Skip to main content Accessibility help
×
Home
Scattering Amplitudes in Gauge Theory and Gravity
  • Cited by 89
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang–Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern–Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)x(gauge theory)'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material.

Reviews

‘In recent years, a series of surprising insights and new methods have transformed the understanding of gauge and gravitational scattering amplitudes. These advances are important both for practical calculations in particle physics, and for the fundamental structure of relativistic quantum theory. Elvang and Huang have written the first comprehensive text on this subject, and their clear and pedagogical approach will make these new ideas accessible to a wide range of students.’

Joseph Polchinski - University of California, Santa Barbara

‘This book provides a much-needed text covering modern techniques that have given radical new insights into the structure of quantum field theory. It gathers together a very large body of recent literature and presents it in a coherent style. The book should appeal to the wide body of researchers who wish to use quantum field theory as a tool for describing physical phenomena or who are intending to gain insight by studying its mathematical structure.’

Michael B. Green - University of Cambridge

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] M. L., Mangano and S. J., Parke, “Multiparton amplitudes in gauge theories,”Phys. Rept. 200, 301 (1991) [hep-th/0509223].
[2] M., Srednicki, Quantum Field Theory, Cambridge, UK: Cambridge University Press (2007).
[3] L. J., Dixon, “Calculating scattering amplitudes efficiently,” In Boulder 1995, QCD and beyond, 539–582 [hep-ph/9601359].
[4] L. J., Dixon, “Scattering amplitudes: the most perfect microscopic structures in the universe,”J. Phys. A 44, 454001 (2011) [arXiv:1105.0771 [hep-th]].
[5] S. J., Parke and T. R., Taylor, “An amplitude for n gluon scattering,”Phys. Rev. Lett. 56, 2459 (1986).
[6] K., Kampf, J., Novotny, and J., Trnka, “Tree-level amplitudes in the nonlinear sigma model,”JHEP 1305, 032 (2013) [arXiv:1304.3048 [hep-th]].
[7] R., Kleiss and H., Kuijf, “Multi-gluon cross-sections and five jet production at hadron colliders,”Nucl. Phys. B 312, 616 (1989).
[8] V., Del Duca, L. J., Dixon, and F., Maltoni, “New color decompositions for gauge amplitudes at tree and loop level,”Nucl. Phys. B 571, 51 (2000) [hep-ph/9910563].
[9] Z., Bern, J. J. M., Carrasco, and H., Johansson, “New relations for gauge-theory amplitudes,”Phys. Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].
[10] C. F., Berger, V., Del Duca, and L. J., Dixon, “Recursive construction of Higgs-plus-multiparton loop amplitudes: The last of the phi-nite loop amplitudes,”Phys. Rev. D 74, 094021 (2006) [Erratum-ibid. D 76, 099901 (2007)] [hep-ph/0608180];
S. D., Badger, E. W. N., Glover, and K., Risager, “One-loop phi-MHV amplitudes using the unitarity bootstrap,”JHEP 0707, 066 (2007) [arXiv:0704.3914 [hep-ph]];
L. J., Dixon and Y., Sofianatos, “Analytic one-loop amplitudes for a Higgs boson plus four partons,”JHEP 0908, 058 (2009) [arXiv:0906.0008 [hep-ph]];
S., Badger, E. W., Nigel Glover, P., Mastrolia, and C., Williams, “One-loop Higgs plus four gluon amplitudes: Full analytic results,”JHEP 1001, 036 (2010) [arXiv:0909.4475 [hep-ph]].
[11] L. J., Dixon, “A brief introduction to modern amplitude methods,” [arXiv:1310.5353 [hep-ph]].
[12] F. A., Berends and W. T., Giele, “Recursive calculations for processes with n gluons,”Nucl. Phys. B 306, 759 (1988).
F. A., Berends, W. T., Giele, and H., Kuijf, “Exact and approximate expressions for multi-gluon scattering,”Nucl. Phys. B 333, 120 (1990).
[13] R., Britto, F., Cachazo, and B., Feng, “New recursion relations for tree amplitudes of gluons,”Nucl. Phys. B 715, 499 (2005) [hep-th/0412308].
[14] R., Britto, F., Cachazo, B., Feng, and E., Witten, “Direct proof of tree-level recursion relation in Yang–Mills theory,”Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].
[15] F., Cachazo, P., Svrcek, and E., Witten, “MHV vertices and tree amplitudes in gauge theory,”JHEP 0409, 006 (2004) [hep-th/0403047].
[16] B., Feng, J., Wang, Y., Wang, and Z., Zhang, “BCFW recursion relation with nonzero boundary contribution,”JHEP 1001, 019 (2010) [arXiv:0911.0301 [hep-th]].
[17] E., Conde and S., Rajabi, “The twelve-graviton next-to-MHV amplitude from Risager's construction,”JHEP 1209, 120 (2012) [arXiv:1205.3500 [hep-th]].
[18] N., Arkani-Hamed and J., Kaplan, “On tree amplitudes in gauge theory and gravity,”JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].
[19] C., Cheung, “On-shell recursion relations for generic theories,”JHEP 1003, 098 (2010) [arXiv:0808.0504 [hep-th]].
[20] P., Benincasa, C., Boucher-Veronneau, and F., Cachazo, “Taming tree amplitudes in general relativity,”JHEP 0711, 057 (2007) [hep-th/0702032 [HEP-TH]].
[21] H., Kawai, D. C., Lewellen, and S. H. H., Tye, “A relation between tree amplitudes of closed and open strings,”Nucl. Phys. B 269, 1 (1986).
[22] S., Sannan, “Gravity as the limit of the type II superstring theory,”Phys. Rev. D 34, 1749 (1986).
[23] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “A duality for the S matrix,”JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]].
[24] A., Hodges, “Eliminating spurious poles from gauge-theoretic amplitudes,”JHEP 1305, 135 (2013) [arXiv:0905.1473 [hep-th]].
[25] M., Spradlin, A., Volovich, and C., Wen, “Three applications of a bonus relation for gravity amplitudes,”Phys. Lett. B 674, 69 (2009) [arXiv:0812.4767 [hep-th]].
[26] T., Cohen, H., Elvang, and M., Kiermaier, “On-shell constructibility of tree amplitudes in general field theories,”JHEP 1104, 053 (2011) [arXiv:1010.0257 [hep-th]].
[27] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Recursion relations, generating functions, and unitarity sums in N = 4 SYM theory,”JHEP 0904, 009 (2009) [arXiv:0808.1720 [hep-th]].
[28] K., Risager, “A direct proof of the CSW rules,”JHEP 0512, 003 (2005) [hep-th/ 0508206].
[29] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory,”JHEP 0906, 068 (2009) [arXiv:0811.3624 [hep-th]].
[30] L. J., Dixon, E. W. N., Glover, and V. V., Khoze, “MHV rules for Higgs plus multi-gluon amplitudes,”JHEP 0412, 015 (2004) [hep-th/0411092].
[31] S. D., Badger, E. W. N., Glover, and V. V., Khoze, “MHV rules for Higgs plus multi-parton amplitudes,”JHEP 0503, 023 (2005) [hep-th/0412275].
[32] A., Brandhuber, B., Spence, and G., Travaglini, “Tree-level formalism,”J. Phys. A 44, 454002 (2011) [arXiv:1103.3477 [hep-th]].
[33] A., Gorsky and A., Rosly, “From Yang–Mills Lagrangian to MHV diagrams,”JHEP 0601, 101 (2006) [hep-th/0510111];
P., Mansfield, “The Lagrangian origin of MHV rules,”JHEP 0603, 037 (2006) [hep-th/0511264];
J. H., Ettle and T. R., Morris, “Structure of the MHV-rules Lagrangian,”JHEP 0608, 003 (2006) [hep-th/0605121];
J. H., Ettle, C.-H., Fu, J. P., Fudger, P. R. W., Mansfield, and T. R., Morris, “S-matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV Lagrangian,”JHEP 0705, 011 (2007) [hep-th/0703286];
H., Feng and Y.-t., Huang, “MHV Lagrangian for N = 4 super Yang–Mills,”JHEP 0904, 047 (2009) [hep-th/0611164].
[34] R., Boels, L. J., Mason, and D., Skinner, “From twistor actions to MHV diagrams,”Phys. Lett. B 648, 90 (2007) [hep-th/0702035].
[35] N. E. J., Bjerrum-Bohr, D. C., Dunbar, H., Ita, W. B., Perkins, and K., Risager, “MHV-vertices for gravity amplitudes,”JHEP 0601, 009 (2006) [hep-th/0509016].
[36] M., Bianchi, H., Elvang, and D. Z., Freedman, “Generating tree amplitudes in N = 4 SYM and N = 8 SG,”JHEP 0809, 063 (2008) [arXiv:0805.0757 [hep-th]].
