Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:26:52.868Z Has data issue: false hasContentIssue false

6 - Global Configuration and Seasonal Variations of Saturn’s Magnetosphere

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

Our understanding of Saturn’s magnetosphere has been drastically changed over the last decade, since the arrival of Cassini, the first spacecraft to go into orbit around the planet. The trajectory of Cassini allowed the Saturnian magnetosphere to be studied both in the equatorial plane and at high latitudes, in a wide range of radial distances and local time sectors. This chapter reviews the current picture of Saturn’s global magnetospheric configuration and describes the local fields and particle properties in key regions like the radiation belts and the inner, middle and outer magnetosphere. The moon Enceladus, deep in the magnetosphere, is the major source of neutrals and charged particles in the magnetosphere, and in this chapter we describe how the particles are generated, transported and lost within the highly dynamic magnetosphere. We also describe how both particles and fields in the Saturnian magnetosphere vary with time, both on shorter timescales and with Saturn’s seasons. We highlight some of the most recent findings and discoveries, including a formerly unknown electric field oriented in the noon-midnight direction. Finally, we discuss magnetospheric measurements planned for the final sequence of the Cassini mission in 2017, called the “Grand Finale,” along with a list of open questions to be solved by future missions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achilleos, N., André, N., Blanco-Cano, X. et al. (2014), 1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions. Space Sci. Rev., Oct.Google Scholar
Achilleos, N., Guio, P., Arridge, C. S. et al. (2010), Influence of hot plasma pressure on the global structure of Saturn’s magnetodisk. Geophys. Res. Lett., 37(Oct.), 20201.Google Scholar
Agren, K., Wahlund, J.-E., Modolo, R. et al. (2007), On magnetospheric electron impact ionisation and dynamics in Titan’s ram-side and polar ionosphere: A Cassini case study. Ann. Geophysicae, 25(Nov.), 23592369.CrossRefGoogle Scholar
Andrews, D. J., Cecconi, R., Cowley, S. W. H. et al. (2011), Planetary period oscillations in Saturn’s magnetosphere: Evidence in magnetic field phase data for rotational modulation of Saturn kilometric radiation emissions. J. Geophys. Res., 116(Sept.), 9206.Google Scholar
Andriopoulou, M., Roussos, E., Krupp, N. et al. (2012), A noon-to-midnight electric field and nightside dynamics in Saturn’s inner magnetosphere, using microsignature observations. Icarus, 220(Aug.), 503513.CrossRefGoogle Scholar
Andriopoulou, M., Roussos, E., Krupp, N. (2014), Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere., 229(Feb.), 5770.CrossRefGoogle Scholar
Armstrong, T. P., Taherion, S., Manweiler, J. et al. (2009), Energetic ions trapped in Saturn’s inner magnetosphere. Planetary and Space Science, 57(Dec.), 17231731.Google Scholar
Arridge, C. S., André, N., Achilleos, N. et al. (2008b), Thermal electron periodicities at 20RS in Saturn’s magnetosphere.Geophys. Res. Lett., 35(Aug.), 15107.CrossRefGoogle Scholar
Arridge, C. S., André, N., Khurana, K. K. et al. (2011b), Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res., 116(Nov.), 11205.Google Scholar
Arridge, C. S., André, N., McAndrews, H. J. et al. (2011a), Mapping magnetospheric equatorial regions at Saturn from Cassini prime mission observations. Space Sci. Rev., 164(Dec.), 183.Google Scholar
Arridge, C. S., Khurana, K. K., Russell, C. T. et al. (2008c), Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res., 113(A12), 8217.Google Scholar
Arridge, C. S., Russell, C. T., Khurana, K. K. et al. (2008a), Saturn’s magnetodisc current sheet. J. Geophys. Res., 113(Apr.), 4214.Google Scholar
Badman, S. V., Achilleos, N., Arridge, C. S. et al. (2012), Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res., 117(Jan.), 1211.Google Scholar
Badman, S. V., Bunce, E. J., Clarke, J. T. et al. (2005), Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res., 110(Nov.), 11216.Google Scholar
Badman, S. V., Jackman, C. M., Nichols, J. D. et al. (2014), Open flux in Saturn’s magnetosphere. Icarus, 231(Mar.), 137145.Google Scholar
Badman, S. V., Masters, A., Hasegawa, H. et al. (2013), Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett., 40(Mar.), 10271031.Google Scholar
Bagenal, F. (2013), Planetary Magnetospheres, in Oswalt, T. D., French, L. and Kalas, P. (eds.), Planets, Stars and Stellar Systems. Volume 3: Solar and Stellar Planetary Systems, Springer, Dordrecht, 251.Google Scholar
Bagenal, F. and Delamere, P. A. (2011), Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res., 116(May), 5209.Google Scholar
Beckmann, U. (2008), Dynamik von Staubteilchen in Saturns E-Ring. Ph.D. thesis, Ruprecht-Karls Universitt Heidelberg, Heidelberg, Germany.Google Scholar
Bertucci, C., Hamilton, D. C., Kurth, W. S. et al. (2014), Titan interaction with the supersonic solar wind. ArXiv e-prints, Oct.Google Scholar
Beutier, T. and Boscher, D. (1995), A three-dimensional analysis of the electron radiation belt by the Salammbô, J. Geophys. Res., 100 (A8): 1485314862, doi:10.1029/94JA03066.CrossRefGoogle Scholar
Blanc, M., Andrews, D. J., Coates, A. J. et al. (2015), Saturn plasma sources and associated transport processes. Space Sci. Rev., Sept.Google Scholar
Brandt, P. C., Paranicas, C. P., Carbary, J. F. et al. (2008), Understanding the global evolution of Saturn’s ring current. Geophys. Res. Lett., 35(Sept.), 17101.Google Scholar
Branduardi-Raymont, G., Ford, P. G., Hansen, K. C. et al. (2013), Search for Saturn’s X-ray aurorae at the arrival of a solar wind shock. J. Geophys. Res., 118(May), 21452156.Google Scholar
Brice, N. M. and McDonough, T. R. (1973), Jupiter’s radiation belts. Icarus, 18(Feb.), 206219.Google Scholar
Bunce, E. J., Cowley, S. W. H., Talboys, D. L. et al. (2010), Extraordinary field-aligned current signatures in Saturn’s high-latitude magnetosphere: Analysis of Cassini data during revolution 89. J. Geophys. Res., 115(Oct.), 10238.Google Scholar
Bunce, E. J., Cowley, S. W. H., Wright, D. M. et al. (2005), In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett., 32(July), 20.Google Scholar
Burch, J. L., DeJong, A. D., Goldstein, J. et al. (2009), Periodicity in Saturn’s magnetosphere: Plasma cam. Geophys. Res. Lett., 36(July), 14203.Google Scholar
Burch, J. L., Goldstein, L., Hill, T. W. et al. (2005), Properties of local plasma injections in Saturn’s magnetosphere. Geophys. Res. Lett., 32(June), L14S02.CrossRefGoogle Scholar
