Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:27:31.068Z Has data issue: false hasContentIssue false

12 - Saturn’s Polar Atmosphere

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

This chapter reviews the state of our knowledge about Saturn’s polar atmosphere that has been revealed through Earth- and space-based observation as well as theoretical and numerical modeling. In particular, the Cassini mission to Saturn, which has been in orbit around the ringed planet since 2004, has revolutionized our understanding of the planet. The current review updates a previous review by Del Genio et al. (2009), written after Cassini’s primary mission phase that ended in 2008, by focusing on the north polar region of Saturn and comparing it to the southern high latitudes. Two prominent features in the northern high latitudes are the northern hexagon and the north polar vortex; we extensively review observational and theoretical investigations to date of both features. We also review the seasonal evolution of the polar regions using the observational data accumulated during the Cassini mission since 2004 (shortly after the northern winter solstice in 2002), through the equinox in 2009, and approaching the next solstice in 2017. We conclude the current review by listing unanswered questions and describing the observations of the polar regions planned for the Grand Finale phase of the Cassini mission between 2016 and 2017.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, R. K. and Ingersoll, A. P. (1989), A normal-mode approach to Jovian atmospheric dynamic. Journal of Atmospheric Sciences, 46(Aug.), 24482462.Google Scholar
Allen, J. S., Walstad, L. J. and Newberger, P. A. (1991), Dynamics of the coastal transition zone jet. 2. Nonlinear finite amplitude behavior. Journal of Geophysical Research, 96(Aug.), 1499515016.CrossRefGoogle Scholar
Allison, M. (2000), A similarity model for the windy Jovian thermocline. Planetary and Space Science, 48(June), 753774.CrossRefGoogle Scholar
Allison, M., Beebe, R. F., Conrath, B. J. et al. (1991), Uranus atmospheric dynamics and circulation. Pages 253295 in: Bergstralh, J. T., Miner, E. D. and Matthews, M. S. (eds.), Uranus. Tucson, AZ: University of Arizona Press.Google Scholar
Allison, M., Godfrey, D. A. and Beebe, R. F. (1990), A wave dynamical interpretation of Saturn’s polar hexagon. Science, 247(Mar.), 10611063.Google Scholar
Anthes, R. A. (1982), Tropical Cyclones. Their Evolution, Structure and Effects. Boston, MA: American Meteorological Society.Google Scholar
Antuñano, A., Río-Gaztelurrutia, T., Sánchez-Lavega, A. et al. (2015), Dynamics of Saturn’s polar regions. Journal of Geophysical Research (Planets), 120(Feb.), 155176.Google Scholar
Archinal, B. A., A’Hearn, M. F., Bowell, E. et al. (2011), Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109(Feb.), 101135.CrossRefGoogle Scholar
Arnol’d, V. I. (1966), On an a priori estimate in the theory of hydro-dynamic stability. Izv Vyssh. Uchebn. Zaved. Matematika, 54 (5), 35. English translation: American Mathematical Society Translation Series 2 79: 267269 (1969).Google Scholar
Bagenal, F., Dowling, T. E. and McKinnon, W. B. (2004), Jupiter: The Planet, Satellites and Magnetosphere. Orlando, FL: Academic Press.Google Scholar
Baines, K. H., Drossart, P., Momary, T. W. et al. (2005), The atmospheres of Saturn and Titan in the near-infrared first results of Cassini/VIMS. Earth Moon and Planets, 96(June), 119147.Google Scholar
Baines, K. H., Momary, T. W., Fletcher, L. N. et al. (2009), Saturn’s north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planetary and Space Science, 57(Dec.), 16711681.Google Scholar
Barbosa Aguiar, A. C., Read, P. L., Wordsworth, R. D. et al. (2010), A laboratory model of Saturn’s North Polar Hexagon. Icarus, 206(Apr.), 755763.Google Scholar
Barrado-Izagirre, N., Pérez-Hoyos, S. and Sánchez-Lavega, A. (2009), Brightness power spectral distribution and waves in Jupiter’s upper cloud and hazes. Icarus, 202(July), 181196.Google Scholar
Barrado-Izagirre, N., Sánchez-Lavega, A., Pérez-Hoyos, S. et al. (2008), Jupiter’s polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 194(Mar.), 173185.Google Scholar
Bézard, B. and Gautier, D. (1985), A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time. I: Saturn’s stratosphere. Icarus, 61, 296310.Google Scholar