[37] J., Wess and J., Bagger, Supersymmetry and Supergravity, Princeton, USA: University Press (1992).
[38] M. T., Grisaru and H. N., Pendleton, “Some properties of scattering amplitudes in supersymmetric theories,”Nucl. Phys. B 124, 81 (1977);
M. T., Grisaru, H. N., Pendleton, and P., van Nieuwenhuizen, “Supergravity and the S matrix,”Phys. Rev. D 15, 996 (1977).
[39] D. Z., Freedman and A., Van Proeyen, Supergravity, Cambridge, UK: Cambridge University Press (2012).
[40] L., Brink, J. H., Schwarz, and J., Scherk, “Supersymmetric Yang–Mills theories,”Nucl. Phys. B 121, 77 (1977).
[41] A., Ferber, “Supertwistors and conformal supersymmetry,”Nucl. Phys. B 132, 55 (1978).
[42] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Solution to the Ward identities for superamplitudes,”JHEP 1010, 103 (2010) [arXiv:0911.3169 [hep-th]].
[43] H., Elvang, D. Z., Freedman, and M., Kiermaier, “SUSY Ward identities, super-amplitudes, and counterterms,”J. Phys. A 44, 454009 (2011) [arXiv:1012.3401 [hep-th]].
[44] M., Kiermaier and S. G., Naculich, “A super MHV vertex expansion for N = 4SYM theory,”JHEP 0905, 072 (2009) [arXiv:0903.0377 [hep-th]].
[45] N., Arkani-Hamed, “What is the simplest QFT?,” talk given at the Paris Workshop Wonders of Gauge Theory and Supergravity, 24 June 2008.
[46] A., Brandhuber, P., Heslop, and G., Travaglini, “A note on dual superconformal symmetry of the N = 4 super Yang–Mills S-matrix,”Phys. Rev. D 78, 125005 (2008) [arXiv:0807.4097 [hep-th]].
[47] N., Arkani-Hamed, F., Cachazo, and J., Kaplan, “What is the simplest quantum field theory?,”JHEP 1009, 016 (2010) [arXiv:0808.1446 [hep-th]].
[48] Z., Bern, J. J. M., Carrasco, H., Ita, H., Johansson, and R., Roiban, “On the structure of supersymmetric sums in multi-loop unitarity cuts,”Phys.Rev.D 80, 065029 (2009) [arXiv:0903.5348 [hep-th]].
[49] J. M., Drummond and J. M., Henn, “All tree-level amplitudes in N = 4SYM,”JHEP 0904, 018 (2009) [arXiv:0808.2475 [hep-th]].
[50] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang–Mills theory,”Nucl. Phys. B 828, 317 (2010) [arXiv:0807.1095 [hep-th]].
[51] J. M., Drummond, M., Spradlin, A., Volovich, and C., Wen, “Tree-level amplitudes in N = 8 supergravity,”Phys. Rev. D 79, 105018 (2009) [arXiv:0901.2363 [hep-th]].
[52] J. M., Drummond, “Hidden simplicity of gauge theory amplitudes,”Class. Quant. Grav. 27, 214001 (2010) [arXiv:1010.2418 [hep-th]].
[53] R., Penrose, “Twistor algebra,”J. Math. Phys. 8, 345 (1967).
[54] E., Witten, “Perturbative gauge theory as a string theory in twistor space,”Commun. Math. Phys. 252, 189 (2004) [hep-th/0312171].
[55] P. A. M., Dirac, “Wave equations in conformal space,”Annals Math. 37, 429 (1936).
[56] W., Siegel, “Embedding versus 6D twistors,” [arXiv:1204.5679 [hep-th]].
[57] W., Siegel, “Fields,” [hep-th/9912205].
[58] J. M., Drummond, J., Henn, V. A., Smirnov, and E., Sokatchev, “Magic identities for conformal four-point integrals,”JHEP 0701, 064 (2007) [hep-th/0607160].
[59] J. M., Drummond, J. M., Henn, and J., Plefka, “Yangian symmetry of scattering amplitudes in N = 4 super Yang–Mills theory,”JHEP 0905, 046 (2009) [arXiv:0902.2987 [hep-th]].
[60] L. J., Mason and D., Skinner, “Dual superconformal invariance, momentum twistors and grassmannians,”JHEP 0911, 045 (2009) [arXiv:0909.0250 [hep-th]].
N., Arkani-Hamed, F., Cachazo, and C., Cheung, “The Grassmannian origin of dual superconformal invariance,”JHEP 10033, 036 (2010) [arXiv: 0909.0483 [hep-th]].
H., Elvang, Y.-t., Huang, C., Keeler, et al., “Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM,” 2014 [arXiv: 1410.0621 [hep.th]].
[61] R., Roiban, “Review of AdS/CFT integrability, Chapter V1: Scattering amplitudes – a brief introduction,”Lett. Math. Phys. 99, 455 (2012) [arXiv:1012.4001 [hep-th]].
[62] Lorenzo, Magnea, Lecture notes on Perturbative QCD at the National School of Theoretical Physics of the University of Parma (2008). http://personalpages.to.infn.it/~magnea/QCD.pdf
[63] L. V., Bork, D. I., Kazakov, G. S., Vartanov, and A. V., Zhiboedov, “Construction of infrared finite observables in N = 4 super Yang–Mills theory,”Phys. Rev. D 81, 105028 (2010) [arXiv:0911.1617 [hep-th]].
[64] Z., Bern, G., Chalmers, L. J., Dixon, and D. A., Kosower, “One loop N gluon amplitudes with maximal helicity violation via collinear limits,”Phys. Rev. Lett. 72, 2134 (1994) [hep-ph/9312333].
[65] G., Mahlon, “Multi-gluon helicity amplitudes involving a quark loop,”Phys.Rev.D 49, 4438 (1994) [hep-ph/9312276].
[66] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated pentagon integrals,”Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240].
[67] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “One loop n point gauge theory amplitudes, unitarity and collinear limits,”Nucl. Phys. B 425, 217 (1994) [hep-ph/9403226];
Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “Fusing gauge theory tree amplitudes into loop amplitudes,”Nucl. Phys. B 435, 59 (1995) [hep-ph/9409265].
[68] J. J. M., Carrasco and H., Johansson, “Generic multiloop methods and application to N = 4 super-Yang–Mills,”J Phys. A 44, 454004 (2011) [arXiv:1103.3298 [hep-th]].
[69] Z., Bern and Y.-t., Huang, “Basics of generalized unitarity,”J. Phys. A 44, 454003 (2011) [arXiv:1103.1869 [hep-th]].
[70] H., Ita, “Susy theories and QCD: Numerical approaches,”J. Phys. A 44, 454005 (2011) [arXiv:1109.6527 [hep-th]].
[71] R., Britto, “Loop amplitudes in gauge theories: Modern analytic approaches,”J Phys. A 44, 454006 (2011) [arXiv:1012.4493 [hep-th]].
[72] W. L., van Neerven and J. A. M., Vermaseren, “Large loop integrals,”Phys. Lett. B 137, 241 (1984).
[73] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated one loop integrals,”Phys. Lett. B 302, 299 (1993) [Erratum-ibid. B318, 649 (1993)] [hep-ph/9212308].
[74] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated pentagon integrals,”Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240].
[75] L. M., Brown and R. P., Feynman, “Radiative corrections to Compton scattering,”Phys. Rev. 85, 231 (1952);
G., 't Hooft and M. J. G., Veltman, “Scalar one loop integrals,”Nucl. Phys. B 153, 365 (1979).
[76] G., Passarino and M. J. G., Veltman, “One loop corrections for e+ e− annihilation into mu+ mu− in the Weinberg model,”Nucl. Phys. B 160, 151 (1979).
[77] R. K., Ellis, Z., Kunszt, K., Melnikov, and G., Zanderighi, “One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts,”Phys. Rept. 518, 141 (2012) [arXiv:1105.4319 [hep-ph]].
[78] H., Johansson, D. A., Kosower, and K. J., Larsen, “An overview of maximal unitarity at two loops,”PoSLL 2012, 066 (2012) [arXiv:1212.2132 [hep-th]].
