[1] M., Aissen, A., Edrei, I.J., Schoenberg, and A., Whitney, On the generating functions of totally positive sequences. Proc. Nat. Acad. Sci. USA
37 (1951), 303–307.
[2] M., Aissen, I.J., Schoenberg, and A., Whitney, On the generating functions of totally positive sequences I. J. Analyse Math.
2 (1952), 93–103.
[3] D.J., Aldous, Exchangeability and related topics. In: École d'Été de Probabilités de Saint-Flour, XIII–1983, Springer Lecture Notes in Math. 1117, Springer, 1985, pp. 1–198.
[4] J., Baik, P., Deift, and K., Johansson, On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc.
12 (1999), 1119–1178; arXiv:math/9810105.
[5] V.I., Bogachev, Measure Theory. Springer, 2007.
[6] S., Bochner, Harmonic Analysis and the Theory of Probability. University of California Press, 1955.
[7] A., Borodin, A., Okounkov, and G., Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc.
13 (2000), no. 3, 481–515.
[8] A., Borodin and G., Olshanski, Point processes and the infinite symmetric group. Mathematical Research Letters
5 (1998), 799–816.
[9] A., Borodin and G., Olshanski, Distributions on partitions, point processes and the hypergeometric kernel. Commun. Math. Phys.
211 (2000), 335–358; arXiv:math/9904010.
[10] A., Borodin and G., Olshanski, Harmonic functions on multiplicative graphs and interpolation polynomials. Electronic J. Comb.
7 (2000), #R28; arXiv:math/9912124.
[11] A., Borodin and G., Olshanski, Infinite random matrices and ergodic measures. Comm. Math. Phys. 223 (2001), no. 1, 87–123; arXiv:math-ph/0010015.
[12] A., Borodin and G., Olshanski, Z-Measures on partitions, Robinson–Schensted– Knuth correspondence, and β = 2 ensembles. In: Random Matrix Models and their Applications (P.M., Bleher and A.R., Its, eds). MSRI Publications, vol. 40, Cambridge University Press, 2001, pp. 71–94.
[13] A., Borodin and G., Olshanski, Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. Math.
161 (2005), no. 3, 1319–1422.
[14] A., Borodin and G., Olshanski, Representation theory and random point processes. In: European Congress of Mathematics (ECM), Stockholm, Sweden, June 27–July 2, 2004
A., Laptev (ed.). European Mathematical Society, 2005, pp. 73–94.
[15] A., Borodin and G., Olshanski, Random partitions and the Gamma kernel. Adv. Math.
194 (2005),141–202; arXiv:math-ph/0305043.
[16] A., Borodin and G., Olshanski, Z-measures on partitions and their scaling limits. Europ. J. Comb.
26 (2005), no. 6, 795–834.
[17] A., Borodin and G., Olshanski, Markov processes on partitions. Probab. Theory Rel. Fields
135 (2006), 84–152; arXiv:math-ph/0409075.
[18] A., Borodin and G., Olshanski, Meixner polynomials and random partitions. Moscow Math. J.
6 (2006), no. 4, 629–655.
[19] A., Borodin and G., Olshanski, Stochastic dynamics related to Plancherel measure on partitions. In: Representation Theory, Dynamical Systems, and Asymptotic Combinatorics (V., Kaimanovich and A., Lodkin, eds). Amer. Math. Soc. Translations, Series 2: Advances in the Mathematical Sciences, vol. 217, 2006, pp. 9–21; arXiv:math-ph/0402064.
[20] A., Borodin and G., Olshanski, Infinite-dimensional diffusions as limits of random walks on partitions. Probab. Theory Rel. Fields
144 (2009), 281–318; arXiv:0706.1034.
[21] A., Borodin and G., Olshanski, Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. J. Funct. Anal.
263 (2012), 248–303; arXiv:1009.2029.
[22] A., Borodin and G., Olshanski, The boundary of the Gelfand–Tsetlin graph: A new approach. Advances in Math.
230 (2012), 1738–1779; arXiv:1109. 1412.
[23] A., Borodin and G., Olshanski, The Young bouquet and its boundary. Moscow Math. J.