Burton, M. E., Dougherty, M. K. and Russell, C. T. (2009), Model of Saturn’s internal planetary magnetic field based on Cassini observations. Planet. Space Sci., 57(Dec.), 17061713.Google Scholar
Burton, M. E., Dougherty, M. K. and Russell, C. T. (2010), Saturn’s internal planetary magnetic field. Geophys. Res. Lett., 37(Dec.), 24105.Google Scholar
Carbary, J. F., Achilleos, N., Arridge, C. S. et al. (2010), Global configuration of Saturn’s magnetic field derived from observations. Geophys. Res. Lett., 37(Nov.), 21806.Google Scholar
Carbary, J. F., Mitchell, D. G., Brandt, P. et al. (2008), Track analysis of energetic neutral atom blobs at Saturn. J. Geophys. Res., 113(A12), 1209.CrossRefGoogle Scholar
Carbary, J. F., Mitchell, D. G., Paranicas, C. et al. (2011), Pitch angle distributions of energetic electrons at Saturn. J. Geophys. Res., 116(Jan.), 1216.Google Scholar
Carbary, J. F., Paranicas, C., Mitchell, D. G. et al. (2011), Energetic electron spectra in Saturn’s plasma sheet. Journal of Geophysical Research: Space Physics, 116(A7), n/a–n/a.Google Scholar
Carbary, J. F. and Rymer, A. M. (2014), Meridional maps of Saturn’s thermal electrons. J. Geophys. Res., 119(Mar.), 17211733.Google Scholar
Cassidy, T. A. and Johnson, R. E. (2010), Collisional spreading of Enceladus’ neutral cloud. Icarus, 209(Oct.), 696703.CrossRefGoogle Scholar
Cecconi, B., Lamy, L., Zarka, P. et al. (2009), Goniopolarimetric study of the revolution 29 perikrone using the Cassini Radio and Plasma Wave Science instrument high-frequency radio receiver. J. Geophys. Res., 114(Mar.), 3215.Google Scholar
Chen, Y. and Hill, T. W. (2008), Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. J. Geophys. Res., 113(A12), 7215.Google Scholar
Chen, Y., Hill, T. W., Rymer, A. M. et al. (2010), Rate of radial transport of plasma in Saturn’s inner magnetosphere. J. Geophys. Res., 115(Oct.), 10211.CrossRefGoogle Scholar
Christon, S. P., Hamilton, D. C., Difabio, R. D. et al. (2013), Saturn suprathermal O2+ and mass-28+ molecular ions: Long-term seasonal and solar variation. J. Geophys. Res., 118(June), 34463463.Google Scholar
Christon, S. P., Hamilton, D. C., Mitchell, D. G. et al. (2014), Suprathermal magnetospheric minor ions heavier than water at Saturn: Discovery of 28M+ seasonal variations. J. Geophys. Res., 119(July), 56625673.Google Scholar
Clark, G., Paranicas, C., Santos-Costa, D. et al. (2014), Evolution of electron pitch angle distributions across Saturn’s middle magnetospheric region from MIMI/LEMMS. Planet. Space Sci., 104(Dec.), 1828.Google Scholar
Coates, A. J., Wahlund, J.-E., Ågren, K. et al. (2012), Recent Results from Titan’s Ionosphere, Space Science Rev., 162(1–4), 85111.Google Scholar
Cooper, J. F. (1983), Nuclear cascades in Saturn’s rings: Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. Journal Geophys. Res., 88(May), 39453954.Google Scholar
Coroniti, F. Ṽ. (1974), Energetic electrons in Jupiter’s magnetosphere. Astrophys. J. Suppl. Ser., 27(Mar.), 261281.Google Scholar
Cutler, J. C., Dougherty, M. K., Lucek, E. et al. (2011), Evidence of surface wave on the dusk flank of Saturn’s magnetopause possibly caused by the Kelvin–Helmholtz instability. Journal of Geophysical Research (Space Physics), 116(Oct.), 10220.Google Scholar
DeJong, A. D., Burch, J. L., Goldstein, J. et al. (2010), Low-energy electrons in Saturn’s inner magnetosphere and their role in interchange injections. J. Geophys. Res., 115(Oct.), 10229.Google Scholar
Delamere, P. A. and Bagenal, F. (2013), Magnetotail structure of the giant magnetospheres: Implications of the viscous interaction with the solar wind. J. Geophys. Res., 118(Nov.), 70457053.Google Scholar
Delamere, P. A., Bagenal, F., Dols, V. et al. (2007), Saturn’s neutral torus versus Jupiter’s plasma torus. Geophys. Res. Lett., 34(May), L09105.CrossRefGoogle Scholar
Delamere, P. A., Wilson, R. J., Eriksson, S. et al. (2013), Magnetic signatures of Kelvin–Helmholtz vortices on Saturn’s magnetopause: Global survey. J. Geophys. Res., 118(Jan.), 393404.Google Scholar
Delamere, P. A., Wilson, R. J. and Masters, A. (2011), Kelvin–Helmholtz instability at Saturn’s magnetopause: Hybrid simulations. J. Geophys. Res., 116(Oct.), 10222.Google Scholar
Desch, M. D. (1982), Evidence for solar wind control of Saturn radio emission. J. Geophys. Res., 87(June), 45494554.Google Scholar
Desch, M. D. and Kaiser, M. L. (1981), Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett., 8(Mar.), 253256.Google Scholar
Desroche, M., Bagenal, F., Delamere, P. A. et al. (2013), Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res., 118(June), 30873095.Google Scholar
Dialynas, K., Brandt, P. C., Krimigis, S. M. et al. (2013), The extended Saturnian neutral cloud as revealed by global ENA simulations using Cassini/MIMI measurements. J. Geophys. Res., 118(June), 30273041.Google Scholar
Dialynas, K., Krimigis, S. M., Mitchell, D. G. et al. (2009), Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. Journal of Geophysical Research (Space Physics), 114(Jan.), 1212.Google Scholar
DiFabio, R. D., Hamilton, D. C., Krimigis, S. M. et al. (2011), Long term time variations of the suprathermal ions in Saturn’s magnetosphere. Geophys. Res. Lett., 38(Sept.), 18103.Google Scholar
Dong, Y., Hill, T. W., Teolis, B. D. et al. (2011), The water vapor plumes of Enceladus. jgr, 116(Oct.), 10204.CrossRefGoogle Scholar
Dougherty, M. K., Khurana, K. K., Neubauer, F. M. et al. (2006), Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science, 311(Mar.), 14061409.Google Scholar
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(Jan.), 4748.Google Scholar
Edberg, N. J. T., Wahlund, J.-E., Ågren, K. et al. (2010), Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape. Geophys. Res. Lett., 37(Oct.), 20105.Google Scholar
Elrod, M. K., Tseng, W.-L., Wilson, R. J. et al. (2012), Seasonal variations in Saturn’s plasma between the main rings and Enceladus. J. Geophys. Res., 117(Mar.), 3207.Google Scholar
Elrod, M. K., Tseng, W.-L., Woodson, A. K. et al. (2014), Seasonal and radial trends in Saturn’s thermal plasma between the main rings and Enceladus. Icarus, 242(Nov.), 130137.Google Scholar
Farmer, A. J. (2009), Saturn in hot water: Viscous evolution of the Enceladus torus. Icarus, 202(July), 280286.CrossRefGoogle Scholar
Farrell, W. M., Kurth, W. S., Tokar, R. L. et al. (2010), Modification of the plasma in the near-vicinity of Enceladus by the enveloping dust. Geophys. Res. Lett., 37(Oct.), L20202.Google Scholar
Flandes, A., Spilker, L., Morishima, R. et al. (2010), Brightness of Saturn’s rings with decreasing solar elevation. Planet. Space Sci., 58(Nov.), 17581765.Google Scholar
Fleshman, B. L., Delamere, P. A., Bagenal, F. et al. (2012), The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds. J. Geophys. Res., 117(May), 5007.Google Scholar