Brown, R. H., Baines, K. H., Bellucci, G. et al. (2004), The Cassini Visual And Infrared Mapping Spectrometer (VIMS) investigation. Space Science Reviews, 115(Dec.), 111168.Google Scholar
Caldwell, J., Hua, X.-M., Turgeon, B. et al. (1993), The drift of Saturn’s north polar SPOT observed by the Hubble Space Telescope. Science, 260(Apr.), 326329.Google Scholar
Charney, J. G. (1971), Geostrophic turbulence. Journal of Atmospheric Sciences, 28, 10871095.Google Scholar
Charney, J. G. and Stern, M. E. (1962), On the stability of internal baroclinic jets in a rotating atmosphere. Journal of Atmospheric Sciences, 19(Mar.), 159172.Google Scholar
Chekhlov, A., Orszag, S. A., Sukoriansky, S. et al. (1996), The effect of small-scale forcing on large-scale structures in two-dimensional flows. Phys. D, 98(24), 321334.Google Scholar
Cho, J. Y.-K. and Polvani, L. M. (1996), The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Physics of Fluids, 8(June), 15311552.CrossRefGoogle Scholar
Choi, D. S., Banfield, D., Gierasch, P. et al. (2007), Velocity and vorticity measurements of Jupiter’s Great Red Spot using automated cloud feature tracking. Icarus, 188(May), 3546.Google Scholar
Choi, D. S. and Showman, A. P. (2011), Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini. Icarus, 216(Dec.), 597609.CrossRefGoogle Scholar
Choi, D. S., Showman, A. P. and Brown, R. H. (2009), Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. J. Geophy. Res., 114(E13), E4007.Google Scholar
Conrath, B. J., Gierasch, P. J. and Leroy, S. S. (1990), Temperature and circulation in the stratosphere of the outer planets. Icarus, 83(Feb.), 255281.Google Scholar
Cosentino, R. G., Simon, A., Morales-Juberias, R. et al. (2015), Observations and numerical modeling of the Jovian ribbon. Astrophysical Journal Letters, 810(Sept.), L10.Google Scholar
Danilov, S. and Gryanik, V. M. (2004), Barotropic beta-plane turbulence in a regime with strong zonal jets Revisited. Journal of Atmospheric Sciences, 61(Sept.), 22832295.Google Scholar
Danilov, S. and Gurarie, D. (2004), Scaling, spectra and zonal jets in beta-plane turbulence. Physics of Fluids, 16(July), 25922603.Google Scholar
de Pater, I., Fletcher, L. N., Luszcz-Cook, S. et al. (2014), Neptune’s global circulation deduced from multi-wavelength observations. Icarus, 237(July), 211238.Google Scholar
de Pater, I., Sromovsky, L. A., Hammel, H. B. et al. (2011), Post-equinox observations of Uranus: Berg’s evolution, vertical structure, and track towards the equator. Icarus, 215(Sept.), 332345.Google Scholar
Del Genio, A. D., Achterberg, R. K., Baines, K. H. et al. (2009), Saturn atmospheric structure and dynamics. Page 113 of: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Del Genio, A. D., Barbara, J. M., Ferrier, J. et al. (2007), Saturn eddy momentum fluxes and convection: First estimates from Cassini images. Icarus, 189(Aug.), 479492.Google Scholar
Desch, M. D. and Kaiser, M. L. (1981), Voyager measurement of the rotation period of Saturn’s magnetic field. Geophysical Research Letters, 8(Mar.), 253256.Google Scholar
Di Nitto, G., Espa, S. and Cenedese, A. (2013), Simulating zonation in geophysical flows by laboratory experiments. Physics of Fluids, 25(8), 086602–086602.Google Scholar
Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (2009), Saturn from Cassini-Huygens. Springer.Google Scholar
Dowling, T. E. (1995), Dynamics of Jovian atmospheres. Annual Review of Fluid Mechanics, 27, 293334.Google Scholar
Dowling, T. E. (2014), Saturn’s longitude: Rise of the second branch of shear-stability theory and fall of the first. International Journal of Modern Physics D, 23(Feb.), 30006.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2008), Dynamics of Saturn’s south polar vortex. Science, 319(Mar.), 1801.CrossRefGoogle ScholarPubMed
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. (2009), Saturn’s south polar vortex compared to other large vortices in the Solar System. Icarus, 202(July), 240248.CrossRefGoogle Scholar
Emanuel, K. (2003), Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75104.Google Scholar
Espa, S., Di Nitto, G. and Cenedese, A. (2010), The emergence of zonal jets in forced rotating shallow water turbulence: A laboratory study. EPL (Europhysics Letters), 92(Nov.), 34006.Google Scholar
Esposito, L. W., Barth, C. A., Colwell, J. E. et al. (2004), The Cassini Ultraviolet Imaging Spectrograph investigation. Space Science Reviews, 115(Dec.), 299361.CrossRefGoogle Scholar
