 124, 1238–1242, doi:10.1126/science.124.3234.1238. (3) Liu, P.L.-F., Monserrat, S. and Marcos, M. 2002. Analytical simulation of edge waves observed around the Balearic Islands. Geophysical Research Letters, 29, 1847, doi:10.1029/2002GL015555.CrossRefGoogle Scholar
Jansa, A., Monserrat, S. and Gomis, D. 2007. The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Advances in Geosciences, 12, 1–4, .CrossRefGoogle Scholar
(1) Haslett, S. K. and Bryant, E. A. 2009. Meteorological tsunamis in southern Britain: an historical review. The Geographical Review, 99, 146–163, . (2) Haslett, S. K., Mellor, H. E. and Bryant, E. A. 2009. Meteo-tsunami hazard associated with summer thunderstorms in the United Kingdom. Physics and Chemistry of the Earth, 34, 1016–1022, doi:10.1016/j.pce.2009.10.005.CrossRefGoogle Scholar
Tappin, D. R., Sibley, A., Horsburgh, K. et al. 2013. The English Channel ‘tsunami’ of 27 June 2011: a probable meteorological source. Weather, 68, 144–152, .CrossRefGoogle Scholar
See Chapter 5 of Huess, V. 2000. Sea level variations in the North Sea from tide gauges, altimetry and modelling. PhD Thesis, University of Copenhagen. Danish Meteorological Institute Scientific Report 01–08.
Horsburgh, K. and Horritt, M. 2006. The Bristol Channel floods of 1607: reconstruction and analysis. Weather, 61, 272–277, .CrossRefGoogle Scholar
DMI, 2005. Tsunami Risk Assessment for Danish, Faroes and Greenland waters (eds. Buch, E. et al.). Danish Meteorological Institute Technical Report No. 05–08.
Newig, J. and Kelletat, D. 2011. The North Sea Tsunami of June 5, 1858. Journal of Coastal Research, 27, 931–941, .CrossRefGoogle Scholar
Thomson, R. E., Rabinovich, A. B., Fine, I. V. et al. 2009. Meteorological tsunamis on the coasts of British Columbia and Washington. Physics and Chemistry of the Earth, 34, 971–988, .CrossRefGoogle Scholar
Churchill, D. D., Houston, S. H. and Bond, N. A. 1995. The Daytona Beach wave of 3–4 July 1992: a shallow-water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society, 76, 21–32, .2.0.CO;2>CrossRefGoogle Scholar
Dragani, W. C., Mazio, C. A. and Nuñez, M. N. 2002. Sea level oscillations in coastal waters of the Buenos Aires province, Argentina. Continental Shelf Research, 22, 779–790, .CrossRefGoogle Scholar
Wijeratne, E. M. S., Pattiaratchi, C. B., Haigh, I. D. and Eliot, M. 2013. Observations and numerical modelling of meteotsunamis along the south-west Australian coast. (Submitted for publication.)
(1) Longuet-Higgins, M. S. and Stewart, R. W. 1963. A note on wave set-up. Journal of Marine Research, 21, 4–10. (2) Longuet-Higgins, M. S. and Stewart, R. W. 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Research, 11, 529–562.Google Scholar
Bowen, A., Inman, D. and Simmons, V. 1968. Wave ‘set-down’ and set-up. Journal of Geophysical Research, 73, 8, .CrossRefGoogle Scholar
(1) Dean, R. G. and Walton, T. L. 2009. Wave setup. Chapter 1 in Handbook of Coastal and Ocean Engineering. World Scientific. . (2) Stockdon, H. F., Holman, R. A., Howd, P. A. and Sallenger, A. H. Jr. 2006. Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53, 573–588, .CrossRefGoogle Scholar
(1) Tait, R. 1972. Wave set-up on coral reefs. Journal of Geophysical Research, 77, 12, . (2) Vetter, O., Becker, J. M., Merrifield, M. A. et al. 2010. Wave setup over a Pacific Island fringing reef. Journal of Geophysical Research, 115, C12066, doi:10.1029/2010JC006455.CrossRefGoogle Scholar
Aucan, J., Hoeke, R. and Merrifield, M. A. 2012. Wave-driven sea level anomalies at the Midway tide gauge as an index of North Pacific storminess over the past 60 years. Geophysical Research Letters, 39, L17603, .CrossRefGoogle Scholar