Fleshman, B. L., Delamere, P. A., Bagenal, F. (2013), A 1-D model of physical chemistry in Saturn’s inner magnetosphere. J. Geophys. Res., 118(Aug.), 15671581.Google Scholar
Fukazawa, K., Ogino, T. and Walker, R. J. (2012), A magnetohydrodynamic simulation study of Kronian field-aligned currents and auroras. J. Geophys. Res., 117(Feb.), 2214.Google Scholar
Funsten, H. O., McComas, D. J. and Barraclough, B. L. (1993), Ultrathin foils used for low-energy neutral atom imaging of the terrestrial magnetosphere. Optical Engineering, 32(Dec.), 30903095.Google Scholar
Galopeau, P. H. M., Zarka, P. and Quéau, D. L. (1995), Source location of Saturn’s kilometric radiation: The Kelvin–Helmholtz instability hypothesis. J. Geophys. Res., 100, 2639726410.Google Scholar
Glass, G., Jain, M., Evans, M. L. et al. (1977), Neutron spectra at 0 from proton-proton collisions between 647 and 805 MeV. Phys. Rev. D, 15(1), 3646.Google Scholar
Glocer, A., Gombosi, T. I., Toth, G. et al. (2007), Polar wind outflow model: Saturn results. jgr, 112(Jan.), 1304.Google Scholar
Goldstein, J., Hill, T. W., Waite, J. H. et al. (2014), Analytical model of rotating two-cell convection at Saturn. jgr, 119(Mar.), 19801993.Google Scholar
Gombosi, T. I., Armstrong, T. P., Arridge, C. S. et al. (2009), Saturn’s Magnetospheric Configuration. Page 203.CrossRefGoogle Scholar
Gombosi, T. I. and Ingersoll, A. P. (2010), Saturn: Atmosphere, ionosphere, and magnetosphere. Science, 327(Mar.), 1476.CrossRefGoogle ScholarPubMed
Grodent, D., Gustin, J., Gérard, J,-C. et al. (2011), Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res., 116(Sept.), 9225.Google Scholar
Gu, X., Thorne, R. M., Ni, B. and Ye, S.-Y. (2013), Resonant diffusion of energetic electrons by narrowband Z mode waves in Saturn‘s inner magnetosphere, Geophysical Res. Lett., 40(Jan.), 255261.Google Scholar
Gubar, Y. I. (2004), A diffusion model of radial distributions of energetic protons in Saturn’s magnetosphere. Cosmic Research, 42(4).Google Scholar
Gurnett, D. A., Averkamp, T. F., Schippers, P. et al. (2011), Auroral hiss, electron beams and standing Alfvén wave currents near Saturn’s moon Enceladus. Geophys. Res. Lett., 38(Mar.), 6102.Google Scholar
Gurnett, D. A., Persoon, A. M., Kopf, A. J. et al. (2010), A plasmapause-like density boundary at high latitudes in Saturn’s magnetosphere. Geophys. Res. Lett., 37(Aug.), 16806.Google Scholar
Gustafsson, G. and Wahlund, J.-E. (2010), Electron temperatures in Saturn’s plasma disc. Planet. Space Sci., 58(June), 10181025.Google Scholar
Hahn, Y. (1997), Electron-ion recombination processes: An overview. Reports on Progress in Physics, 60(July), 691759.CrossRefGoogle Scholar
Hansen, C. J., Esposito, L., Stewart, A. I. F. et al. (2006), Enceladus’ water vapor plume. Science, 311(Mar.), 14221425.Google Scholar
Hartogh, P., Lellouch, E., Moreno, R. et al. (2011), Direct detection of the Enceladus water torus with Herschel. Astron. Astrophys., 532(Aug.), L2+.Google Scholar
Hedman, M. M., Gosmeyer, C. M., Nicholson, P. D. et al. (2013), An observed correlation between plume activity and tidal stresses on Enceladus. Nature, 500(Aug.), 182184.Google Scholar
Hill, T. W. (2009), Speed limit for centrifugally driven convection. AGU Fall Meeting Abstracts, Dec., D8.Google Scholar
Hill, T. W., Rymer, A. M., Burch, J. L. et al. (2005), Evidence for rotationally driven plasma transport in Saturn’s magnetosphere. Geophys. Res. Lett., 32(June), L14S10.CrossRefGoogle Scholar
Hill, T. W., Thomsen, M. F., Henderson, M. G. et al. (2008), Plasmoids in Saturn’s magnetotail. J. Geophys. Res., 113(A12), 1214.Google Scholar
Hill, T. W., Thomsen, M. F., Tokar, R. L. et al. (2012), Charged nanograins in the Enceladus plume. J. Geophys. Res., 117(May), 5209.Google Scholar
Hillier, J. K., Green, S. F., McBride, N. et al. (2007), The composition of Saturn’s E ring, Monthly Notices of the Royal Astronomical Soc., 377(June), 15881596.Google Scholar
Holmberg, M. K. G., Wahlund, J.-E. and Morooka, M. W. (2014), Dayside/nightside asymmetry of ion densities and velocities in Saturn’s inner magnetosphere. Geophys. Res. Lett., 41(June), 37173723.Google Scholar
Holmberg, M. K. G., Wahlund, J.-E., Morooka, M. W. et al. (2012), Ion densities and velocities in the inner plasma torus of Saturn. Planet. Space Sci., 73(Dec.), 151160.Google Scholar
Hood, L. L. (1983), Radial diffusion in Saturn’s radiation belts: A modeling analysis assuming satellite and ring E absorption. J. Geophys. Res., 88(Feb.), 808818.Google Scholar
Horányi, M., Juhász, A. and Morfill, G. E. (2008), Large-scale structure of Saturn’s E-ring. Geophys. Res. Lett., 35(Feb.), 4203.Google Scholar
Hunt, G. J., Cowley, S. W. H., Provan, G. et al. (2014), Field-aligned currents in Saturn’s southern nightside magnetosphere: Subcorotation and planetary period oscillation components. J. Geophys. Res., 119(Dec.), 98479899.Google Scholar
Ip, W.-H. (2005), An update on the ring exosphere and plasma disc of Saturn. Geophys. Res. Lett., 32(July), L13204.Google Scholar
Jackman, C. M., Achilleos, N., Cowley, S. W. H. et al. (2013), Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci., 82(July), 3442.Google Scholar
Jackman, C. M., Arridge, C. S., André, N. et al. (2014a), Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci. Rev., 182(Aug.), 85154.Google Scholar
Jackman, C. M., Arridge, C. S., McAndrews, H. J. et al. (2009a), Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett., 36(Aug.), 16101.Google Scholar
Jackman, C. M., Arridge, C. S., Slavin, J. A. et al. (2010), In situ observations of the effect of a solar wind compression on Saturn’s magnetotail. J. Geophys. Res., 115(Oct.), 10240.Google Scholar
Jackman, C. M., Lamy, L., Freeman, M. P. et al. (2009b), On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res., 114(Aug.), 8211.Google Scholar
Jackman, C. M., Russell, C. T., Southwood, D. J. et al. (2007), Strong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection. Geophys. Res. Lett., 34(June), 11203.Google Scholar
Jackman, C. M., Slavin, J. A. and Cowley, J. A. (2011), Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res., 116(A15), 10212.Google Scholar
Jackman, C. M., Slavin, J. A., Kivelson, M. G. et al. (2014b), Saturn’s dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics. J. Geophys. Res., 119(July), 54655494.Google Scholar
Jacobsen, K. S., Wahlund, J.-E. and Pedersen, A. (2009), Cassini Langmuir probe measurements in the inner magnetosphere of Saturn. Planet. Space Sci., 57(Jan.), 4852.Google Scholar
Jasinski, J. M., Arridge, C. S., Lamy, L. et al. (2014), Cusp observation at Saturn’s high-latitude magnetosphere by the Cassini spacecraft. Geophys. Res. Lett., 41(Mar.), 13821388.Google Scholar