13 (2013), no. 2; arXiv:1110.4458.
[24] A., Borodin and G., Olshanski, Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles. Electron. J. Probab. 18 (2013), no. 75, 1–43.
[25] A., Borodin, G., Olshanski, and E., Strahov, Giambelli compatible point processes. Advances in Appl. Math.
37 (2006), 209–248.
[26] A., Bufetov and V., Gorin, Stochastic monotonicity in Young graph and Thoma theorem. International Mathematics Research Notices, vol. 2015, 12920–12940; arXiv:1411.3307.
[27] O., Bratteli, Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972), 195–234.
[28] T., Ceccherini-Silberstein, F., Scarabotti, and F., Tolli, Harmonic Analysis on Finite Groups – Representation Theory, Gelfand Pairs and Markov Chains. Cambridge Studies in Advanced Mathematics 108, Cambridge University Press, 2008.
[29] T., Ceccherini-Silberstein, F., Scarabotti, and F., Tolli, Representation Theory of the Symmetric Group, the Okounkov–Vershik Approach, Character Formulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics 121, Cambridge University Press, 2010.
[30] C.W., Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer. History of Mathematics vol. 15. American Mathematical Society; London Mathematical Society, 1999.
[31] P., Diaconis, Group Representations in Probability and Statistics. Institute of Mathematical Statistics, 1988.
[32] P., Diaconis, D., Freedman, Partial exchangeability and sufficiency. In: Statistics: Applications and New Directions (Calcutta, 1981), pp. 205–236, Indian Statist. Inst., 1984.
[33] J., Dixmier, C*-Algebras. North-Holland, 1977.
[34] E.B., Dynkin, Initial and final behavior of trajectories of Markov processes. Uspehi Mat. Nauk
26 (1971), no. 4, 153–172 (Russian); English translation: Russian Math. Surveys
26 (1971), no. 4, 165–185.
[35] E.B., Dynkin, Sufficient statistics and extreme points. Ann. Probab.
6 (1978), 705–730.
[36] A., Edrei, On the generating functions of totally positive sequences II. J. Analyse Math.,
2 (1952), 104–109.
[37] A., Edrei, On the generating function of a doubly infinite, totally positive sequence. Trans. Amer. Math. Soc.
74 (1953), 367–383.
[38] W.J., Ewens and S., Tavaré, The Ewens sampling formula. In: Encyclopedia of Statistical Science, Vol. 2 (S., Kotz, C.B., Read, and D.L., Banks, eds.), pp. 230–234, Wiley, 1998.
[39] W., Feller, An Introduction to Probability Theory and its Applications, vol. 2. Wiley, 1966, 1971.
[40] V., Féray, Combinatorial interpretation and positivity of Kerov's character polynomials, Journal of Algebraic Combinatorics, 29 (2009), 473–507.
[41] F.G., Frobenius, Über die Charaktere der symmetrischen Gruppe. Sitz. Konig. Preuss. Akad. Wissen. (1900), 516–534; Gesammelte Abhandlungen III, Springer-Verlag, 1968, pp. 148–166.
[42] W., Fulton and J., Harris, Representation Theory. A First Course. Springer, 1991.
[43] A., Gnedin, The representation of composition structures, Ann. Prob. 25 (1997), 1437–1450.
[44] A., Gnedin and S., Kerov, The Plancherel measure of the Young-Fibonacci graph. Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 433–446.
[45] A., Gnedin and G., Olshanski, Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams. Internat. Math. Research Notices
2006 (2006), Article ID 51968; arXiv:math/0508131.
[46] A., Gnedin and G., Olshanski, The boundary of Eulerian number triangle. Moscow Math. J.
6 (2006), no. 3, 461–475; arXiv:math/0602610.
[47] A., Gnedin and G., Olshanski, A q-analogue of de Finetti's theorem. Electronic Journal of Combinatorics
16 (2009), no. 1, paper #R78; arXiv:0905.0367.
[48] A., Gnedin and G., Olshanski, q-Exchangeability via quasi-invariance, Ann. Prob. 38 (2010), no. 6, 2103–2135; arXiv:0907.3275.