Munk, W. H. 1949. Surf beats. Eos, Transactions of the American Geophysical Union, 30, 849–854.Google Scholar
Kinsman, B. 1965. Wind Waves: Their Generation and Propagation on the Ocean Surface. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Thompson, R. O. R. Y. and Hamon, B. V. 1980. Wave setup of harbor water levels. Journal of Geophysical Research, 85, C2, .CrossRefGoogle Scholar
Ponte, R. M. 1993. Variability in a homogeneous global ocean forced by barometric pressure. Dynamics of Atmospheres and Oceans, 18, 209–234, .CrossRefGoogle Scholar
See for example, Pugh, D. T. and Thompson, K. R. 1986. The subtidal behaviour of the Celtic Sea: I. Sea level and bottom pressures. Continental Shelf Research, 5, 239–319, .CrossRefGoogle Scholar
Ponte, R. 1994. Understanding the relation between wind- and pressure-driven sea level variability. Journal of Geophysical Research, 99, C4, .CrossRefGoogle Scholar
(1) Chao, Y. and Fu, L-L. 1995. A comparison between the TOPEX/POSEIDON data and a global ocean general circulation model during 1992–1993. Journal of Geophysical Research, 100, C12, . (2) Fu, L-L. and Smith, R. D. 1996. Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bulletin of the American Meteorological Society, 77, 2625–2636, .CrossRefGoogle Scholar
Quinn, K. J. and Ponte, R. M. 2012. High frequency barotropic ocean variability observed by GRACE and satellite altimetry. Geophysical Research Letters, 39, L07603, .CrossRefGoogle Scholar
(1) Fukumori, I., Raghunath, R. and Fu, L-L. 1998. Nature of global large-scale sea level variability in relation to atmospheric forcing: a modeling study. Journal of Geophysical Research, 103, C3, . (2) Stammer, D., Wunsch, C. and Ponte, R. M. 2000. De-aliasing of global high frequency barotropic motions in altimeter observations. Geophysical Research Letters, 27(8), 1175–1178, doi:10.1029/1999GL011263.CrossRefGoogle Scholar
(1) Webb, D. J. and de Cuevas, B. A. 2002. An ocean resonance in the Southeast Pacific. Geophysical Research Letters, 29(8), 93-1-93-3, . (2) Webb, D. J. and de Cuevas, B. A. 2002. An ocean resonance in the Indian sector of the Southern Ocean. Geophysical Research Letters, 29(14), 9-1-9-3, doi:10.1029/2002GL015270.CrossRefGoogle Scholar
Fu, L-L., Cheng, B. and Qui, B. 2001. 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/Poseidon altimeter. Journal of Physical Oceanography, 31, 506–517, .2.0.CO;2>CrossRefGoogle Scholar
Hughes, C. W., Stepanov, V. N., Fu, L.-L., Barnier, B. and Hargreaves, G. W. 2007. Three forms of variability in Argentine Basin ocean bottom pressure. Journal of Geophysical Research, 112, C01011, .CrossRefGoogle Scholar
(1) Woodworth, P. L., Vassie, J. M., Hughes, C. W. and Meredith, M. P. 1996. A test of the ability of TOPEX/POSEIDON to monitor flows through the Drake Passage. Journal of Geophysical Research, 101, C5, . (2) Hughes, C. W., Meredith, M. P. and Heywood, K. 1999. Wind-driven transport fluctuations through Drake Passage: a southern mode. Journal of Physical Oceanography, 29, 1971–1992, doi:10.1175/1520-0485(1999)029<1971:WDTFTD>2.0.CO;2.CrossRefGoogle Scholar
(1) Aoki, S. 2002. Coherent sea level response to the Antarctic Oscillation. Geophysical Research Letters, 29, 1950, . (2) Hughes, C. W., Woodworth, P. L., Meredith, M. P. et al. 2003. Coherence of Antarctic sea levels, Southern Hemisphere Annular Mode, and flow through Drake Passage. Geophysical Research Letters, 30(9), 1464, doi:10.1029/2003GL017240. (3) Hibbert, A., Leach, H., Woodworth, P. L., Hughes, C. W. and Roussenov, V. M. 2010. Quasi-biennial modulation of the Southern Ocean coherent mode. Quarterly Journal of the Royal Meteorological Society, 136, 755–768, doi:10.1002/qj.581.CrossRefGoogle Scholar