Jia, X., Hansen, K. C., Gombosi, T. I. et al. (2012a), Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. J. Geophys. Res., 117(May), 5225.Google Scholar
Jia, X. and Kivelson, M. G. (2012), Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. J. Geophys. Res., 117(A16), 11219.Google Scholar
Jia, Y.-D., Ma, Y. J., Russell, C. T. et al. (2012b), Perpendicular flow deviation in a magnetized counter-streaming plasma. Icarus, 218(Apr.), 895905.Google Scholar
Jia, Y.-D., Russell, C. T., Khurana, K. K. et al. (2011), Cassini magnetometer observations over the Enceladus poles. Geophys. Res. Lett., 38(Oct.), 19109.Google Scholar
Johnson, R. E. (1990), Energetic charged-particle interactions with atmospheres and surfaces. Physics and Chemistry in Space, 19.Google Scholar
Johnson, R. E., Luhmann, J. G., Tokar, R. L. et al. (2006), Production, ionization and redistribution of O2 in Saturn’s ring atmosphere. Icarus, 180(Feb.), 393402.Google Scholar
Johnson, R. E., Pospieszalska, M. K., Sittler, E. C. et al. (1989), The neutral cloud and heavy ion inner torus at Saturn. Icarus, 77(Feb.), 311329.Google Scholar
Jones, G. H., Roussos, E., Krupp, N. et al. (2008), The dust halo of Saturn’s largest icy moon, Rhea. Science.Google Scholar
Jurac, S., Baragiola, R. A., Johnson, R. E. et al. (1995), Charging of ice grains by low-energy plasmas: Application to Saturn’s E ring. J. Geophys. Res., 100(Aug.), 1482114832.Google Scholar
Jurac, S., Johnson, R. E. and Richardson, J. D. (2001b), Saturn’s E ring and production of the neutral torus. Icarus, 149(Feb.), 384396.Google Scholar
Jurac, S., Johnson, R. E., Richardson, J. D. et al. (2001a), Satellite sputtering in Saturn’s magnetosphere. Planet. Space Sci., 49(Mar.), 319326.Google Scholar
Jurac, S. and Richardson, J. D. (2005), A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J. Geophys. Res., 110(Sept.), 9220.Google Scholar
Jurac, S. and Richardson, J. D. (2007), Neutral cloud interaction with Saturn’s main rings. Geophys. Res. Lett., 34(Apr.), 8102.Google Scholar
Kanani, S. J., Arridge, C. S., Jones, G. H. et al. (2010), A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res., 115(A14), 6207.Google Scholar
Kane, M., Mitchell, D. G., Carbary, J. F. et al. (2014), Plasma convection in the nightside magnetosphere of Saturn determined from energetic ion anisotropies. Planet. Space Sci., 91(Feb.), 113.Google Scholar
Kellett, S., Arridge, C. S., Bunce, E. J. et al. (2010), Nature of the ring current in Saturn’s dayside magnetosphere. J. Geophys. Res., 115(Aug.), 8201.Google Scholar
Kellett, S., Arridge, C. S., Bunce, E. J. (2011), Saturn’s ring current: Local time dependence and temporal variability. J. Geophys. Res., 116(May), 5220.Google Scholar
Kempf, S., Beckmann, U., Moragas-Klostermeyer, G. et al. (2008), The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus, 193(Feb.), 420437.Google Scholar
Kennel, C. F. and Petschek, H. E. (1966), Limit on stably trapped proton fluxes. J. Geophys. Res., 71(1), 128.Google Scholar
Kennelly, T. J., Leisner, J. S., Hospodarsky, G. B. et al. (2013), Ordering of injection events within Saturnian SLS longitude and local time. J. Geophys. Res., 118(2), 832838.Google Scholar
Kidder, A., Winglee, R. M. and Harnett, E. M. (2009), Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere. J. Geophys. Res., 114(Feb.), 2205.Google Scholar
Kollmann, P., Roussos, E., Paranicas, C. et al. (2011), Energetic particle phase space densities at Saturn: Cassini observations and interpretations. J. Geophys. Res., 116(A15), A05222.Google Scholar
Kollmann, P., Roussos, E., Paranicas, C. (2013), Processes forming and sustaining Saturn’s proton radiation belts. Icarus, 222(Jan.), 323341.Google Scholar
Kopf, A. J., Gurnett, D. A., Menietti, J. D. et al. (2010), Electron beams as the source of whistler-mode auroral hiss at Saturn. Geophys. Res. Lett., 37(May), 9102.Google Scholar
Kriegel, H., Simon, S., Meier, P. et al. (2014), Ion densities and magnetic signatures of dust pickup at Enceladus. J. Geophys. Res., 119(Apr.), 27402774.Google Scholar
Kriegel, H., Simon, S., Motschmann, U. et al. (2011), Influence of negatively charged plume grains on the structure of Enceladus’ Alfvén wings: Hybrid simulations versus Cassini magnetometer data. J. Geophys. Res., 116(A15), 10223.Google Scholar
Kriegel, H., Simon, S., Müller, J. et al. (2009), The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data. Planet. Space Sci., 57(Dec.), 21132122.Google Scholar
Krimigis, S. M. and Armstrong, T. P. (1982), Two-component proton spectra in the inner Saturnian magnetosphere. Geophys. Res. Lett., 9(Oct.), 11431146.Google Scholar
Krimigis, S. M., Mitchell, D. G., Hamilton, D. C. et al. (2005), Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science, 307(Feb.), 12701273.Google Scholar
Krimigis, S. M. and Roelof, E. C. (1983), Low-energy particle population. Chap. 4, pages 106155 of: Dessler, A. J. (ed), Physics of the Jovian Magnetosphere. Cambridge Univ. Press, New York.Google Scholar
Krupp, N. (2014), Giant magnetospheres in our solar system: Jupiter and Saturn compared. Astron. Astrophys., 22(Sept.), 118.Google Scholar
Krupp, N., Roussos, E., Kriegel, H. et al. (2013), Energetic particle measurements in the vicinity of Dione during the three Cassini encounters 2005–2011. Icarus, 226(Sept.), 617628.Google Scholar
Krupp, N., Roussos, E., Lagg, A. et al. (2009), Energetic particles in Saturn’s magnetosphere during the Cassini nominal mission (July 2004–July 2008). Planet. Space Sci., 57(Dec.), 17541768.Google Scholar
Kurth, W. S., Gurnett, D. A., Clarke, J. T. et al. (2005), An Earth-like correspondence between Saturn’s auroral features and radio emission. Nature, 433(Feb.), 722725.Google Scholar
Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A. et al. (2016), Saturn kilometric radiation intensities during the Saturn auroral campaign of 2013. Icarus, 263(Jan.), 29.Google Scholar
Lai, H. R., Wei, H. Y., Russell, C. T. et al. (2012), Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. J. Geophys. Res., 117(May), 5222.CrossRefGoogle Scholar
Lamy, L., Cecconi, B., Prangé, R. et al. (2009), An auroral oval at the footprint of Saturn’s kilometric radio sources, colocated with the UV aurorae. J. Geophys. Res., 114(Oct.), 10212.Google Scholar
Lamy, L., Prangé, R., Pryor, W. et al. (2013), Multispectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation. J. Geophys. Res., 118(Aug.), 48174843.CrossRefGoogle Scholar
Lamy, L., Schippers, P., Zarka, P. et al. (2010), Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett., 37(June), 12104.Google Scholar