[79] C., Anastasiou, R., Britto, B., Feng, Z., Kunszt, and P., Mastrolia, “D-dimensional unitarity cut method,”Phys. Lett. B 645, 213 (2007) [hep-ph/0609191];
R., Britto and B., Feng, “Integral coefficients for one-loop amplitudes,”JHEP 0802, 095 (2008) [0711.4284 [hep-ph]];
R., Britto and B., Feng, “Unitarity cuts with massive propagators and algebraic expressions for coefficients,”Phys. Rev. D 75, 105006 (2007) [hep-ph/0612089];
G., Ossola, C. G., Papadopoulos, and R., Pittau, “Reducing full one-loop amplitudes to scalar integrals at the integrand level,”Nucl. Phys. B 763, 147 (2007) [hep-ph/0609007];
R., Britto, B., Feng, and P., Mastrolia, “Closed-form decomposition of one-loop massive amplitudes,”Phys. Rev. D 78, 025031 (2008) [0803.1989 [hep-ph]];
D., Forde, “Direct extraction of one-loop integral coefficients,”Phys. Rev. D 75, 125019 (2007) [0704.1835 [hep-ph]];
[80] Z., Bern and A. G., Morgan, “Massive loop amplitudes from unitarity,”Nucl. Phys. B 467, 479 (1996) [hep-ph/9511336];
Z., Bern, L. J., Dixon, and D. A., Kosower, “Progress in one-loop QCD computations,”Ann. Rev. Nucl. Part. Sci. 46, 109 (1996) [hep-ph/9602280].
[81] S. D., Badger, “Direct extraction of one loop rational terms,”JHEP 0901, 049 (2009) [0806.4600 [hep-ph]].
[82] M. B., Green, J. H., Schwarz, and L., Brink, “N = 4 Yang-Mills and N = 8 supergravity as limits of string theories,”Nucl. Phys. B 198, 474 (1982).
[83] Z., Bern, N. E. J., Bjerrum-Bohr, and D. C., Dunbar, “Inherited twistor-space structure of gravity loop amplitudes,”JHEP 0505, 056 (2005) [hep-th/0501137];
N. E. J., Bjerrum-Bohr, D. C., Dunbar, H., Ita, W. B., Perkins, and K., Risager, “The no-triangle hypothesis for N = 8 supergravity,”JHEP 0612, 072 (2006) [hepth/0610043];
N. E. J., Bjerrum-Bohr and P., Vanhove, “Absence of triangles in maximal supergravity amplitudes,”JHEP 0810, 006 (2008) [arXiv:0805.3682 [hep-th]].
[84] Z., Bern, J. J., Carrasco, D., Forde, H., Ita, and H., Johansson, “Unexpected cancellations in gravity theories,”Phys. Rev. D 77, 025010 (2008) [arXiv:0707.1035 [hep-th]].
[85] S., Lal and S., Raju, “The next-to-simplest quantum field theories,”Phys. Rev. D 81, 105002 (2010) [arXiv:0910.0930 [hep-th]].
[86] D. C., Dunbar, J. H., Ettle, and W. B., Perkins, “Perturbative expansion of N < 8 supergravity,”Phys. Rev. D 83, 065015 (2011) [arXiv:1011.5378 [hep-th]].
[87] H., Elvang, Y.-t., Huang, and C., Peng, “On-shell superamplitudes in N < 4 SYM,”JHEP 1109, 031 (2011) [arXiv:1102.4843 [hep-th]].
[88] Y.-t., Huang, D. A., McGady, and C., Peng, “One-loop renormalization and the S-matrix,” [arXiv:1205.5606 [hep-th]].
[89] N., Marcus, “Composite anomalies in supergravity,”Phys. Lett. B 157, 383 (1985).
[90] P., di Vecchia, S., Ferrara, and L., Girardello, “Anomalies of hidden local chiral symmetries in sigma models and extended supergravities,”Phys. Lett. B 151, 199 (1985).
[91] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Generalized unitarity for N = 4 super-amplitudes,”Nucl. Phys. B 869, 452 (2013) [arXiv:0808.0491 [hep-th]].
[92] A., Brandhuber, P., Heslop, and G., Travaglini, “One-loop amplitudes in N = 4 super Yang–Mills and anomalous dual conformal symmetry,”JHEP 0908, 095 (2009) [arXiv:0905.4377 [hep-th]].
[93] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Dual conformal symmetry of 1-loop NMHV amplitudes in N = 4 SYM theory,”JHEP 1003, 075 (2010) [arXiv:0905.4379 [hep-th]].
[94] G. P., Korchemsky and E., Sokatchev, “Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory,”Nucl. Phys. B 832, 1 (2010) [arXiv:0906.1737 [hep-th]].
[95] J., Gluza, K., Kajda, and D. A., Kosower, “Towards a basis for planar two-loop integrals,”Phys. Rev. D 83, 045012 (2011) [arXiv:1009.0472 [hep-th]].
[96] D. A., Kosower and K. J., Larsen, “Maximal unitarity at two loops,”Phys. Rev. D 85, 045017 (2012) [arXiv:1108.1180 [hep-th]];
H., Johansson, D. A., Kosower, and K. J., Larsen, “Two-loop maximal unitarity with external masses,”Phys. Rev. D 87, 025030 (2013) [arXiv:1208.1754 [hep-th]].
[97] S., Badger, H., Frellesvig, and Y., Zhang, “Hepta-cuts of two-loop scattering amplitudes,”JHEP 1204, 055 (2012) [arXiv:1202.2019 [hep-ph]].
[98] Y., Zhang, “Integrand-level reduction of loop amplitudes by computational algebraic geometry methods,”JHEP 1209, 042 (2012) [arXiv:1205.5707 [hep-ph]].
[99] M., Sgaard, “Global residues and two-loop hepta-cuts,”JHEP 1309, 116 (2013) [arXiv:1306.1496 [hep-th]].
[100] A. V., Smirnov and A. V., Petukhov, “The number of master integrals is finite,”Lett. Math. Phys. 97, 37 (2011) [arXiv:1004.4199 [hep-th]].
[101] C., Anastasiou, Z., Bern, L. J., Dixon, and D. A., Kosower, “Planar amplitudes in maximally supersymmetric Yang–Mills theory,”Phys. Rev. Lett. 91, 251602 (2003) [hep-th/0309040].
[102] Z., Bern, L. J., Dixon, and V. A., Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond,”Phys. Rev. D 72, 085001 (2005) [hep-th/0505205].
[103] Z., Bern, J. S., Rozowsky, and B., Yan, “Two loop four gluon amplitudes in N = 4 super Yang–Mills,”Phys. Lett. B 401, 273 (1997) [hep-ph/9702424].
[104] Z., Bern, M., Czakon, D. A., Kosower, R., Roiban, and V. A., Smirnov, “Two-loop iteration of five-point N = 4 super-Yang–Mills amplitudes,”Phys. Rev. Lett. 97, 181601 (2006) [hep-th/0604074].
[105] F., Cachazo, M., Spradlin, and A., Volovich, “Iterative structure within the five-particle two-loop amplitude,”Phys. Rev. D 74, 045020 (2006) [hep-th/0602228].
[106] L. F., Alday and J., Maldacena, “Comments on gluon scattering amplitudes via AdS/CFT,”JHEP 0711, 068 (2007) [arXiv:0710.1060 [hep-th]].
[107] L. F., Alday and J. M., Maldacena, “Gluon scattering amplitudes at strong coupling,”JHEP 0706, 064 (2007) [arXiv:0705.0303 [hep-th]].
[108] Z., Bern, L. J., Dixon, D. A., Kosower, et al., “The two-loop six-gluonMHV amplitude in maximally supersymmetric Yang–Mills theory,”Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465 [hep-th]].
[109] F., Cachazo, M., Spradlin, and A., Volovich, “Leading singularities of the two-loop six-particle MHV amplitude,”Phys.Rev. D 78, 105022 (2008) [arXiv:0805.4832 [hep-th]].
[110] V., Del Duca, C., Duhr, and V. A., Smirnov, “An analytic result for the two-loop hexagon Wilson loop in N = 4SYM,”JHEP 1003, 099 (2010) [arXiv:0911.5332 [hep-ph]].
[111] V., Del Duca, C., Duhr, and V. A., Smirnov, “The two-loop hexagon Wilson loop in N = 4 SYM,”JHEP 1005, 084 (2010) [arXiv:1003.1702 [hep-th]].
[112] A. B., Goncharov, M., Spradlin, C., Vergu, and A., Volovich, “Classical polylogarithms for amplitudes and Wilson loops,”Phys. Rev. Lett. 105, 151605 (2010) [arXiv:1006.5703 [hep-th]].
[113] E. W., Nigel Glover and C., Williams, “One-loop gluonic amplitudes from single unitarity cuts,”JHEP 0812, 067 (2008) [0810.2964 [hep-th]];
I., Bierenbaum, S., Catani, P., Draggiotis, and G., Rodrigo, “A tree-loop duality relation at two loops and beyond,”JHEP 1010, 073 (2010) [arXiv:1007.0194 [hep-ph]];
H., Elvang, D. Z., Freedman, and M., Kiermaier, “Integrands for QCD rational terms and N = 4 SYM frommassive CSW rules,”JHEP 1206, 015 (2012) [arXiv:1111.0635 [hep-th]].