Woodworth, P. L., Hughes, C. W., Blackman, D. L. et al. 2006. Antarctic peninsula sea levels: a real time system for monitoring Drake Passage transport. Antarctic Science, 18(3), 429–436, .CrossRefGoogle Scholar
Hughes, C. W. and Stepanov, V. N. 2004. Ocean dynamics associated with rapid J2 fluctuations: importance of circumpolar modes and identification of a coherent Arctic mode. Journal of Geophysical Research, 109, C06002, .CrossRefGoogle Scholar
(1) Deland, R. J. 1964. Travelling planetary waves. Tellus, 16, 271–273, . (2) Madden, R. A. and Julian, P. R. 1972. Further evidence of global scale, 5-day pressure waves. Journal of the Atmospheric Sciences, 29, 1464–1469, doi:10.1175/1520-0469(1972)029<1464:FEOGSD>2.0.CO;2. (3) Rodgers, C. D. 1976. Evidence for the five-day wave in the upper stratosphere. Journal of the Atmospheric Sciences, 33, 710–711, doi:10.1175/1520-0469(1976)033<0710:EFTFDW>2.0.CO;2. (4) Wu, D. L., Hays, P. B. and Skinner, W. R. 1994. Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophysical Research Letters, 21, 24, doi:10.1029/94GL02660.CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. 1994. Observations of the 40–50-day tropical oscillation: a review. Monthly Weather Review, 122, 814–837, .2.0.CO;2>CrossRefGoogle Scholar
Ponte, R. M. 1997. Nonequilibrium response of the global ocean to the 5-day Rossby–Haurwitz wave in atmospheric surface pressure. Journal of Physical Oceanography, 27, 2158–2168, .2.0.CO;2>CrossRefGoogle Scholar
Luther, D. S. 1982. Evidence of a 4–6 day barotropic, planetary oscillation of the Pacific Ocean. Journal of Physical Oceanography, 12, 644–657, .2.0.CO;2>CrossRefGoogle Scholar
(1) Hamilton, K. 1985. A possible relationship between tropical ocean temperatures and the observed amplitude of the atmospheric (1,1) Rossby normal mode. Journal of Geophysical Research, 90, D5, . (2) Weber, R. and Madden R. A. 1993. Evidence of traveling external Rossby waves in the ECMWF analyses. Journal of the Atmospheric Science, 50, 2994–3007, doi:10.1175/1520-0469(1993)050<2994:EOTERW>2.0.CO;2.CrossRefGoogle Scholar
Woodworth, P. L., Windle, S. A. and Vassie, J. M. 1995. Departures from the local inverse barometer model at periods of 5 days in the central South Atlantic. Journal of Geophysical Research, 100, C9, 18281–18290, .CrossRefGoogle Scholar
Mathers, E. L. and Woodworth, P. L. 2004. A study of departures from the inverse barometer response of sea level to air pressure forcing at a period of 5 days. Quarterly Journal of the Royal Meteorological Society, 130, 725–738, .CrossRefGoogle Scholar
Hirose, N., Fukumori, I. and Ponte, R. M. 2001. A non-isostatic global sea level response to barometric pressure near 5 days. Geophysical Research Letters, 28, 12, .CrossRefGoogle Scholar
Stepanov, V. N. and Hughes, C. W. 2006. Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. Journal of Geophysical Research, 111, C12002, .CrossRefGoogle Scholar
Carrère, L. and Lyard, F. 2003. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: comparisons with observations. Geophysical Research Letters, 30, 1275, .CrossRefGoogle Scholar
Egbert, G. D. and Ray, R. D. 2003. Deviation of long-period tides from equilibrium: kinematics and geostrophy. Journal of Physical Oceanography, 33, 822–839, .2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. and Gill, A. E. 1976. Observations of equatorially trapped waves in Pacific sea level variations. Deep Sea Research and Oceanographic Abstracts, 23, 371–390, .CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×