Leisner, J. S., Hospodarsky, G. B. and Gurnett, G. B. (2013), Enceladus auroral hiss observations: Implications for electron beam locations. J. Geophys. Res., 118(Jan.), 160166.Google Scholar
Lejosne, S., Boscher, D., Maget, V. et al. (2013), Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit. J. Geophys. Res., 118(June), 31473156.Google Scholar
Lindsay, B. G. and Stebbings, R. F. (2005), Charge transfer cross-sections for energetic neutral atom data analysis. J. Geophys. Res., 110(Dec.), 12213.Google Scholar
Liu, X. and Hill, T. W. (2012), Effects of finite plasma pressure on centrifugally driven convection in Saturn’s inner magnetosphere. J. Geophys. Res., 117(July), 7216.Google Scholar
Liu, X., Hill, T. W., Wolf, R. A. et al. (2010), Numerical simulation of plasma transport in Saturn’s inner magnetosphere using the Rice Convection Model. J. Geophys. Res., 115(A14), 12254.Google Scholar
Livi, R., Goldstein, J., Burch, J. L. et al. (2014), Multi-instrument analysis of plasma parameters in Saturn’s equatorial, inner magnetosphere using corrections for corrections for spacecraft potential and penetrating background radiation. J. Geophys. Res., 119(May), 36833707.Google Scholar
Lorenzato, L., Sicard, A. and Bourdarie, S. (2012), A physical model for electron radiation belts of Saturn. J. Geophys. Res., 117(Aug.), 8214.Google Scholar
Louarn, P., Andre, N., Jackman, C. M. et al. (2014), Magnetic reconnection and associated transient phenomena within the magnetospheres of Jupiter and Saturn. Space Sci. Rev., May.Google Scholar
Luhmann, J. G., Ulusen, D., Ledvina, S. A. et al. (2012), Investigating magnetospheric interaction effects on Titan’s ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys. Icarus, 219(June), 534555.Google Scholar
Masters, A., Achilleos, N., Cutler, J C. et al. (2012a), Surface waves on Saturn’s magnetopause. Planet. Space Sci., 65(May), 109121.Google Scholar
Masters, A., Achilleos, N., Kivelson, M. G. et al. (2010), Cassini observations of a Kelvin–Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res., 115(A14), 7225.Google Scholar
Masters, A., Eastwood, J. P., Swisdak, M. et al. (2012b), The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett., 39(Apr.), 8103.Google Scholar
Masters, A., Fujimoto, M., Hasegawa, H. et al. (2014a), Can magnetopause reconnection drive Saturn’s magnetosphere? Geophys. Res. Lett., 41(Mar.), 1862–1868.Google Scholar
Masters, A., Mitchell, D. G., Coates, A. J et al. (2011a), Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res., 116(June), 6210.Google Scholar
Masters, A., Phan, T. D., Badman, S. V. et al. (2014b), The plasma depletion layer in Saturn’s magnetosheath. J. Geophys. Res., 119(Jan.), 121130.Google Scholar
Masters, A., Thomsen, M. F., Badman, S. V. et al. (2011b), Supercorotating return flow from reconnection in Saturn’s magnetotail. Geophys. Res. Lett., 38(Feb.), 3103.Google Scholar
Mauk, B. H. and Foxz, N J. (2010), Electron radiation belts of the solar system. J. Geophys. Res., 115(A14), 12220.Google Scholar
Mauk, B. H., Hamilton, D. C., Hill, T. W. et al. (2009), Fundamental Plasma Processes in Saturn’s Magnetosphere, in Dougherty, M. K. et al. (eds.), Saturn from Cassini–Huygens, Springer, Page 281.Google Scholar
McAndrews, H. J., Owen, C. J., Thomsen, M. F. et al. (2008), Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res., 113(Apr.), 4210.Google Scholar
McAndrews, H. J., Thomsen, M. F., Arridge, C. S. et al. (2009), Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci., 57(Dec.), 17141722.Google Scholar
McAndrews, H. J., Thomsen, M. F., Arridge, C. S. (2014), Corrigendum to “Plasma Saturn’s nightside magnetosphere and the implications for global circulation” [Planet. Space Sci. 57(14-15) (2009) 1714-1722]. Planet. Space Sci., 97(July), 8687.Google Scholar
McIlwain, C. E. (1966), Magnetic coordinates. Space Sci. Rev., 5(Aug.), 585598.Google Scholar
Melin, H., Shemansky, D. E. and Liu, X. (2009), The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn. Planet. Space Sci., 57(Dec.), 17431753.Google Scholar
Menietti, J. D., Hospodarsky, G. B., Shprits, Y. Y. et al. (2014), Saturn chorus latitudinal variations. J. Geophys. Res., 119(June), 46564667.Google Scholar
Menietti, J. D., Katoh, Y., Hospodarsky, G. B. et al. (2013a), Frequency drift of Saturn chorus emission compared to nonlinear theory. J. Geophys. Res., 118(Mar.), 982990.Google Scholar
Menietti, J. D., Mutel, R. L., Schippers, P. et al. (2011a), Analysis of Saturn kilometric radiation near a source center. J. Geophys. Res., 116(Dec.), 12222.Google Scholar
Menietti, J. D., Santolik, O., Rymer, A. M. et al. (2008), Analysis of plasma waves observed within local plasma injections seen in Saturn’s magnetosphere. J. Geophys. Res., 113(May), 5213.Google Scholar
Menietti, J. D., Schippers, P., Katoh, Y. et al. (2013b), Saturn chorus intensity variations. J. Geophys. Res., 118(Sept.), 55925602.Google Scholar
Menietti, J. D., Schippers, P., Santolík, O. et al. (2011b), Ion cyclotron harmonics in the Saturn downward current auroral region. J. Geophys. Res., 116(Dec.), 12234.Google Scholar
Menietti, J. D., Shprits, Y. Y., Horne, R. B. et al. (2012), Chorus, ECH, and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J. Geophys. Res., 117(A16), 12214.Google Scholar
Menietti, J. D., Yoon, P. H., Ye, S.-Y. et al. (2010), Source mechanism of Saturn narrowband emission. Annales Geophysicae, 28(Apr.), 10131021.Google Scholar
Meredith, C. J., Alexeev, I. I., Badman, S. V. et al. (2014), Saturn’s dayside ultraviolet auroras: Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field. J. Geophys. Res., 119(Mar.), 1994–2008.Google Scholar
Meredith, C. J., Cowley, S. W. H., Hansen, K. C. et al. (2013), Simultaneous conjugate observations of small-scale structures in Saturn’s dayside ultraviolet auroras: Implications for physical origins. J. Geophys. Res., 118(May), 22442266.Google Scholar
Mitchell, D. G., Brandt, P. C., Carbary, J. F. et al. (2015), Injection, Interchange, and Reconnection Energetic Particle Observations in Saturn’s Magnetosphere, in Keiling, A., Jackman, C. M. and Delamere, P. A. (eds.), Magnetotails in the Solar System, John Wiley, Hoboken, NJ, Page 424.Google Scholar
Mitchell, D. G., Brandt, P. C., Roelof, E. C. et al. (2005), Energetic ion acceleration in Saturn’s magnetotail: Substorms on Saturn? Geophys. Res. Lett., 32, L20S01.Google Scholar
Mitchell, D. G., Carbary, J. F., Cowley, S. W. H. et al. (2009c), The Dynamics of Saturn’s Magnetosphere, in Dougherty, M. K. et al. (eds.), Saturn from Cassini–Huygens, Springer, Page 257Google Scholar
Mitchell, D. G., Krimigis, S. M., Paranicas, C. et al. (2009b), Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci., 57(Dec.), 17321742.Google Scholar