Fischer, G., Ye, S.-Y., Groene, J. B. et al. (2014), A possible influence of the Great White Spot on Saturn kilometric radiation periodicity. Annales Geophysicae, 32(Dec.), 14631476.Google Scholar
Flasar, F. M., Kunde, V. G., Abbas, M. M. et al. (2004), Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Science Reviews, 115(Dec.), 169297.Google Scholar
Fletcher, L. N., de Pater, I., Orton, G. S. et al. (2014), Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003–2007. Icarus, 231(Mar.), 146167.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Orton, G. S. et al. (2008), Temperature and composition of Saturn’s polar hot spots and hexagon. Science, 319(Jan.), 7981.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Sinclair, J. A. et al. (2015), Seasonal evolution of Saturn’s polar temperatures and composition. Icarus, 250(Apr.), 131153.Google Scholar
Flierl, G. (1999), Thin jet and contour dynamics models of Gulf Stream meandering. Dynamics of Atmospheres and Oceans, 29(July), 189215.CrossRefGoogle Scholar
Flierl, G. R., Malanotte-Rizzoli, P. and Zabusky, N. J. (1987), Nonlinear waves and coherent vortex structures in barotropic β-plane jets. Journal of Physical Oceanography, 17(Sept.), 14081438.Google Scholar
Frank, W. M. (1977a), The structure and energetics of the tropical cyclone I. Storm structure. Monthly Weather Review, 105, 1119.Google Scholar
Frank, W. M. (1977b), The structure and energetics of the tropical cyclone II. Dynamics and energetics. Monthly Weather Review, 105, 1136.Google Scholar
Friedson, A. J. and Moses, J. I. (2012), General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus, 218(Apr.), 861875.CrossRefGoogle Scholar
Friedson, A. J., Wong, A.-S. and Yung, Y. L. (2002), Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158(Aug.), 389400.CrossRefGoogle Scholar
Galopeau, P. H. M. and Lecacheux, A. (2000), Variations of Saturn’s radio rotation period measured at kilometer wavelengths. Journal of Geophysical Research, 105(June), 1308913102.Google Scholar
Galperin, B., Nakano, H., Huang, H.-P. et al. (2004), The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophysical Research Letters, 31(July), L13303.Google Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N. et al. (2006), Anisotropic turbulence and zonal jets in rotating flows with β-effect. Nonlinear Processes in Geophysics, 13(Apr.), 8398.Google Scholar
Galperin, B., Sukoriansky, S. and Huang, H.-P. (2001), Universal n5 spectrum of zonal flows on giant planets. Physics of Fluids, 13(June), 15451548.Google Scholar
Galperin, B., Young, R. M. B., Sukoriansky, S. et al. (2014), Cassini observations reveal a regime of zonostrophic macro-turbulence on Jupiter. Icarus, 229(Feb.), 295320.Google Scholar
Garcia-Melendo, E., Pérez-Hoyos, S., Sánchez-Lavega, A. et al. (2011), Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 215(Sept.), 6274.Google Scholar
Gehrels, T. (ed.) (1976), Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites. Tucson, AZ: University of Arizona Press.Google Scholar
Gehrels, T. and Matthews, M. S. (eds.) (1984), Saturn. Tucson, AZ: University of Arizona Press.Google Scholar
Gezari, D. Y., Mumma, M. J., Espenak, F. et al. (1989), New features in Saturn’s atmosphere revealed by high-resolution thermal infrared images. Nature, 342, 777780.Google Scholar
Godfrey, D. A. (1988), A hexagonal feature around Saturn’s North Pole. Icarus, 76(Nov.), 335356.Google Scholar
Godfrey, D. A. and Moore, V. (1986), The Saturnian ribbon feature: A baroclinically unstable model. Icarus, 68(Nov.), 313343.CrossRefGoogle Scholar
Greathouse, T., Moses, J., Fletcher, L. et al. (2010) (May), Seasonal temperature variations in Saturn’s stratosphere: Radiative seasonal model vs. observations. Page 4806 of: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 12.Google Scholar
Guerlet, S., Fouchet, T., Vinatier, S. et al. (2015), Stratospheric benzene and hydrocarbon aerosols detected in Saturn’s auroral regions. Astronomy and Astrophysics, 580(Aug.), A89.Google Scholar
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238(Aug.), 110124.Google Scholar
Hammel, H. B., Sromovsky, L. A., Fry, P. M. et al. (2009), The Dark Spot in the atmosphere of Uranus in 2006: Discovery, description, and dynamical simulations. Icarus, 201(May), 257271.Google Scholar
Hammel, H. B., Sitko, M. L., Lynch, D. K. et al. (2007), Distribution of Ethane and Methane Emission on Neptune. Astronomical Journal, 134(Aug.), 637641.Google Scholar