[114] S., Caron-Huot, “Loops and trees,”JHEP 1105, 080 (2011) [arXiv:1007.3224 [hep-ph]].
[115] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, S., Caron-Huot, and J., Trnka, “The all-loop integrand for scattering amplitudes in planar N = 4 SYM,”JHEP 1101, 041 (2011) [arXiv:1008.2958 [hep-th]].
[116] R. H., Boels, “On BCFW shifts of integrands and integrals,”JHEP 1011, 113 (2010) [arXiv:1008.3101 [hep-th]].
[117] Z., Bern, J. J. M., Carrasco, H., Johansson, and D. A., Kosower, “Maximally supersymmetric planar Yang–Mills amplitudes at five loops,”Phys.Rev. D 76, 125020 (2007) [0705.1864 [hep-th]].
[118] R., Britto, F., Cachazo, and B., Feng, “Generalized unitarity and one-loop amplitudes in N = 4 super-Yang–Mills,”Nucl. Phys. B 725, 275 (2005) [hep-th/0412103];
E. I., Buchbinder and F., Cachazo, “Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang–Mills,”JHEP 0511, 036 (2005) [hep-th/0506126].
[119] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, and J., Trnka, “Local integrals for planar scattering amplitudes,”JHEP 1206, 125 (2012) [arXiv:1012.6032 [hep-th]].
For extensions, see J. L., Bourjaily, S., Caron-Huot, and J., Trnka, “Dual-conformal regularization of infrared loop divergences and the chiral box expansion,” [arXiv:1303.4734 [hep-th]].
[120] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, et al., “Scattering amplitudes and the positive Grassmannian,” [arXiv:1212.5605 [hep-th]].
[121] F., Cachazo, “Sharpening the leading singularity,” [arXiv:0803.1988 [hep-th]].
[122] J. M., Drummond and L., Ferro, “Yangians, Grassmannians and T-duality,”JHEP 1007, 027 (2010) [arXiv:1001.3348 [hep-th]].
[123] J. M., Drummond and L., Ferro, “The Yangian origin of the Grassmannian integral,”JHEP 1012, 010 (2010) [arXiv:1002.4622 [hep-th]];
G. P., Korchemsky and E., Sokatchev, “Superconformal invariants for scattering amplitudes in N = 4 SYM theory,”Nucl. Phys. B 839, 377 (2010) [arXiv:1002.4625 [hep-th]].
[124] R., Roiban, M., Spradlin, and A., Volovich, “On the tree level S matrix of Yang–Mills theory,”Phys. Rev. D 70, 026009 (2004) [hep-th/0403190].
[125] M., Spradlin and A., Volovich, “From twistor string theory to recursion relations,”Phys. Rev. D 80, 085022 (2009) [arXiv:0909.0229 [hep-th]].
[126] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Unification of residues and Grassmannian dualities,”JHEP 1101, 049 (2011) [arXiv:0912.4912 [hep-th]].
[127] J. L., Bourjaily, J., Trnka, A., Volovich, and C., Wen, “The Grassmannian and the twistor string: Connecting all trees in N = 4 SYM,”JHEP 1101, 038 (2011) [arXiv:1006.1899 [hep-th]].
[128] M., Bullimore, L. J., Mason, and D., Skinner, “Twistor-strings, Grassmannians and leading singularities,”JHEP 1003, 070 (2010) [arXiv:0912.0539 [hep-th]].
[129] L., Dolan and P., Goddard, “Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory,”JHEP 1206, 030 (2012) [arXiv:1111.0950 [hep-th]].
[130] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A., Hodges, and J., Trnka, “A note on polytopes for scattering amplitudes,”JHEP 1204, 081 (2012) [arXiv:1012.6030 [hep-th]].
[131] M., Bullimore, L. J., Mason, and D., Skinner, “MHV diagrams in momentum twistor space,”JHEP 1012, 032 (2010) [arXiv:1009.1854 [hep-th]].
[132] N., Arkani-Hamed and J., Trnka, “The amplituhedron,” [arXiv:1312.2007 [hep-th]];
N., Arkani-Hamed and J., Trnka, “Into the amplituhedron,” [arXiv:1312.7878 [hep-th]].
[133] L., Mason and D., Skinner, “Amplitudes at weak coupling as polytopes in AdS5,”J. Phys. A 44, 135401 (2011) [arXiv:1004.3498 [hep-th]].
[134] H., Nastase and H. J., Schnitzer, “Twistor and polytope interpretations for subleading color one-loop amplitudes,”Nucl. Phys. B 855, 901 (2012) [arXiv:1104.2752 [hep-th]].
[135] R., Boels, “Covariant representation theory of the Poincaré algebra and some of its extensions,”JHEP 1001, 010 (2010) [arXiv:0908.0738 [hep-th]].
[136] S., Caron-Huot and D., O'Connell, “Spinor helicity and dual conformal symmetry in ten dimensions,”JHEP 1108, 014 (2011) [arXiv:1010.5487 [hep-th]].
[137] R. H., Boels and D., O'Connell, “Simple superamplitudes in higher dimensions,”JHEP 1206, 163 (2012) [arXiv:1201.2653 [hep-th]].
[138] S., Davies, “One-loop QCD and Higgs to partons processes using six-dimensional helicity and generalized unitarity,”Phys. Rev. D 84, 094016 (2011) [arXiv:1108.0398 [hep-ph]].
[139] Z., Bern, J. J., Carrasco, T., Dennen, Y.-t., Huang, and H., Ita, “Generalized unitarity and six-dimensional helicity,”Phys. Rev. D 83, 085022 (2011) [arXiv:1010.0494 [hep-th]].
[140] N., Craig, H., Elvang, M., Kiermaier, and T., Slatyer, “Massive amplitudes on the Coulomb branch of N = 4SYM,”JHEP 1112, 097 (2011) [arXiv:1104.2050 [hep-th]].
[141] C., Cheung and D., O'Connell, “Amplitudes and spinor-helicity in six dimensions,”JHEP 0907, 075 (2009) [arXiv:0902.0981 [hep-th]].
[142] T., Dennen, Y.-t., Huang, and W., Siegel, “Supertwistor space for 6D maximal super Yang–Mills,”JHEP 1004, 127 (2010) [arXiv:0910.2688 [hep-th]].
[143] A., Brandhuber, D., Korres, D., Koschade, and G., Travaglini, “One-loop amplitudes in six-dimensional (1,1) theories from generalised unitarity,”JHEP 1102, 077 (2011) [arXiv:1010.1515 [hep-th]];
C., Saemann, R., Wimmer, and M., Wolf, “A twistor description of six-dimensional N = (1,1) super Yang–Mills theory,”JHEP 1205, 020 (2012) [arXiv:1201.6285 [hep-th]].
[144] T., Dennen and Y.-t., Huang, “Dual conformal properties of six-dimensional maximal super Yang–Mills amplitudes,”JHEP 1101, 140 (2011) [arXiv:1010.5874 [hep-th]].
[145] T., Chern, “Superconformal field theory in six dimensions and supertwistor,” [arXiv:0906.0657 [hep-th]];
M., Chiodaroli, M., Gunaydin, and R., Roiban, “Superconformalsymmetry, and maximal supergravity in various dimensions,”JHEP 1203, 093 (2012) [arXiv:1108.3085 [hep-th]];
L. J., Mason, R. A., Reid-Edwards, and A., Taghavi-Chabert, “Conformal field theories in six-dimensional twistor space,”J. Geom. Phys. 62, 2353 (2012) [arXiv:1111.2585 [hep-th]];
C., Saemann and M., Wolf, “On twistors and conformal field theories from six dimensions,”J. Math. Phys. 54, 013507 (2013) [arXiv:1111.2539 [hep-th]].
[146] B., Czech, Y.-t., Huang, and M., Rozali, “Amplitudes for multiple M5 branes,”JHEP 1210, 143 (2012) [arXiv:1110.2791 [hep-th]].
[147] C., Saemann and M., Wolf, “Non-Abelian tensor multiplet equations from twistor space,” [arXiv:1205.3108 [hep-th]].
[148] Y.-t., Huang and A. E., Lipstein, “Amplitudes of 3D and 6D maximal superconformal theories in supertwistor space,”JHEP 1010, 007 (2010) [arXiv:1004.4735 [hep-th]].
[149] L. F., Alday, J. M., Henn, J., Plefka, and T., Schuster, “Scattering into the fifth dimension of N = 4 super Yang–Mills,”JHEP 1001, 077 (2010) [arXiv:0908.0684 [hep-th]].
[150] A., Agarwal, N., Beisert, and T., McLoughlin, “Scattering in mass-deformed N ≥ 4 Chern–Simons models,”JHEP 0906, 045 (2009) [arXiv:0812.3367 [hep-th]].
[151] A., Gustavsson, “Algebraic structures on parallel M2-branes,”Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].