Mitchell, D. G., Kurth, W. S., Hospodarsky, G. B. et al. (2009a), Ion conics and electron beams associated with auroral processes on Saturn. J. Geophys. Res., 114(Feb.), 2212.Google Scholar
Modolo, R. and Chanteur, G. M. (2008), A global hybrid model for Titan’s interaction with the Kronian plasma: Application to the Cassini TA flyby. J. Geophys. Res., 113(Jan.), 1317.Google Scholar
Morfill, G. E., Fechtig, H., Gruen, E. et al. (1983), Some consequences of meteoroid impacts on Saturn’s rings. Icarus, 55(Sept.), 439447.Google Scholar
Morooka, M. W., Modolo, R., Wahlund, J.-E. et al. (2009), The electron density of Saturn’s magnetosphere. Annales Geophysicae, 27(7), 29712991.Google Scholar
Morooka, M. W., Wahlund, J.-E., Eriksson, A. I. et al. (2011), Dusty plasma in the vicinity of Enceladus. J. Geophys. Res., 116(Dec.), 12221.Google Scholar
Müller, A. L., Saur, J., Krupp, N. et al. (2010), Azimuthal plasma flow in the Kronian magnetosphere. J. Geophys. Res., 115(A14), 8203.Google Scholar
Mutel, R. L., Menietti, J. D., Gurnett, D. A. et al. (2010), CMI growth rates for Saturnian kilometric radiation. Geophys. Res. Lett., 37(Oct.), 19105.Google Scholar
Nicholson, P. D., Showalter, M. R., Dones, L. et al. (1996), Observations of Saturn’s ring-plane crossings in August and November 1995. Science, 272(Apr.), 509515.Google Scholar
Omidi, N., Tokar, R. L., Averkamp, T. et al. (2012), Flow stagnation at Enceladus: The effects of neutral gas and charged dust. J. Geophys. Res., 117(June), 6230.Google Scholar
Omura, Y., Furuya, N. and Summers, D. (2007), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J. Geophys. Res., 112(June), 6236.Google Scholar
Paranicas, C., Mitchell, D. G., Krimigis, S. M. et al. (2010a), Asymmetries in Saturn’s radiation belts. J. Geophys. Res., 115(A14), 7216.Google Scholar
Paranicas, C., Mitchell, D. G., Roelof, E. C. et al. (2007), Energetic electrons injected into Saturn’s neutral gas cloud. Geophys. Res. Lett., 34(Jan.), 2109.Google Scholar
Paranicas, C., Mitchell, D. G., Roussos, E. et al. (2010b), Transport of energetic electrons into Saturn’s inner magnetosphere. J. Geophys. Res., 115(A14), 9214.Google Scholar
Paranicas, C., Roussos, E., Decker, R. B. et al. (2014), The lens feature on the inner saturnian satellites. Icarus, 234(May), 155161.Google Scholar
Paranicas, C., Roussos, E., Krupp, N. et al. (2012), Energetic charged particle weathering of Saturn’s inner satellites. Planet. Space Sci., 61(Feb.), 6065.Google Scholar
Perry, M. E., Teolis, B., Smith, H. T. et al. (2010), Cassini INMS observations of neutral molecules in Saturn’s E-ring. J. Geophys. Res., 115(Oct.), 10206.Google Scholar
Persoon, A. M., Gurnett, D. A., Kurth, W. S. et al. (2006), A simple scale height model of the electron density in Saturn’s plasma disk. Geophys. Res. Lett., 33(Sept.), 18106.Google Scholar
Persoon, A. M., Gurnett, D. A., Kurth, W. S. (2015), Evidence for a seasonally dependent ring plasma in the region between Saturn’s A ring and Enceladus’ orbit. J. Geophys. Res., 120(Aug.), 62766285.Google Scholar
Persoon, A. M., Gurnett, D. A., Leisner, J. S. et al. (2013), The plasma density distribution in the inner region of Saturn’s magnetosphere. J. Geophys. Res., 118(June), 29702974.Google Scholar
Persoon, A. M., Gurnett, D. A., Santolik, O. et al. (2009), A diffusive equilibrium model for the plasma density in Saturn’s magnetosphere. J. Geophys. Res., 114(Apr.), 4211.Google Scholar
Pilkington, N. M., Achilleos, N., Arridge, C. S. et al. (2014), Polar confinement of Saturn’s magnetosphere revealed by in situ Cassini observations. J. Geophys. Res., 119(Apr.), 28582875.Google Scholar
Pontius, D. H. and Hill, T. W. (2009), Plasma mass loading from the extended neutral gas torus of Enceladus as inferred from the observed plasma corotation lag. Geophys. Res. Lett., 36(Dec.), 23103.Google Scholar
Porco, C., DiNino, D. and Nimmo, F. (2014), How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. The Astrophysical Journal, 148(Sept.), 45.Google Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C. et al. (2006), Cassini observes the active south pole of Enceladus. Science, 311(Mar.), 13931401.Google Scholar
Pryor, W. R., Rymer, A. M., Mitchell, D. G. et al. (2011), The auroral footprint of Enceladus on Saturn. Nature, 472(Apr.), 331333.Google Scholar
Radioti, A., Grodent, D., Gérard, J.-C. et al. (2011), Bifurcations of the main auroral ring at Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res., 116(Nov.), 11209.Google Scholar
Radioti, A., Grodent, D., Gérard, J.-C. (2013), Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett., 40(Sept.), 44984502.Google Scholar
Richardson, J. D. (1986), Thermal ions at Saturn: Plasma parameters and implications. J. Geophys. Res., 91(10), 13811389.Google Scholar
Richardson, J. D. (1998), Thermal plasma and neutral gas in Saturn’s magnetosphere. Rev. of Geophys., 36(Nov.), 501524.Google Scholar
Roederer, J. G. (1970), Dynamics of geomagnetically trapped radiation, Springer.Google Scholar
Roussos, E., Andriopoulou, M., Krupp, N. et al. (2013), Numerical simulation of energetic electron microsignature drifts at Saturn: Methods and applications. Icarus, 226(Nov.), 15951611.Google Scholar
Roussos, E., Jones, G. H., Krupp, N. et al. (2007), Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. J. Geophys. Res., 112(A11), 6214.Google Scholar
Roussos, E., Kollmann, P., Krupp, N. et al. (2012), Energetic electron observations of Rhea’s magnetospheric interaction. Icarus, 221(Sept.), 116134.Google Scholar
Roussos, E., Krupp, N., Armstrong, T. P. et al. (2008), Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett., 35(Nov.), 22106.Google Scholar
Roussos, E., Krupp, N., Paranicas, C. P. et al. (2010), Energetic electron microsignatures as tracers of radial flows and dynamics in Saturn’s innermost magnetosphere. J. Geophys. Res., 115(A14), 3202.Google Scholar
Roussos, E., Krupp, N., Paranicas, C. P. (2011), Long- and short-term variability of Saturn’s ionic radiation belts. J. Geophys. Res., 116(A15), A02217.Google Scholar
Roussos, E., Krupp, N., Paranicas, C. P. (2014), The variable extension of Saturn’s electron radiation belts. Planet. Space Sci.Google Scholar
Roussos, E., Krupp, N., Woch, J. et al. (2005), Low energy electron microsignatures at the orbit of Tethys: Cassini MIMI/LEMMS observations. Geophys. Res. Lett., 32(Dec.), 24107.Google Scholar
Russell, C. T., Jackman, C. M., Wei, H. Y. et al. (2008), Titan’s influence on Saturnian substorm occurrence. Geophys. Res. Lett., 35(June), 12105.Google Scholar
Rymer, A. M., Mauk, B. H., Hill, T. W. et al. (2009a), Cassini evidence for rapid interchange transport at Saturn. Planet. Space Sci., 57(Dec.), 17791784.Google Scholar