Hart, J. E. (1979), Finite amplitude baroclinic instability. Annual Review of Fluid Mechanics, 11, 147172.Google Scholar
Held, I. M., Ting, M. and Wang, H. (2002), Northern winter stationary waves: Theory and modeling. Journal of Climate, 15(Aug.), 21252144.Google Scholar
Holton, J. R. 2004), An Introduction to Dynamic Meteorology. New York, NY: Academic Press.Google Scholar
Houze, R. A. (1993), Cloud Dynamics. San Diego, CA: Academic Press.Google Scholar
Huang, H.-P., Galperin, B. and Sukoriansky, S. (2001), Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Physics of Fluids, 13(Jan.), 225240.Google Scholar
Huang, H.-P. and Robinson, W. A. (1998), Two-dimensional turbulence and persistent zonal jets in a global barotropic model. Journal of Atmospheric Sciences, 55(Feb.), 611632.Google Scholar
Iacono, R., Struglia, M. V. and Ronchi, C. (1999), Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Physics of Fluids, 11(May), 12721274.Google Scholar
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. et al. (1984), Structure and dynamics of Saturn’s atmosphere. Pages 195238 in: Gehrels, T., Matthews, M. S. (eds.), Saturn. Tucson, AZ: University of Arizona Press.Google Scholar
Ingersoll, A. P., Dowling, T. E., Gierasch, P. J. et al. (2004), Dynamics of Jupiter’s atmosphere. Pages 105128 in: Jupiter: The Planet, Satellites and Magnetosphere. Cambridge: Cambridge University Press.Google Scholar
Ingersoll, A. P., Muench, G., Neugebauer, G. et al. (1976), Results of the infrared radiometer experiment on Pioneers 10 and 11. Pages 197–205 of: Gehrels, T. (ed.), Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites. Tucson, AZ: University of Arizona Press.Google Scholar
Karkoschka, E. (2015), Uranus’ southern circulation revealed by Voyager 2: Unique characteristics. Icarus, 250(Apr.), 294307.Google Scholar
Karkoschka, E. and Tomasko, M. (2005), Saturn’s vertical and latitudinal cloud structure 1991 2004 from HST imaging in 30 filters. Icarus, 179(Dec.), 195221.Google Scholar
Karkoschka, E. and Tomasko, M. G. (1993), Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope. Icarus, 106, 428441.Google Scholar
Kàrmàn, Th. V. (1921), Über laminare und turbulente Reibung. Z. angew. Math. Mech., 1, 233252.Google Scholar
Kitamura, Y. and Ishioka, K. (2007), Equatorial jets in decaying shallow-water turbulence on a rotating sphere. Journal of Atmospheric Sciences, 64, 3340.Google Scholar
Kossin, J. P. and Schubert, W. H. (2001), Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. Journal of Atmospheric Sciences, 58(Aug.), 21962209.Google Scholar
Kraichnan, R. H. (1967), Inertial ranges in two-dimensional turbulence. Physics of Fluids, 10(July), 14171423.Google Scholar
Kraichnan, R. H. (1971), Inertial-range transfer in two- and three-dimensional turbulence. Journal of Fluid Mechanics, 47, 525535.Google Scholar
Kuo, H.-L. (1949), Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere. Journal of Atmospheric Sciences, 6(Apr.), 105122.Google Scholar
Lebeau, R. P. and Dowling, T. E. (1998), EPIC simulations of time-dependent, three-dimensional vortices with application to Neptune’s Great Dark SPOT. Icarus, 132(Apr.), 239265.Google Scholar
Lewis, B. M. and Hawkins, H. F. (1982), Polygonal eye walls and rainbands in hurricanes. Bulletin of the American Meteorological Society, 63(Nov.), 12941301.Google Scholar
Limaye, S. S. (1986), Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus, 65(Mar.), 335352.Google Scholar
Limaye, S. S., Kossin, J. P., Rozoff, C. et al. (2009), Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophysical Reesarch Letters, 36(Feb.), 4204.Google Scholar
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astronomical Journal, 90(June), 11361146.Google Scholar
Liu, J. and Schneider, T. (2010), Mechanisms of jet formation on the giant planets. Journal of Atmospheric Sciences, 67(Nov.), 36523672.Google Scholar
Liu, J., Schneider, T. and Fletcher, L. N. (2014), Constraining the depth of Saturn’s zonal winds by measuring thermal and gravitational signals. Icarus, 239(Sept.), 260272.Google Scholar
Luszcz-Cook, S. H., de Pater, I., Adamkovics, M. et al. (2010), Seeing double at Neptune’s south pole. Icarus, 208(Aug.), 938944.Google Scholar
Marcus, P. S. and Lee, C. (1998), A model for eastward and westward jets in laboratory experiments and planetary atmospheres. Physics of Fluids, 10(June), 14741489.Google Scholar