[49] A., Gnedin and G., Olshanski, The two-sided infinite extension of the Mallows model for random permutations. Advances in Applied Math. 48 (2012), Issue 5, 615–639; arXiv:1103.1498.
[50] A., Gnedin and J., Pitman, Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Semin. POMI
325, 83–102 (2005); reproduced in J. Math. Sci., New York
138 (2006), no. 3, 5674–5685; arXiv:math/0412494.
[51] F.M., Goodman and S.V., Kerov, The Martin boundary of the Young–Fibonacci lattice. J. Algebraic Combin. 11 (2000), no. 1, 17–48.
[52] R., Goodman and N.R., Wallach, Symmetry, Representations, and Invariants. Springer, 2009.
[53] V., Gorin, Disjointness of representations arising in the problem of harmonic analysis on an infinite-dimensional unitary group. Funct. Anal. Appl.
44 (2010), no. 2, 92–105; arXiv:0805.2660.
[54] V.E., Gorin, Disjointness of representations arising in the problem of harmonic analysis on an infinite-dimensional unitary group. Funktsional. Anal. i Prilozhen.
44 (2010), no. 2, 14–32 (Russian); English translation in Funct. Anal. Appl.
44 (2010), 92–105.
[55] V., Gorin, The q-Gelfand–Tsetlin graph, Gibbs measures and q-Toeplitz matrices. Adv. Math.
229 (2012), no. 1, 201–266.
[56] E., Hewitt and L.J., Savage, Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 (1955), 470–501.
[57] G., James and A., Kerber, The Representation Theory of the Symmetric Group. Addison-Wesley, 1981.
[58] K., Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2)
153 (2001) 259–296; arXiv:math/9906120.
[59] S., Kerov, Generalized Hall–Littlewood symmetric functions and orthogonal polynomials. In: Advances in Soviet Math. vol. 9. Amer. Math. Soc., 1992, pp. 67–94.
[60] S., Kerov, Gaussian limit for the Plancherel measure of the symmetric group. C. R. Acad. Sci. Paris Sér. I Math.
316 (1993), no. 4, 303–308.
[61] S., Kerov, A differential model for the growth of Young diagrams. Proceedings of the St. Petersburg Mathematical Society, Vol. IV, pp. 111–130, Amer. Math. Soc. Transl. Ser. 2, 188, Amer. Math. Soc., 1999.
[62] S.V., Kerov, Anisotropic Young diagrams and Jack symmetric functions. Funct. Anal. Appl.
34 (2000), No. 1, 45–51; arXiv:math/9712267.
[63] S.V., Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis. Translations of Mathematical Monographs, 219. American Mathematical Society, 2003.
[64] S., Kerov, A., Okounkov, and G., Olshanski, The boundary of Young graph with Jack edge multiplicities. Intern. Mathematics Research Notices, (1998), no. 4, 173–199; arXiv:q-alg/9703037.
[65] S., Kerov and G., Olshanski, Polynomial functions on the set of Young diagrams. Comptes Rendus Acad. Sci. Paris, Ser. I, 319 (1994), 121–126.
[66] S., Kerov, G., Olshanski, and A., Vershik, Harmonic analysis on the infinite symmetric group. A deformation of the regular representation. Comptes Rendus Acad. Sci. Paris, Sér. I
316 (1993), 773–778.
[67] S., Kerov, G., Olshanski, and A., Vershik, Harmonic analysis on the infinite symmetric group. Invent. Math.
158 (2004), 551–642; arXiv:math/0312270.
[68] S.V., Kerov, O.A., Orevkova, Random processes with common cotransition probabilities. Zapiski Nauchnyh Seminarov LOMI
184 (1990), 169–181 (Russian); English translation in J.Math. Sci. (New York)
68 (1994), no. 4, 516–525.
[69] S.V., Kerov and A.M., Vershik, Characters, factor representations and K-functor of the infinite symmetric group. In: Operator Algebras and Group Representations, Vol. II (Neptun, 1980), Monographs and Studies in Mathematics, vol. 18, Pitman, 1984, pp. 23–32.