[152] J., Bagger and N., Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,”Phys.Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].
[153] M. A., Bandres, A. E., Lipstein, and J. H., Schwarz, “N = 8 superconformal Chern–Simons theories,”JHEP 0805, 025 (2008) [arXiv:0803.3242 [hep-th]].
[154] J., Gomis, G., Milanesi, and J. G., Russo, “Bagger-Lambert theory for general Lie algebras,”JHEP 0806, 075 (2008) [arXiv:0805.1012 [hep-th]].
[155] S., Benvenuti, D., Rodriguez-Gomez, E., Tonni, and H., Verlinde, “N = 8 superconformal gauge theories and M2 branes,”JHEP 0901, 078 (2009) [arXiv:0805.1087 [hep-th]].
[156] P. -M., Ho, Y., Imamura, and Y., Matsuo, “M2 to D2 revisited,”JHEP 0807, 003 (2008) [arXiv:0805.1202 [hep-th]].
[157] T., Bargheer, F., Loebbert, and C., Meneghelli, “Symmetries of tree-level scattering amplitudes in N = 6 superconformal Chern–Simons theory,”Phys. Rev. D 82, 045016 (2010) [arXiv:1003.6120 [hep-th]].
[158] O., Aharony, O., Bergman, D. L., Jafferis, and J., Maldacena, “N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals,”JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[159] M., Benna, I., Klebanov, T., Klose, and M., Smedback, “Superconformal Chern–Simons theories and AdS(4)/CFT(3) correspondence,”JHEP 0809, 072 (2008) [arXiv:0806.1519 [hep-th]].
[160] M. A., Bandres, A. E., Lipstein, and J. H., Schwarz, “Studies of the ABJM theory in a formulation with manifest SU(4) R-symmetry,”JHEP 0809, 027 (2008) [arXiv:0807.0880 [hep-th]].
[161] A., Gustavsson, “Selfdual strings and loop space Nahm equations,”JHEP 0804, 083 (2008) [arXiv:0802.3456 [hep-th]];
J., Bagger and N., Lambert, “Three-algebras and N = 6 Chern–Simons gauge theories,”Phys. Rev. D 79, 025002 (2009) [arXiv:0807.0163 [hep-th]].
[162] D., Gang, Y.-t., Huang, E., Koh, S., Lee, and A. E., Lipstein, “Tree-level recursion relation and dual superconformal symmetry of the ABJM theory,”JHEP 1103, 116 (2011) [arXiv:1012.5032 [hep-th]].
[163] Y.-t., Huang and A. E., Lipstein, “Dual superconformal symmetry of N = 6 Chern–Simons theory,”JHEP 1011, 076 (2010) [arXiv:1008.0041 [hep-th]].
[164] T., Bargheer, N., Beisert, F., Loebbert, and T., McLoughlin, “Conformal anomaly for amplitudes in N = 6 superconformal Chern–Simons theory,”J. Phys. A 45, 475402 (2012) [arXiv:1204.4406 [hep-th]].
[165] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “One loop amplitudes In ABJM,”JHEP 1207, 029 (2012) [arXiv:1204.4407 [hep-th]].
[166] A., Brandhuber, G., Travaglini, and C., Wen, “All one-loop amplitudes in N = 6 superconformal Chern–Simons theory,”JHEP 1210, 145 (2012) [arXiv:1207.6908 [hep-th]].
[167] W. -M., Chen and Y.-t., Huang, “Dualities for loop amplitudes of N = 6 Chern–Simons matter theory,”JHEP 1111, 057 (2011) [arXiv:1107.2710 [hep-th]];
[168] A., Brandhuber, G., Travaglini, and C., Wen, “A note on amplitudes in N = 6 superconformal Chern–Simons theory,”JHEP 1207, 160 (2012) [arXiv:1205.6705 [hep-th]].
[169] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering amplitudes/Wilson loop duality in ABJM theory,”JHEP 1201, 056 (2012) [arXiv:1107.3139 [hep-th]].
[170] S., Caron-Huot and Y.-t., Huang, “The two-loop six-point amplitude in ABJM theory,”JHEP 1303, 075 (2013) [arXiv:1210.4226 [hep-th]].
[171] S., Lee, “Yangian invariant scattering amplitudes in supersymmetric Chern–Simons theory,”Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].
[172] Y. -t., Huang, C., Wen, and D., Xie, “The positive orthogonal Grassmannian and loop amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]].
[173] Y.-t., Huang and S., Lee, “A new integral formula for supersymmetric scattering amplitudes in three dimensions,”Phys. Rev. Lett. 109, 191601 (2012) [arXiv:1207.4851 [hep-th]].
[174] O. T., Engelund and R., Roiban, “A twistor string for the ABJ(M) theory,” [arXiv:1401.6242 [hep-th]].
[175] S., Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, USA: John Wiley & Sons (1972).
[176] R. M., Wald, General Relativity, Chicago, USA: University Press (1984).
[177] S. M., Carroll, Spacetime and Geometry: An Introduction to General Relativity, San Francisco, USA: Addison-Wesley (2004).
[178] H., Elvang and D. Z., Freedman, unpublished notes (2007).
[179] B. S., DeWitt, “Quantum theory of gravity. 2. The manifestly covariant theory,”Phys. Rev. 162, 1195 (1967);
B. S., DeWitt, “Quantum theory of gravity. 3. Applications of the covariant theory,”Phys. Rev. 162, 1239 (1967);
M. J. G., Veltman, “Quantum theory of gravitation,”Conf. Proc. C 7507281, 265 (1975).
[180] F. A., Berends, W. T., Giele, and H., Kuijf, “On relations between multi-gluon and multigraviton scattering,”Phys. Lett. B 211, 91 (1988).
[181] J., Bedford, A., Brandhuber, B. J., Spence, and G., Travaglini, “A recursion relation for gravity amplitudes,”Nucl. Phys. B 721, 98 (2005) [hep-th/0502146].
[182] H., Elvang and D. Z., Freedman, “Note on graviton MHV amplitudes,”JHEP 0805, 096 (2008) [arXiv:0710.1270 [hep-th]].
[183] D., Nguyen, M., Spradlin, A., Volovich, and C., Wen, “The tree formula for MHV graviton amplitudes,”JHEP 1007, 045 (2010) [arXiv:0907.2276 [hep-th]].
[184] Z., Bern, L. J., Dixon, M., Perelstein, and J. S., Rozowsky, “Multileg one loop gravity amplitudes from gauge theory,”Nucl. Phys. B 546, 423 (1999) [hep-th/9811140].
[185] Z., Bern and A. K., Grant, “Perturbative gravity from QCD amplitudes,”Phys. Lett. B 457, 23 (1999) [hep-th/9904026].
[186] Z., Bern, L. J., Dixon, D. C., Dunbar, et al., “On perturbative gravity and gauge theory,”Nucl. Phys. Proc. Suppl. 88, 194 (2000) [hep-th/0002078].
[187] W., Siegel, “Two vierbein formalism for string inspired axionic gravity,”Phys. Rev. D 47, 5453 (1993) [hep-th/9302036].
[188] Z., Bern, “Perturbative quantum gravity and its relation to gauge theory,”Living Rev. Rel 5, 5 (2002) [gr-qc/0206071].
[189] D. Z., Freedman, “Some beautiful equations of mathematical physics,” In ICTP (ed.): The Dirac Medals of the ICTP 199325–53, and CERN Geneva - TH.-7367 (94/07,rec.Sep.) [hep-th/9408175].
[190] S. J., Gates, M. T., Grisaru, M., Rocek, and W., Siegel, “Superspace or one thousand and one lessons in supersymmetry,”Front. Phys. 58, 1 (1983) [hep-th/0108200].
[191] B., de Wit and D. Z., Freedman, “On SO(8) extended supergravity,”Nucl. Phys. B 130, 105 (1977).
[192] E., Cremmer and B., Julia, “The N = 8 supergravity theory. 1. The Lagrangian,”Phys. Lett. B 80, 48 (1978);
E., Cremmer and B., Julia, “The SO(8) supergravity,”Nucl. Phys. B 159, 141 (1979).
[193] B., de Wit and H., Nicolai, “N = 8 supergravity,”Nucl. Phys. B 208, 323 (1982).
[194] A., Hodges, “A simple formula for gravitational MHV amplitudes,” [arXiv:1204.1930[hep-th]].
[195] F., Cachazo, L., Mason, and D., Skinner, “Gravity in twistor space and its Grassmannian formulation,” [arXiv:1207.4712 [hep-th]].
[196] S., He, “A link representation for gravity amplitudes,” [arXiv:1207.4064 [hep-th]].
[197] F., Cachazo and Y., Geyer, “A ‘twistor string’ inspired formula for tree-level scattering amplitudes in N = 8 SUGRA,” [arXiv:1206.6511 [hep-th]].