Moller, J. D. and Montgomery, M. T. (2000), Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. Journal of Atmospheric Sciences, 57(Oct.), 33663387.Google Scholar
Montgomery, M. T. and Enagonio, J. (1998), Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. Journal of Atmospheric Sciences, 55(Oct.), 31763207.Google Scholar
Montgomery, M. T. and Kallenbach, R. J. (1997), A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quarterly Journal of the Royal Meteorological Society, 123(Jan.), 435465.Google Scholar
Montgomery, M. T., Moller, J. D. and Nicklas, C. T. (1999), Linear and nonlinear vortex motion in an asymmetric balance shallow water model. Journal of Atmospheric Sciences, 56(Mar.), 749768.Google Scholar
Morales-Juberìas, R., Sayanagi, K. M., Dowling, T. E. et al. (2011), Emergence of polar-jet polygons from jet instabilities in a Saturn model. Icarus, 211(Feb.), 12841293.Google Scholar
Morales-Juberìas, R., Sayanagi, K. M., Simon, A. A. et al. (2015), Meandering shallow atmospheric jet as a model of Saturn’s north-polar hexagon. Astrophysical Journal Letters, 806(June), L18.Google Scholar
Moses, J. I., Fouchet, T., Yelle, R. V. et al. (2004), The stratosphere of Jupiter. Pages 129–157 of: Bagenal, F., Dowling, T. E. and McKinnon, W. B. (eds.), Jupiter. The Planet, Satellites and Magnetosphere. Cambridge: Cambridge University Press.Google Scholar
Moses, J. I. and Greathouse, T. K. (2005), Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. Journal of Geophysical Research (Planets), 110(E9), 9007.Google Scholar
Nash, E. R., Newman, P. A., Rosenfield, J. E. et al. (1996), An objective determination of the polar vortex using Ertel’s potential vorticity. Journal of Geophysical Research, 101(Apr.), 94719478.Google Scholar
Nolan, D. S. and Farrell, B. F. (1999), The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. Journal of Atmospheric Sciences, 56(Dec.), 39373962.Google Scholar
Nozawa, T. and Yoden, S. (1997), Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Physics of Fluids, 9(July), 2081–2093.Google Scholar
Nycander, J. (1993), The difference between monopole vortices in planetary flows and laboratory experiments. Journal of Fluid Mechanics, 254, 561577.Google Scholar
Okuno, A. and Masuda, A. (2003), Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Physics of Fluids, 15(Jan.), 5665.Google Scholar
O’Neill, M. E., Emanuel, K. A. and Flierl, G. R. (2015), Polar vortex formation in giant-planet atmospheres due to moist convection. Nature Geoscience, 8(July), 523526.Google Scholar
O’Neill, M. E., Emanuel, K. A. and Flierl, G. R. (2016), Weak jets and strong cyclones: Shallow-water modeling of giant planet polar caps. Journal of Atmospheric Sciences, 73(Apr.), 1841–1855.Google Scholar
Orton, G., Conrath, B., Achterberg, R. et al. (2003) (Apr.), The exploration of Jupiter’s Arctic Polar Vortex by NASA IRTF and Cassini CIRS observations. Pages 6819–+ of: EGS -AGU – EUG Joint Assembly.Google Scholar
Orton, G. S., Encrenaz, T., Leyrat, C. et al. (2007), Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune’s atmospheric temperatures. Astronomy and Astrophysics, 473(Oct.), L5L8.Google Scholar
Orton, G. S., Fletcher, L. N., Liu, J. et al. (2012), Recovery and characterization of Neptune’s near-polar stratospheric hot spot. Planetary and Space Science, 61(Feb.), 161167.Google Scholar
Orton, G. S. and Ingersoll, A. P. (1976), Pioneer 10 and 11 and ground-based infrared data on Jupiter: The thermal structure and He-H2 ratio. Pages 206–215 of: Gehrels, T. (ed.), Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites. Tucson, AZ: University of Arizona Press.Google Scholar
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high-resolution middle-infrared imaging. Science, 307(Feb.), 696698.Google Scholar
Patsaeva, M. V., Khatuntsev, I. V., Patsaev, D. V. et al. (2015), The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express. Planetary and Space Science, 113(Aug.), 100108.Google Scholar
Penny, A. B., Showman, A. P. and Choi, D. S. (2010), Suppression of the Rhines effect and the location of vortices on Saturn. Journal of Geophysical Research (Planets), 115(Feb.), 2001.Google Scholar
Pérez-Hoyos, S. and Sánchez-Lavega, A. (2006), On the vertical wind shear of Saturn’s equatorial jet at cloud level. Icarus, 180(Jan.), 161175.Google Scholar
Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G. et al. (2005), Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994 – 2003). Icarus, 176(July), 155174.Google Scholar