Rymer, A. M., Smith, H. T., Wellbrock, A. et al. (2009b), Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett., 36(Aug.), 15109.Google Scholar
Sakai, S., Watanabe, S., Morooka, M. W. et al. (2013), Dust-plasma interaction through magnetosphere-ionosphere coupling in Saturn’s plasma disk. Planet. Space Sci., 75(Jan.), 1116.Google Scholar
Santolík, O., Gurnett, D. A., Jones, G. H. et al. (2011), Intense plasma wave emissions associated with Saturn’s moon Rhea. Geophys. Res. Lett., 38(Oct.), 19204.Google Scholar
Santos-Costa, D., Blanc, M., Maurice, S. et al. (2003), Modeling the electron and proton radiation belts of Saturn. Geophys. Res. Lett., 30(20), 6–1.Google Scholar
Saur, J., Schilling, N., Neubauer, F. M. et al. (2008), Evidence for temporal variability of Enceladus’ gas jets: Modeling of Cassini observations. Geophys. Res. Lett., 35(Oct.), 20105.Google Scholar
Schippers, P., André, N., Gurnett, D. A. et al. (2012), Identification of electron field-aligned current systems in Saturn’s magnetosphere. J. Geophys. Res., 117(May), 5204.Google Scholar
Schippers, P., Arridge, C. S., Menietti, J. D. et al. (2011), Auroral electron distributions within and close to the Saturn kilometric radiation source region. J. Geophys. Res., 116(A15), A05203.Google Scholar
Schippers, P., Blanc, M., André, N. et al. (2008), Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res., 113(A12), 7208.Google Scholar
Schippers, P., Moncuquet, M., Meyer-Vernet, N. et al. (2013), Core electron temperature and density in the innermost Saturn’s magnetosphere from HF power spectra analysis on Cassini. J. Geophys. Res., 118(Nov.), 71707180.Google Scholar
Schulz, M. and Lanzerotti, L. J. (1974), Particle Diffusion in the Radiation Belts. Physics and Chemistry in Space, Berlin: Springer.Google Scholar
Seidelmann, P. K., Archinal, B. A., A’Hearn, M. F. et al. (2007), Report of the IAU/IAG Working Group on cartographic co-ordinates and rotational elements: 2006. Celestial Mechanics and Dynamical Astronomy, 98(July), 155180.Google Scholar
Selesnick, R. S., Looper, M. D. and Mewaldt, R. A. (2007), A theoretical model of the inner proton radiation belt, Space Weather, 5, 4003.Google Scholar
Sergis, N., Arridge, C. S., Krimigis, S. M. et al. (2011), Dynamics and seasonal variations in Saturn’s magnetospheric plasma sheet, as measured by Cassini. J. Geophys. Res., 116(A15), A04203.Google Scholar
Sergis, N., Jackman, C. M., Masters, A. et al. (2013), Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma. J. Geophys. Res., 118(Apr.), 16201634.Google Scholar
Sergis, N., Krimigis, S. M., Mitchell, D. G. et al. (2009), Energetic particle pressure in Saturn’s magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. J. Geophys. Res., 114(Feb.), 2214.Google Scholar
Sergis, N., Krimigis, S. M., Roelof, E. C., et al. (2010), Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett., 37(Jan.), 2102.Google Scholar
Shemansky, D. E., Liu, X. and Melin, X. (2009), The Saturn hydrogen plume. Planet. Space Sci., 57(Dec.), 16591670.Google Scholar
Shematovich, V. I., Johnson, R. E., Michael, M. et al. (2003), Nitrogen loss from Titan. J. Geophys. Res., 108(Aug.), 5087.Google Scholar
Shprits, Y. Y., Menietti, J. D., Gu, X. et al. (2012), Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study. J. Geophys. Res., 117(A16), 11216.Google Scholar
Simon, S., Kriegel, H., Saur, J. et al. (2012), Analysis of Cassini magnetic field observations over the poles of Rhea. J. Geophys. Res., 117(July), 7211.Google Scholar
Simon, S., Neubauer, F. M., Wennmacher, A. et al. (2014), Variability of Titan’s induced magnetotail: Cassini magnetometer observations. J. Geophys. Res., 119(Mar.), 20242037.Google Scholar
Simon, S., Saur, J., Kriegel, H. et al. (2011a), Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus’ Alfvén wings: Analytical modeling of Cassini magnetometer observations. J. Geophys. Res., 116(A15), 4221.Google Scholar
Simon, S., Saur, J., Neubauer, F. M. et al. (2011b), Magnetic signatures of a tenuous atmosphere at Dione. Geophys. Res. Lett., 38(Aug.), 15102.Google Scholar
Simon, S., Treeck, S. C., Wennmacher, A. et al. (2013), Structure of Titan’s induced magnetosphere under varying background magnetic field conditions: Survey of Cassini magnetometer data from flybys TA-T85. J. Geophys. Res., 118(Apr.), 16791699.Google Scholar
Simon, S., Wennmacher, A., Neubauer, F, M. et al. (2010), Dynamics of Saturn’s magnetodisk near Titan’s orbit: Comparison of Cassini magnetometer observations from real and virtual Titan flybys. Planet. Space Sci., 58(Oct.), 16251635.Google Scholar
Singer, S. F. (1958), Trapped albedo theory of the radiation belt. prl, 1(8), 300.Google Scholar
Sittler, E. C., Andre, N., Blanc, M. et al. (2008. Ion and neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planet. Space Sci., 56(Jan.), 318.Google Scholar
Sittler, E. C., Hartle, R. E., Johnson, R. E. et al. (2010), Saturn’s magnetospheric interaction with Titan as defined by Cassini encounters T9 and T18: New results. Planet. Space Sci., 58(Feb.), 327350.Google Scholar
Sittler, E. C., Thomsen, M., Johnson, R. E. et al. (2006), Cassini observations of Saturn’s inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54(Oct.), 11971210.Google Scholar
Smith, H. T., Johnson, R. E., Perry, M. E. et al. (2010), Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res., 115(Oct.), 10252.Google Scholar
Smith, H. T., Johnson, R. E., Sittler, E. C. et al. (2007), Enceladus: The likely dominant nitrogen source in Saturn’s magnetosphere. Icarus, 188(June), 356366.Google Scholar
Smith, H. T. and Rymer, A. M. (2014), An empirical model for the plasma environment along Titan’s orbit based on Cassini plasma observations. J. Geophys. Res., 119(July), 56745684.Google Scholar
Sonnerup, B. U. and Laird, M. J. (1963), On magnetospheric interchange instability. J. Geophys. Res., 68.Google Scholar
Southwood, D. J. and Kivelson, M. G. (1987), Magnetospheric interchange instability. J. Geophys. Res., 92(Jan.), 109116.Google Scholar
Southwood, D. J. and Kivelson, M. G. (1989), Magnetospheric interchange motions. J. Geophys. Res., 94(Jan.), 299308.Google Scholar
Strobel, D. F. (2008), Titan’s hydrodynamically escaping atmosphere. Icarus, 193(Feb.), 588594.Google Scholar
Sulaiman, A. H., Masters, A., Dougherty, M. K. et al. (2014), The magnetic structure of Saturn’s magnetosheath. J. Geophys. Res., 119(July), 56515661.Google Scholar
Szego, K., Nemeth, Z., Erdos, G. et al. (2011), The plasma environment of Titan: The magnetodisk of Saturn near the encounters as derived from ion densities measured by the Cassini/CAPS plasma spectrometer. J. Geophys. Res., 116(Oct.), 10219.CrossRefGoogle Scholar