[198] D., Skinner, “Twistor strings for N = 8 supergravity,” [arXiv:1301.0868 [hep-th]].
[199] F., Cachazo, S., He, and E. Y., Yuan, “Scattering equations and KLT orthogonality,” [arXiv:1306.6575 [hep-th]].
[200] F., Cachazo, S., He, and E. Y., Yuan, “Scattering of massless particles in arbitrary dimension,” [arXiv:1307.2199 [hep-th]].
[201] S. L., Adler, “Consistency conditions on the strong interactions implied by a partially conserved axial vector current,”Phys. Rev. 137, B1022 (1965).
[202] S. R., Coleman, “Secret symmetry: An introduction to spontaneous symmetry breakdown and gauge fields,”Subnucl. Ser. 11, 139 (1975).
[203] M., Kiermaier, “The Coulomb-branch S-matrix from massless amplitudes,” [arXiv:1105.5385 [hep-th]].
[204] G. 't, Hooft and M. J. G., Veltman, “One loop divergencies in the theory of gravitation,”Annales Poincare Phys. Theor. A 20, 69 (1974).
[205] M. H., Goroff and A., Sagnotti, “Quantum gravity at two loops,”Phys. Lett. B 160, 81 (1985).
[206] A. E. M., van de Ven, “Two loop quantum gravity,”Nucl. Phys. B 378, 309 (1992).
[207] S., Deser and P., van Nieuwenhuizen, “One loop divergences of quantized Einstein–Maxwell fields,”Phys.Rev. D 10, 401 (1974).
[208] M. T., Grisaru, P., van Nieuwenhuizen, and J. A. M., Vermaseren, “One loop renor-malizability of pure supergravity and of Maxwell–Einstein theory in extended supergravity,”Phys. Rev. Lett. 37, 1662 (1976).
[209] M. T., Grisaru, “Two loop renormalizability of supergravity,”Phys. Lett. B 66, 75 (1977).
[210] E., Tomboulis, “On the two loop divergences of supersymmetric gravitation,”Phys. Lett. B 67, 417 (1977).
[211] S., Deser, J. H., Kay, and K. S., Stelle, “Renormalizability properties of supergravity,”Phys. Rev. Lett. 38, 527 (1977).
[212] Z., Bern, L. J., Dixon, and R., Roiban, “Is N = 8 supergravity ultraviolet finite?,”Phys. Lett. B 644, 265 (2007) [hep-th/0611086].
[213] Z., Bern, J. J., Carrasco, L. J., Dixon, et al., “Three-loop superfiniteness of N = 8 supergravity,”Phys. Rev. Lett. 98, 161303 (2007) [hep-th/0702112].
[214] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity,”Phys. Rev. D 78, 105019 (2008) [arXiv:0808.4112 [hep-th]].
[215] P. S., Howe and K. S., Stelle, “Supersymmetry counterterms revisited,”Phys. Lett. B 554, 190 (2003) [hep-th/0211279].
[216] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “The ultraviolet behavior of N = 8 supergravity at four loops,”Phys. Rev. Lett. 103, 081301 (2009) [arXiv:0905.2326 [hep-th]].
[217] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “The complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory,”Phys. Rev. D 82, 125040 (2010) [arXiv:1008.3327 [hep-th]].
[218] J., BjornssonandM. B., Green, “5 loops in 24/5 dimensions,”JHEP 1008, 132 (2010) [arXiv:1004.2692 [hep-th]].
[219] H., Elvang, D. Z., Freedman, and M., Kiermaier, “A simple approach to counterterms in N = 8 supergravity,”JHEP 1011, 016 (2010) [arXiv:1003.5018 [hep-th]].
[220] H., Elvang and M., Kiermaier, “Stringy KLT relations, global symmetries, and E7(7) violation,”JHEP 1010, 108 (2010) [arXiv:1007.4813 [hep-th]].
[221] N., Beisert, H., Elvang, D. Z., Freedman, et al., “E7(7) constraints on counterterms in N = 8 supergravity,”Phys. Lett. B 694, 265 (2010) [arXiv:1009.1643 [hep-th]].
[222] P., van Nieuwenhuizen and C. C., Wu, “On integral relations for invariants constructed from three riemann tensors and their applications in quantum gravity,”J. Math. Phys. 18, 182 (1977).
[223] G., Bossard, C., Hillmann, and H., Nicolai, “E7(7) symmetry in perturbatively quantised N = 8 supergravity,”JHEP 1012, 052 (2010) [arXiv:1007.5472 [hep-th]].
[224] D. Z., Freedman and E., Tonni, “The D2kR4 invariants of N = 8 supergravity,”JHEP 1104, 006 (2011) [arXiv:1101.1672 [hep-th]].
[225] S., Deser and J. H., Kay, “Three loop counterterms for extended supergravity,”Phys. Lett. B 76, 400 (1978).
[226] J. M., Drummond, P. J., Heslop, and P. S., Howe, “A note on N = 8 counterterms,” [arXiv:1008.4939 [hep-th]].
[227] G., Bossard and H., Nicolai, “Counterterms vs. dualities,”JHEP 1108, 074 (2011) [arXiv:1105.1273 [hep-th]].
[228] R., Kallosh and T., Kugo, “The footprint of E(7(7)) amplitudes of N = 8 supergravity,”JHEP 0901, 072 (2009) [arXiv:0811.3414 [hep-th]];
R., Kallosh, “E7(7) symmetry and finiteness of N = 8 supergravity,”JHEP 1203, 083 (2012) [arXiv:1103.4115 [hep-th]];
R., Kallosh, “N = 8 counterterms and E7(7) current conservation,”JHEP 1106, 073 (2011) [arXiv:1104.5480 [hep-th]];
R., Kallosh and T., Ortin, “New E77 invariants and amplitudes,”JHEP 1209, 137 (2012) [arXiv:1205.4437 [hep-th]];
M., Gunaydin and R., Kallosh, “Obstruction to E7(7) deformation in N = 8 supergravity,” [arXiv:1303.3540 [hep-th]];
J. J. M., Carrasco and R., Kallosh, “Hidden supersymmetry may imply duality invariance,” [arXiv:1303.5663 [hep-th]].
[229] S., Stieberger and T. R., Taylor, “Complete six-gluon disk amplitude in superstring theory,”Nucl. Phys. B 801, 128 (2008) [arXiv:0711.4354 [hep-th]].
[230] J., Broedel and L. J., Dixon, “R**4 counterterm and E(7)(7) symmetry in maximal supergravity,”JHEP 1005, 003 (2010) [arXiv:0911.5704 [hep-th]].
[231] N., Berkovits, “New higher-derivative R**4 theorems,”Phys. Rev. Lett. 98, 211601 (2007) [arXiv:hep-th/0609006];
M. B., Green, J. G., Russo, and P., Vanhove, “Non-renormalisation conditions in type II string theory and maximal supergravity,”JHEP 0702, 099 (2007) [arXiv:hep-th/0610299];
M. B., Green, J. G., Russo, and P., Vanhove, “Ultraviolet properties of maximal supergravity,”Phys. Rev. Lett. 98, 131602 (2007) [arXiv:hep-th/0611273];
M. B., Green, J. G., Russo, and P., Vanhove, “Modular properties of two-loop maximal supergravity and connections with string theory,”JHEP 0807, 126 (2008) [arXiv:0807.0389 [hep-th]];
N., Berkovits, M. B., Green, J. G., Russo, and P., Vanhove, “Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory,”JHEP 0911, 063 (2009) [arXiv:0908.1923 [hep-th]];
P., Vanhove, “The critical ultraviolet behaviour of N = 8 supergravity amplitudes,” [arXiv:1004.1392 [hep-th]].
[232] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes,”Phys. Rev. D 85, 105014 (2012) [arXiv:1201.5366 [hep-th]].
[233] P. S., Howe and U., Lindstrom, “Higher order invariants in extended supergravity,”Nucl. Phys. B 181, 487 (1981).
[234] R. E., Kallosh, “Counterterms in extended supergravities,”Phys. Lett. B 99, 122 (1981).
[235] G., Bossard, P. S., Howe, K. S., Stelle, and P., Vanhove, “The vanishing volume of D = 4 superspace,”Class. Quant. Grav. 28, 215005 (2011) [arXiv:1105.6087 [hep-th]].
[236] N., Berkovits, “Super Poincare covariant quantization of the superstring,”JHEP 0004, 018 (2000) [hep-th/0001035].
[237] M. B., Green, H., Ooguri, and J. H., Schwarz, “Nondecoupling of maximal supergravity from the superstring,”Phys. Rev. Lett. 99, 041601 (2007) [arXiv:0704.0777 [hep-th]].