Piccioni, G., Drossart, P., Sánchez-Lavega, A. et al. (2007), South-polar features on Venus similar to those near the north pole. Nature, 450(Nov.), 637640.Google Scholar
Polavarapu, S. M. and Peltier, W. R. (1993), The structure and nonlinear evolution of synoptic-scale cyclones. Part II: Wave-mean flow interaction and asymptotic equilibration. Journal of Atmospheric Sciences, 50(Sept.), 31643184.Google Scholar
Porco, C. C., Baker, E., Barbara, J. et al. (2005), Cassini imaging science: Initial results on Saturn’s atmosphere. Science, 307(Feb.), 12431247.Google Scholar
Porco, C. C., West, R. A., McEwen, A. et al. (2003), Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299(Mar.), 15411547.Google Scholar
Porco, C. C., West, R. A., Squyres, S. et al. (2004), Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Science Reviews, 115(Dec.), 363497.Google Scholar
Rages, K. A. and Barth, E. L. (2012) (Oct.), Saturn limb hazes as seen from Cassini. Page #500.05 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.Google Scholar
Read, P. L., Conrath, B. J., Fletcher, L. N. et al. (2009a), Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data. Planetary and Space Science, 57(Dec.), 16821698.Google Scholar
Read, P. L., Dowling, T. E. and Schubert, G. (2009b), Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature, 460(July), 608610.Google Scholar
Read, P. L., Gierasch, P. J., Conrath, B. J. et al. (2006), Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 132(July), 15771603.Google Scholar
Read, P. L., Jacoby, T. N. L., Rogberg, P. H. T. et al. (2015), An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane. Physics of Fluids, 27(8), 085111.Google Scholar
Read, P. L., Yamazaki, Y. H., Lewis, S. R. et al. (2007), Dynamics of convectively driven banded jets in the laboratory. Journal of Atmospheric Sciences, 64, 4031–+.Google Scholar
Reznik, G. M. (1992), Dynamics of singular vortices on a beta-plane. Journal of Fluid Mechanics, 240(July), 405432.Google Scholar
Rhines, P. B. (1975), Waves and turbulence on a beta-plane. Journal of Fluid Mechanics, 69, 417443.Google Scholar
Rhines, P. B. (1979), Geostrophic turbulence. Annual Review of Fluid Mechanics, 11, 401441.Google Scholar
Rhines, P. B. (1994), Jets. Chaos, 4(June), 313339.Google Scholar
Roman, M. T., Banfield, D. and Gierasch, P. J. (2013), Saturn’s cloud structure inferred from Cassini ISS. Icarus, 225(Apr.), 93110.Google Scholar
Sai-Lap Lam, J. and Dritschel, D. G. (2001), On the beta-drift of an initially circular vortex patch. Journal of Fluid Mechanics, 436(June), 107129.Google Scholar
Salmon, R. (1980), Baroclinic instability and geostrophic turbulence. Geophysical and Astrophysical Fluid Dynamics, 15, 167211.Google Scholar
Salmon, R. (1998), Geophysical Fluid Dynamics. Oxford: Oxford University Press.Google Scholar
Salyk, C., Ingersoll, A. P., Lorre, J. et al. (2006), Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185(Dec.), 430442.Google Scholar
Sánchez-Lavega, A. (2011), An Introduction to Planetary Atmospheres Boca Raton, FL: Taylor and Francis.Google Scholar
Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S. et al. (2006), A strong vortex in Saturn’s South Pole. Icarus, 184(Oct.), 524531.Google Scholar
Sánchez-Lavega, A., Hueso, R. and Ramon Acarreta, J. (1998), A system of circumpolar waves in Jupiter’s stratosphere. Geophysical Research Letters, 25, 40434046.Google Scholar
Sánchez-Lavega, A., Lecacheux, J., Colas, F. et al. (1993), Ground-based observations of Saturn’s north polar SPOT and hexagon. Science, 260(Apr.), 329332.Google Scholar
Sánchez-Lavega, A., Pérez-Hoyos, S., Acarreta, J. R. et al. (2002), No hexagonal wave around Saturn’s southern pole. Icarus, 160(Nov.), 216219.Google Scholar
Sánchez-Lavega, A., Rìo-Gaztelurrutia, T., Hueso, R. et al. (2014), The long-term steady motion of Saturn’s hexagon and the stability of its enclosed jet stream under seasonal changes. Geophysical Research Letters, 41(Mar.), 14251431.CrossRefGoogle Scholar
Sánchez-Lavega, A., Rojas, J. F., Acarreta, J. R. et al. (1997), New observations and studies of Saturn’s long-lived north polar SPOT. Icarus, 128(Aug.), 322334.Google Scholar
Sánchez-Lavega, A., Rojas, J. F. and Sada, P. V. (2000), Saturn’s zonal winds at cloud level. Icarus, 147(Oct.), 405420.Google Scholar
Sayanagi, K. M., Blalock, J. J., Dyudina, U. A. et al. (2017), Cassini ISS observation of Saturn’s north polar vortex and comparison to the south polar vortex. Icarus, 285(Mar.), 6882.Google Scholar