Szego, K., Nemeth, Z., Erdos, G. (2012), Location of the magnetodisk in the nightside outer magnetosphere of Saturn near equinox based on ion densities. J. Geophys. Res., 117(Sept.), 9225.Google Scholar
Tadokoro, H., Misawa, H., Tsuchiya, F. et al. (2012), Effect of photo-dissociation on the spreading of OH and O clouds in Saturn’s inner magnetosphere. J. Geophys. Res., 117(Sept.), 9226.Google Scholar
Tang, R. and Summers, D. (2012), Energetic electron fluxes at Saturn from Cassini observations. J. Geophys. Res., 117(June), 6221.Google Scholar
Tao, X., Thorne, R. M., Horne, R. B. et al. (2010), Excitation of electron cyclotron harmonic waves in the inner Saturn magnetosphere within local plasma injections. J. Geophys. Res., 115(Dec.), 12204.Google Scholar
Tenishev, V., Combi, M. R., Teolis, B. D. et al. (2010), An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus. J. Geophys. Res., 115(A14), 9302.Google Scholar
Teolis, B. D., Jones, G. H., Miles, P. F. et al. (2010), Cassini Finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. 330(Dec.), 1813.Google Scholar
Thomsen, M. F., Jackman, C. M., Tokar, R. L. et al. (2014b), Plasma flows in Saturn’s nightside magnetosphere. J. Geophys. Res., 119(June), 45214535.Google Scholar
Thomsen, M. F., Reisenfeld, D. B., Delapp, D. M. et al. (2010), Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res., 115(Oct.), 10220.Google Scholar
Thomsen, M. F., Reisenfeld, D. B., Wilson, R. J. et al. (2014a), Ion composition in interchange injection events in Saturn’s magnetosphere. J. Geophys. Res., 119(Dec.), 97619772.Google Scholar
Thomsen, M. F., Roussos, E., Andriopoulou, M. et al. (2012), Saturn’s inner magnetospheric convection pattern: Further evidence. J. Geophys. Res., 117(A16), 9208.Google Scholar
Thomsen, M. F., Wilson, R. J., Tokar, R. L. et al. (2013), Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res., 118, 57675781.Google Scholar
Tiscareno, M. S., Burns, J. A., Cuzzi, J. N. et al. (2010), Cassini imaging search rules out rings around Rhea. Geophys. Res. Lett., 37(July), 14205.Google Scholar
Tokar, R. L., Johnson, R. E., Thomsen, M. F. et al. (2005), Cassini observations of the thermal plasma in the vicinity of Saturn’s main rings and the F and G rings. Geophys. Res. Lett., 32(June), 14.Google Scholar
Tokar, R. L., Johnson, R. E., Thomsen, M. F. 2012), Detection of exospheric O2+ at Saturn’s moon Dione. Geophys. Res. Lett., 39(Feb.), 3105.Google Scholar
Tseng, W.-L., Ip, W.-H., Johnson, R. E. et al. (2010), The structure and time variability of the ring atmosphere and ionosphere. Icarus, 206(Apr.), 382389.Google Scholar
Tseng, W.-L., Johnson, R. E. and Elrod, M. K. (2013a), Modeling the seasonal variability of the plasma environment in Saturn’s magnetosphere between main rings and Minas. Planet. Space Sci., 77(Mar.), 126135.Google Scholar
Tseng, W.-L., Johnson, R. E. and Ip, W.-H. (2013b), The atomic hydrogen cloud in the Saturnian system. Planet. Space Sci., 85(Sept.), 164174.Google Scholar
Tseng, W.-L., Johnson, R. E., Thomsen, M. F. et al. (2011), Neutral H2 and H2+ ions in the Saturnian magnetosphere. J.Geophys. Res., 116(Mar.), 3209.Google Scholar
Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A. et al. (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J. Geophys. Res., 110(Dec.), 12108.Google Scholar
Van Allen, J. A. (1984), Energetic particles in the inner magnetosphere of Saturn. Pages 281317 of:Gehrels, T. and Matthews, M. S. (eds), Saturn. University of Arizona Press, Tucson.Google Scholar
Van Allen, J. A., Thomsen, M. F. and Randall, B. A. (1980), The energetic charged particle absorption signature of Mimas. J. Geophys. Res., 85(A11), 57095718.Google Scholar
Vasyliūnas, V. M. (1994), Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys. Res. Lett., 21(Mar.), 401404.Google Scholar
Vasyliūnas, V. M. (1983), Plasma Distribution and Flow, Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, 395453.Google Scholar
Waite, J. H., Combi, M. R., Ip, W.-H. et al. (2006), Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science, 311(Mar.), 14191422.Google Scholar
Waite, J. H., Cravens, T. E., Ip, W.-H. et al. (2005), Oxygen ions observed near Saturn’s A ring. 307(Feb.), 12601262.Google Scholar
Walker, R. J., Fukazawa, K., Ogino, T. et al. (2011), A simulation study of Kelvin–Helmholtz waves at Saturn’s magnetopause. J. Geophys. Res., 116(Mar.), 3203.Google Scholar
Walt, M. (1994), Introduction to Geomagnetically Trapped Radiation. Cambridge University Press, Cambridge.Google Scholar
Wang, Z., Gurnett, D. A., Fischer, G. et al. (2010), Cassini observations of narrowband radio emissions in Saturn’s magnetosphere. J. Geophys. Res., 115(June), 6213.Google Scholar
Wellbrock, A., Coates, A. J., Sillanpää, I. et al. (2012), Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. J. Geophys. Res., 117(Mar.), 3216.Google Scholar
Went, D. R., Kivelson, M. G., Achilleos, N. et al. (2011), Outer magnetospheric structure: Jupiter and Saturn compared. J. Geophys. Res., 116(Apr.), 4224.Google Scholar
Westley, M. S., Baragiola, R. A., Johnson, R. E. et al. (1995), Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature, 373(Feb.), 405407.Google Scholar
Wilson, R. J., Bagenal, F., Delamere, P. A. et al. (2013), Evidence from radial velocity measurements of a global electric field in Saturn’s inner magnetosphere. J. Geophys. Res., 118(May), 21222132.Google Scholar
Wilson, R. J., Delamere, P. A., Bagenal, F. et al. (2012), Kelvin–Helmholtz instability at Saturn’s magnetopause: Cassini ion data analysis. J. Geophys. Res., 117(Mar.), 3212.Google Scholar
Wilson, R. J., Tokar, R. L. and Henderson, M. G. (2009), Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett., 362(Dec.), L23104.Google Scholar
Wilson, R. J., Tokar, R. L., Henderson, M. G. et al. (2008), Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res., 113(Dec.), 12218.Google Scholar
Wilson, R. J., Tokar, R. L., Kurth, W. S. et al. (2010), Properties of the thermal ion plasma near Rhea as measured by the Cassini plasma spectrometer. J. Geophys. Res., 115(A14), A05201.Google Scholar
Winglee, R. M., Kidder, A., Harnett, E. et al. (2013), Generation of periodic signatures at Saturn through Titan’s interaction with the centrifugal interchange instability. J. Geophys. Res., 118(July), 42534269.Google Scholar
Ye, S.-Y., Gurnett, C. A., Fischer, G. et al. (2009), Source locations of narrowband radio emissions detected at Saturn. J. Geophys. Res., 114(June), 6219.Google Scholar
Zarka, P. (1998), Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res., 103(Sept.), 2015920194.Google Scholar
Zieger, B., Hansen, K. C., Gombosi, T. I. et al. (2010), Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res., 115(Aug.), 8208.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×