[238] T., Banks, “Arguments against a finite N = 8 supergravity,” [arXiv:1205.5768 [hep-th]].
[239] M., Bianchi, S., Ferrara, and R., Kallosh, “Perturbative and non-perturbative N = 8 supergravity,”Phys. Lett. B 690, 328 (2010) [arXiv:0910.3674 [hep-th]].
[240] Z., Bern, S., Davies, T., Dennen, Y.-t., Huang, and J., Nohle, “Color-kinematics duality for pure Yang–Mills and gravity at one and two loops,” [arXiv:1303.6605 [hep-th]].
[241] Z., Bern, S., Davies, T., Dennen, A. V., Smirnov, and V. A., Smirnov, “The ultraviolet properties of N = 4 supergravity at four loops,”Phys. Rev. Lett. 111, 231302 (2013) [arXiv:1309.2498 [hep-th]].
[242] Z., Bern, L. J., Dixon, D. C., Dunbar, M., Perelstein, and J. S., Rozowsky, “On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences,”Nucl. Phys. B 530, 401 (1998) [hep-th/9802162].
[243] D. C., Dunbar, B., Julia, D., Seminara, and M., Trigiante, “Counterterms in type I supergravities,”JHEP 0001, 046 (2000) [hep-th/9911158].
[244] Z., Bern, S., Davies, T., Dennen, and Y.-t., Huang, “Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure,”Phys. Rev. D 86, 105014 (2012) [arXiv:1209.2472 [hep-th]].
[245] Z., Bern, S., Davies, T., Dennen, and Y.-t., Huang, “Absence of three-loop four-point divergences in N = 4 supergravity,”Phys. Rev. Lett. 108, 201301 (2012) [arXiv:1202.3423 [hep-th]];
[246] M., Fischler, “Finiteness calculations for O(4) through O(8) extended supergravity and O(4) supergravity coupled to selfdual O(4) matter,”Phys. Rev. D 20, 396 (1979).
[247] Z., Bern, S., Davies, and T., Dennen, “The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops,” [arXiv:1305.4876 [hep-th]].
[248] G., Bossard, P. S., Howe, and K. S., Stelle, “Invariants and divergences in half-maximal supergravity theories,” [arXiv:1304.7753 [hep-th]].
[249] D., Vaman and Y.-P., Yao, “Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes,”JHEP 1011, 028 (2010) [arXiv:1007.3475 [hep-th]].
[250] R. H., Boels and R. S., Isermann, “On powercounting in perturbative quanturn gravity theories through color-kinematic duality,”JHEP 1306, 017 (2013) [arXiv:1212.3473].
[251] Z., Bern, T., Dennen, Y.-t., Huang, and M., Kiermaier, “Gravity as the square of gauge theory,”Phys.Rev. D 82, 065003 (2010) [arXiv:1004.0693 [hep-th]].
[252] M., Kiermaier, Talk at Amplitudes 2010, May 2010 at QMUL, London, UK. http://www.strings.ph.qmul.ac.uk/~theory/Amplitudes2010/
[253] N. E. J., Bjerrum-Bohr, P. H., Damgaard, T., Sondergaard, and P., Vanhove, “The momentum kernel of gauge and gravity theories,”JHEP 1101, 001 (2011) [arXiv:1010.3933 [hep-th]].
[254] C. R., Mafra, O., Schlotterer, and S., Stieberger, “Explicit BCJ numerators from pure spinors,”JHEP 1107, 092 (2011) [arXiv:1104.5224 [hep-th]];
C.-H., Fu, Y.-J., Du, and B., Feng, “An algebraic approach to BCJ numerators,”JHEP 1303, 050 (2013) [arXiv:1212.6168 [hep-th]].
[255] N. E. J., Bjerrum-Bohr, P. H., Damgaard, and P., Vanhove, “Minimal basis for gauge theory amplitudes,”Phys. Rev. Lett. 103, 161602 (2009) [0907.1425 [hep-th]];
S., Stieberger, “Open & closed vs. pure open string disk amplitudes,” [arXiv: 0907.2211 [hep-th]];
C. R., Mafra and O., Schlotterer, “The structure of n-point one-loop open superstring amplitudes,” [arXiv:1203.6215 [hep-th]];
O., Schlotterer and S., Stieberger, “Motivic multiple zeta values and superstring amplitudes,” [arXiv:1205.1516 [hep-th]];
J., Broedel, O., Schlotterer, and S., Stieberger, “Polylogarithms, multiple zeta values and superstring amplitudes,” [arXiv:1304.7267 [hep-th]].
[256] S. H., Henry Tye and Y., Zhang, “Dual identities inside the gluon and the graviton scattering amplitudes,”JHEP 1006, 071 (2010) [Erratum-ibid>. 1104, 114 (2011)] [arXiv:1003.1732 [hep-th]].
[257] B., Feng, R., Huang, and Y., Jia, “Gauge amplitude identities by on-shell recursion relation in s-matrix program,”Phys. Lett. B 695, 350 (2011) [arXiv:1004.3417 [hep-th]].
[258] F., Cachazo, “Fundamental BCJ relation in N = 4 SYM from the connected formulation,” [arXiv:1206.5970 [hep-th]].
[259] N. E. J., Bjerrum-Bohr, P. H., Damgaard, R., Monteiro, and D., O'Connell, “Algebras for amplitudes,”JHEP 1206, 061 (2012) [arXiv:1203.0944 [hep-th]].
[260] R., Monteiro and D., O'Connell, “The kinematic algebra from the self-dual sector,”JHEP 1107, 007 (2011) [arXiv:1105.2565 [hep-th]].
[261] M., Tolotti and S., Weinzierl, “Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality,” [arXiv:1306.2975 [hep-th]].
[262] Z., Bern, J. J. M., Carrasco, and H., Johansson, “Perturbative quantum gravity as a double copy of gauge theory,”Phys. Rev. Lett. 105, 061602 (2010) [arXiv:1004.0476 [hep-th]].
[263] J. J., Carrasco and H., Johansson, “Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity,”Phys. Rev. D 85, 025006 (2012) [arXiv:1106.4711 [hep-th]].
[264] N. E. J., Bjerrum-Bohr, T., Dennen, R., Monteiro, and D., O'Connell, “Integrand oxidation and one-loop colour-dual numerators inN = 4 gauge theory,” [arXiv:1303.2913 [hep-th]].
[265] R. H., Boels, R. S., Isermann, R., Monteiro, and D., O'Connell, “Colour-kinematics duality for one-loop rational amplitudes,”JHEP 1304, 107 (2013) [arXiv:1301.4165 [hep-th]].
[266] J. J. M., Carrasco, M., Chiodaroli, M., Günaydin, and R., Roiban, “One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity,”JHEP 1303, 056 (2013) [arXiv:1212.1146 [hep-th]].
[267] M., Chiodaroli, Q., Jin, and R., Roiban, “Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory,”JHEP 1401, 152 (2014) [arXiv:1311.3600 [hep-th]].
[268] J., Nohle, “Color-kinematics duality in one-loop four-gluon amplitudes with matter,” [arXiv:1309.7416 [hep-th]].
[269] Z., Bern, C., Boucher-Veronneau, and H., Johansson, “N ≥ 4 supergravity amplitudes from gauge theory at one loop,”Phys. Rev. D 84, 105035 (2011) [arXiv:1107.1935 [hep-th]];
C., Boucher-Veronneau and L. J., Dixon, “N ≥ 4 supergravity amplitudes from gauge theory at two loops,”JHEP 1112, 046 (2011) [arXiv:1110.1132 [hep-th]].
[270] M. T., Grisaru and W., Siegel, “Supergraphity. 2. Manifestly covariant rules and higher loop muteness,”Nucl. Phys. B 201, 292 (1982) [Erratum-ibid. B 206, 496 (1982)].
[271] S., Ferrara, R., Kallosh, and A., Van Proeyen, “Conjecture on hidden superconformal symmetry of N = 4 supergravity,”Phys. Rev. D 87, 025004 (2013) [arXiv:1209.0418 [hep-th]].
[272] J., Broedel and L. J., Dixon, “Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators,”JHEP 1210, 091 (2012) [arXiv:1208.0876 [hep-th]].
[273] R. H., Boels, B. A., Kniehl, O. V., Tarasov, and G., Yang, “Color-kinematic duality for form factors,”JHEP 1302, 063 (2013) [arXiv:1211.7028 [hep-th]];
[274] T., Bargheer, S., He, and T., McLoughlin, “New relations for three-dimensional supersymmetric scattering amplitudes,”Phys. Rev. Lett. 108, 231601 (2012) [arXiv:1203.0562 [hep-th]].
[275] Y.-t., Huang and H., Johansson, “Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories,” [arXiv:1210.2255 [hep-th]].