Sayanagi, K. M., Morales-Juberìas, R., Blalock, J. J. et al. (2015) (Nov.), Effect of the 77 degree N Jet on Saturn’s Hexagon Cloud Morphology. Page 311.18 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.Google Scholar
Sayanagi, K. M., Morales-Juberìas, R. and Ingersoll, A. P. (2010), Saturn’s northern hemisphere ribbon: Simulations and comparison with the meandering Gulf Stream. Journal of Atmospheric Sciences, 67(Aug.), 26582678.Google Scholar
Sayanagi, K. M., Showman, A. P. and Dowling, T. E. (2008), The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. Journal of Atmospheric Sciences, 65, 19471962.Google Scholar
Schubert, W. H., Montgomery, M. T., Taft, R. K. et al. (1999), Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. Journal of Atmospheric Sciences, 56(May), 11971223.Google Scholar
Scott, R. K. (2010), The structure of zonal jets in shallow water turbulence on the sphere. Pages 243–252 of: Dritschel, D. G. (ed.), Proceedings of the IUTAM symposium on Rotating Stratified Turbulence.Google Scholar
Scott, R. K. (2011), Polar accumulation of cyclonic vorticity. Geophysical and Astrophysical Fluid Dynamics, 105(Aug.), 409420.Google Scholar
Scott, R. K. and Polvani, L. M. (2007), Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. Journal of Atmospheric Sciences, 64, 31583176.Google Scholar
Scott, R. K. and Tissier, A.-S. (2012. The generation of zonal jets by large-scale mixing. Physics of Fluids, 24(12), 126601.Google Scholar
Seidelmann, P. K., Archinal, B. A., A’Hearn, M. F. et al. (2007), Report of the IAU/IAG Working Group on cartographic co-ordinates and rotational elements: 2006. Celestial Mechanics and Dynamical Astronomy, 98(July), 155180.Google Scholar
Showman, A. P. (2007), Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. Journal of Atmospheric Sciences, 64(Sept.), 31323157.Google Scholar
Simon, A. A., Wong, M. H., Rogers, J. H. et al. (2014), Dramatic change in Jupiter’s Great Red Spot from spacecraft observations. Astrophysical Journal Letters, 797(Dec.), L31.Google Scholar
Simon-Miller, A. A., Gierasch, P. J., Beebe, R. F. et al. (2002), New observational results concerning Jupiter’s Great Red Spot. Icarus, 158(July), 249266.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2013), Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus, 225(July), 257271.Google Scholar
Slavin, A. G. and Afanasyev, Y. D. (2012), Multiple zonal jets on the polar beta plane. Physics of Fluids, 24(1), 016603–016603.Google Scholar
Smith, C. A., Speer, K. G. and Griffiths, R. W. (2014), Multiple zonal jets in a differentially heated rotating annulus*,+. Journal of Physical Oceanography, 44(Sept.), 22732291.Google Scholar
Smith, K. S. (2004), A local model for planetary atmospheres forced by small-scale convection. Journal of Atmospheric Sciences, 61(June), 14201433.Google Scholar
Solomon, T. H., Holloway, W. J. and Swinney, H. L. (1993), Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus. Physics of Fluids A, 5(Aug.), 19711982.Google Scholar
Sommeria, J., Meyers, S. D. and Swinney, H. L. (1989), Laboratory model of a planetary eastward jet. Nature, 337(Jan.), 5861.Google Scholar
Srinivasan, K. and Young, W. R. (2012), Zonostrophic Instability. Journal of Atmospheric Sciences, 69(May), 16331656.Google Scholar
Sromovsky, L. A., de Pater, I., Fry, P. M. et al. (2015), High S/N Keck and Gemini AO imaging of Uranus during 2012–2014: New cloud patterns, increasing activity, and improved wind measurements. Icarus, 258(Sept.), 192223.Google Scholar
Sromovsky, L. A., Fry, P. M., Dowling, T. E. et al. (2001), Coordinated 1996 HST and IRTF imaging of Neptune and Triton. III. Neptune’s atmospheric circulation and cloud structure. Icarus, 149(Feb.), 459488.Google Scholar
Sromovsky, L. A., Fry, P. M., Hammel, H. B. et al. (2009), Uranus at equinox: Cloud morphology and dynamics. Icarus, 203(Sept.), 265286.Google Scholar
Sromovsky, L. A., Fry, P. M., Hammel, H. B. (2012b), Post-equinox dynamics and polar cloud structure on Uranus. Icarus, 220(Aug.), 694712.Google Scholar
Sromovsky, L. A., Hammel, H. B., de Pater, I. et al. (2012a), Episodic bright and dark spots on Uranus. Icarus, 220(July), 622.Google Scholar
Sromovsky, L. A., Revercomb, H. E., Krauss, R. J. et al. (1983), Voyager 2 observations of Saturn’s northern mid-latitude cloud features: Morphology, motions, and evolution. Journal of Geophysical Research, 88(Nov.), 86508666.Google Scholar
Stratman, P. W., Showman, A. P., Dowling, T. E. et al. (2001), EPIC simulations of bright companions to Neptune’s Great Dark Spots. Icarus, 151(June), 275285.Google Scholar
Sukoriansky, S., Dikovskaya, N. and Galperin, B. (2007), On the arrest of inverse energy cascade and the Rhines scale. Journal of Atmospheric Sciences, 64, 33123327.Google Scholar
Sutyrin, G. G., Hesthaven, J. S., Lynov, J. P. et al. (1994), Dynamical properties of vortical structures on the beta-plane. Journal of Fluid Mechanics, 268, 103131.Google Scholar
Sutyrin, G. G. and Morel, Y. G. (1997), Intense vortex motion in a stratified fluid on the beta-plane: An analytical theory and its validation. Journal of Fluid Mechanics, 336(Apr.), 203220.Google Scholar
Swanson, K. and Pierrehumbert, R. T. (1994), Nonlinear wave packet evolution on a baroclinicaily unstable jet. Journal of Atmospheric Sciences, 51(Feb.), 384396.Google Scholar
Theiss, J. (2004), Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. Journal of Physical Oceanography, 34, 16631678.Google Scholar
Theiss, J. (2006), A generalized Rhines effect and storms on Jupiter. Geophysical Research Letters, 33(Apr.), 8809.Google Scholar
Tomasko, M. G., West, R. A., Orton, G. S. et al. (1984),Clouds and aerosols in Saturn’s atmosphere. Pages 150194 in: Gehrels, T. and Matthews, M. S. (eds.), Saturn. Tucson, AZ: University of Arizona Press.Google Scholar
Vallis, M. E. (2006), Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge: Cambridge University Press.Google Scholar
Vasavada, A. R., Hörst, S. M., Kennedy, M. R. et al. (2006), Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research (Planets), 111(E10), E05004.Google Scholar
Vasavada, A. R. and Showman, A. P. (2005), Jovian atmospheric dynamics: An update after Galileo and Cassini. Reports of Progress in Physics, 68(Aug.), 19351996.Google Scholar
Verhoeven, J. and Stellmach, S. (2014), The compressional beta effect: A source of zonal winds in planets? Icarus, 237(July), 143158.Google Scholar
Wang, Y. (2002), Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. Journal of Atmospheric Sciences, 59(Apr.), 12391262.Google Scholar
West, R. A. (2014), The UV hazes of Staturn. In: Asia-Oceania GeoSciences Meeting, Sapporo, Japan. Asia-Oceania GeoSciences Meeting, Sapporo, Japan.Google Scholar
West, R. A., Baines, K. H., Friedson, A. J. et al. (2004), Jovian clouds and haze. Pages 79104 of: Bagenal, F., Dowling, T. E. and McKinnon, W. B. (eds.), Jupiter. The Planet, Satellites and Magnetosphere. Cambridge: Cambridge University Press.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E. et al. (2009), Clouds and aerosols in Saturn’s atmosphere. Page 161 of: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
West, R. A., Baines, K. H. and Pollack, J. B. (1991), Clouds and aerosols in the Uranian atmosphere. Pages 296326 of: Bergstralh, J. T., Miner, E. D. and Matthews, M. S. (eds.), Uranus. Tucson, AZ: University of Arizona Press.Google Scholar
West, R. A. and Smith, P. H. (1991), Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90(Apr.), 330333.Google Scholar
West, R. A., Yanamandra-Fisher, P. A. and Korokhin, V. (2015), Gas giant planets, Saturn’s rings, and Titan. In: Levasseur-Regourd, A.-C. (ed.), Polarimetry of Stars and Planetary Systems. Cambridge: Cambridge University Press.Google Scholar
Williams, G. P. (2003), Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. Journal of Atmospheric Sciences, 60(May), 12701296.Google Scholar
Wong, A.-S., Lee, A. Y. T., Yung, Y. L. et al. (2000), Jupiter: Aerosol chemistry in the polar atmosphere. Astrophysical Journal Letters, 534(May), L215L217.Google Scholar
Wong, A.-S., Yung, Y. L. and Friedson, A. J. (2003), Benzene and haze formation in the polar atmosphere of Jupiter. Geophysical Research Letters, 30(Apr.), 1447.Google Scholar
Yoden, S., Ishioka, K., Hayashi, Y.-Y. et al. (1999), A further experiment on two-dimensional decaying turbulence on a rotating sphere. Nuovo Cimento C Geophysics Space Physics C, 22(Nov.), 803812.Google Scholar
Yoden, S. and Yamada, M. (1993), A Numerical Experiment on two-dimensional decaying turbulence on a rotating sphere. Journal of Atmospheric Sciences, 50(Feb.), 631644.Google Scholar
Zhang, Y. and Afanasyev, Y. D. (2014), Beta-plane turbulence: Experiments with altimetry. Physics of Fluids, 26(2), 026602.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×