[276] A., Zee, “Quantum field theory in a nutshell,”Princeton, USA: Princeton University Press (2010).
[277] M. D., Schwartz, Quantum Field Theory and the Standard Model, Cambridge, UK: Cambridge University Press (2013).
[278] J. M., Henn and J. C., Plefka, “Scattering amplitudes in gauge theories,”Lecture Notes in Physics 883Heidelbera: Springer (2014).
[279] M., Wolf, “A first course on twistors, integrability and gluon scattering amplitudes,”J. Phys. A 43, 393001 (2010) [arXiv:1001.3871 [hep-th]].
[280] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-shell methods in perturbative QCD,”Annals Phys. 322, 1587 (2007) [arXiv:0704.2798 [hep-ph]].
[281] M. E., Peskin, “Simplifying multi-jet QCD computation,” [arXiv:1101.2414 [hep-ph]].
[282] J. F., Donoghue, “Introduction to the effective field theory description of gravity,” gr-qc/9512024.
[283] L. J., Dixon, “Ultraviolet behavior of N = 8 supergravity,” [arXiv:1005.2703 [hep-th]].
[284] Z., Bern, P., Gondolo, and M., Perelstein, “Neutralino annihilation into two photons,”Phys. Lett. B 411, 86 (1997) [hep-ph/9706538];
Z., Bern, A., De Freitas, and L. J., Dixon, “Two loop helicity amplitudes for gluon–gluon scattering in QCD and supersymmetric Yang–Mills theory,”JHEP 0203, 018 (2002) [hep-ph/0201161];
Z., Bern, A., De Freitas, and L. J., Dixon, “Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang–Mills theory,”JHEP 0306, 028 (2003) [hep-ph/0304168].
[285] S. J., Bidder, N. E. J., Bjerrum-Bohr, D. C., Dunbar, and W. B., Perkins, “One-loop gluon scattering amplitudes in theories with N < 4 supersymmetries,”Phys. Lett. B 612, 75 (2005) [hep-th/0502028].
[286] R., Britto, E., Buchbinder, F., Cachazo, and B., Feng, “One-loop amplitudes of gluons in SQCD,”Phys. Rev. D 72, 065012 (2005) [hep-ph/0503132].
[287] S., Lal and S., Raju, “Rational terms in theories with matter,”JHEP 1008, 022 (2010) [arXiv:1003.5264 [hep-th]].
[288] S., Dittmaier, “Weyl-van der Waerden formalism for helicity amplitudes of massive particles,”Phys. Rev. D 59, 016007 (1998) [hep-ph/9805445].
[289] R., Boels and C., Schwinn, “CSW rules for massive matter legs and glue loops,”Nucl. Phys. Proc. Suppl. 183, 137 (2008) [arXiv:0805.4577 [hep-th]].
[290] R. H., Boels, “No triangles on the moduli space of maximally supersymmetric gauge theory,”JHEP 1005, 046 (2010) [arXiv:1003.2989 [hep-th]].
[291] P., Ferrario, G., Rodrigo, and P., Talavera, “Compact multigluonic scattering amplitudes with heavy scalars and fermions,”Phys. Rev. Lett. 96, 182001 (2006) [hep-th/0602043].
[292] D., Forde and D. A., Kosower, “All-multiplicity amplitudes with massive scalars,”Phys. Rev. D 73, 065007 (2006) [hep-th/0507292].
[293] G., Rodrigo, “Multigluonic scattering amplitudes of heavy quarks,”JHEP 0509, 079 (2005) [hep-ph/0508138].
[294] C., Cheung, D., O'Connell, and B., Wecht, “BCFW recursion relations and string theory,”JHEP 1009, 052 (2010) [arXiv:1002.4674 [hep-th]].
[295] R. H., Boels, D., Marmiroli, and N. A., Obers, “On-shell recursion in string theory,”JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]].
[296] K., Kampf, J., Novotny, and J., Trnka, “Recursion relations for tree-level amplitudes in the SU(N) non-linear sigma model,”Phys. Rev. D 87, 081701 (2013) [arXiv:1212.5224 [hep-th]].
[297] Z., Bern, L. J., Dixon, and D. A., Kosower, “The last of the finite loop amplitudes in QCD,”Phys.Rev. D 72, 125003 (2005) [hep-ph/0505055].
[298] B., Feng and M., Luo, “An introduction to on-shell recursion relations,” [arXiv:1111.5759 [hep-th]].
[299] J. M., Drummond, G. P., Korchemsky, and E., Sokatchev, “Conformal properties of four-gluon planar amplitudes and Wilson loops,”Nucl. Phys. B 795, 385 (2008) [arXiv:0707.0243 [hep-th]].
[300] N., Berkovits and J., Maldacena, “Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection,”JHEP 0809, 062 (2008) [arXiv:0807.3196 [hep-th]].
[301] N., Beisert, R., Ricci, A. A., Tseytlin, and M., Wolf, “Dual superconformal symmetry from AdS(5) x S**5 superstring integrability,”Phys. Rev. D 78, 126004 (2008) [arXiv:0807.3228 [hep-th]].
[302] A., Brandhuber, P., Heslop, and G., Travaglini, “MHV amplitudes in N = 4 super Yang-Mills and Wilson loops,”Nucl. Phys. B 794, 231 (2008) [arXiv:0707.1153 [hep-th]].
[303] L. J., Mason and D., Skinner, “The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space,”JHEP 1012, 018 (2010) [arXiv:1009.2225 [hep-th]].
[304] S., Caron-Huot, “Notes on the scattering amplitude / Wilson loop duality,”JHEP 1107, 058 (2011) [arXiv:1010.1167 [hep-th]].
[305] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The super-correlator/superamplitude duality: Part I,”Nucl. Phys. B 869, 329 (2013) [arXiv:1103.3714 [hep-th]]; Part II, Nucl. Phys. B 869, 378 (2013) [arXiv:1103.4353 [hep-th]].
[306] L. F., Alday, B., Eden, G. P., Korchemsky, J., Maldacena, and E., Sokatchev, “From correlation functions to Wilson loops,”JHEP 1109, 123 (2011) [arXiv:1007.3243 [hep-th]].
[307] T., Adamo, M., Bullimore, L., Mason, and D., Skinner, “A proof of the supersym-metric correlation function / Wilson loop correspondence,”JHEP 1108, 076 (2011) [arXiv:1103.4119 [hep-th]].
[308] L. F., Alday and R., Roiban, “Scattering amplitudes, Wilson loops and the string/gauge theory correspondence,”Phys. Rept. 468, 153 (2008) [arXiv:0807.1889 [hep-th]].
[309] R. M., Schabinger, “One-loop N = 4 super Yang-Mills scattering amplitudes in d dimensions, relation to open strings and polygonal Wilson loops,”J. Phys. A 44, 454007 (2011) [arXiv:1104.3873 [hep-th]].
[310] J. M., Henn, “Duality between Wilson loops and gluon amplitudes,”Fortsch. Phys. 57, 729 (2009) [arXiv:0903.0522 [hep-th]].
[311] T., Adamo, M., Bullimore, L., Mason, and D., Skinner, “Scattering amplitudes and Wilson loops in twistor space,”J. Phys. A 44, 454008 (2011) [arXiv:1104.2890 [hep-th]].
[312] L. F., Alday, D., Gaiotto, J., Maldacena, A., Sever, and P., Vieira, “An operator product expansion for polygonal null Wilson loops,”JHEP 1104, 088 (2011) [arXiv:1006.2788 [hep-th]].
[313] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux-tube S-matrix at finite coupling,”Phys. Rev. Lett. 111, 091602 (2013) [arXiv:1303.1396 [hep-th]].
[314] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux tube S-matrix II. Extracting and matching data,”JHEP 1401, 008 (2014) [arXiv:1306.2058 [hep-th]].
[315] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions,” [arXiv:1402.3307 [hep-th]].
[316] L. J., Dixon, J. M., Drummond, M., von Hippel, and J., Pennington, “Hexagon functions and the three-loop remainder function,”JHEP 1312, 049 (2013) [arXiv:1308.2276 [hep-th]].
[317] L. J., Dixon, J. M., Drummond, C., Duhr, and J., Pennington, “The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory,” [arXiv:1402.3300 [hep-th]].
[318] R., Penrose and W., Rindler, Spinors and Space-Time, vol. 2, Cambridge: Cambridge University Press (1986).
[319] R., Ward and R., Wells, Twistor Geometry and Field Theory, Cambridge: Cambridge University Press (1990).
[320] S., Huggett and P., Tod, An Introduction to Twistor Theory, Student Texts 4, London: London Mathematical Society (1985).
[321] F., Cachazo and P., Svrcek, “Lectures on twistor strings and perturbative Yang–Mills theory,”PoS RTN 2005, 004 (2005) [hep-th/0504194].