[70] J.F.C., Kingman, The representation of partition structures. J. London Math. Soc. 18 (1978), 374–380.
[71] A., Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933. Second English edition: A.N., Kolmogorov, Foundations of the Theory of Probability. Chelsea Publ. Comp., 1956.
[72] I.G., Macdonald, Symmetric Functions and Hall Polynomials. 2nd edition. Oxford University Press, 1995.
[73] Yu. I., Manin, Gauge Field Theory and Complex Geometry. Translated from the Russian by N., Koblitz and J.R., King, Springer-Verlag, 1988, x + 295 pp.
[74] P.-A., Meyer, Probability and Potentials. Blaisdell, 1966.
[75] Yu. A., Neretin, Hua-type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J.
114 (2002), 239–266; arXiv:math-ph/0010014.
[76] Yu. A., Neretin, The subgroup PSL(2, R) is spherical in the group of diffeomorphisms of the circle. Funct. Anal. Appl., 50 (2016), 160–162; arXiv:1501.05820.
[77] J., von Neumann, On infinite direct products. Comp. Math. 6 (1938), 1–77.
[78] A., Okounkov, Thoma's theorem and representations of the infinite bisymmetric group. Funct. Anal. Appl. 28 (1994), no. 2, 100–107.
[79] A., Okounkov, On representations of the infinite symmetric group. Zapiski Nauchnyh Seminarov POMI
240 (1997), 166–228 (Russian); English translation: J. Math. Sci. (New York)
96 (1999), No. 5, 3550–3589.
[80] A., Okounkov and G., Olshanski, Shifted Schur functions. Algebra i analiz
9 (1997), no. 2, 73–146 (Russian); English version: St. Petersburg Mathematical J., 9 (1998), 239–300; arXiv:q-alg/9605042.
[81] A., Okounkov and G., Olshanski, Asymptotics of Jack polynomials as the number of variables goes to infinity. Intern. Math. Research Notices
1998 (1998), no. 13, 641–682; arXiv:q-alg/9709011.
[82] A., Okounkov and G., Olshanski, Limits of BC-type orthogonal polynomials as the number of variables goes to infinity. In: Jack, Hall–Littlewood and Macdonald Polynomials. Contemp. Math., 417, pp. 281–318. Amer. Math. Soc., 2006.
[83] G., Olshanski, Unitary representations of the infinite-dimensional classical groups U(p,∞), SO(p,∞), Sp(p,∞) and the corresponding motion groups. Soviet Math. Doklady
19 (1978), 220–224.
[84] G., Olshanski, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe. Dokl. Akad. Nauk SSSR
269 (1983), 33–36 (Russian); English translation in Soviet Math., Doklady.
27 (1983), 290–294.
[85] G., Olshanski, Unitary representations of (G, K)-pairs connected with the infinite symmetric group S(∞). Algebra i analiz
1 (1989), no. 4, 178–209 (Russian); English translation: Leningrad Math. J. 1, no. 4 (1990), 983–1014.
[86] G., Olshanski, Method of holomorphic extensions in the representation theory of infinitedimensinal classical groups. Funct. Anal. Appl.
22, no. 4 (1989), 273–285.
[87] G., Olshanski, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe. In: Representation of Lie Groups and Related Topics (A.M., Vershik and D.P., Zhelobenko, eds), Adv. Stud. Contemp. Math. 7, Gordon and Breach, 1990, pp. 269–463.
[88] G., Olshanski, Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians. In: Topics in Representation Theory (A.A., Kirillov, ed.). Advances in Soviet Math., vol. 2. Amer. Math. Soc., 1991, pp. 1–66.
[89] G., Olshanski, On semigroups related to infinite-dimensional groups. In: Topics in Representation Theory (A.A., Kirillov, ed.). Advances in Soviet Math., vol. 2. Amer. Math. Soc., 1991, pp. 67–101.
[90] G., Olshanski, Probability measures on dual objects to compact symmetric spaces, and hypergeometric identities. Funkts. Analiz i Prilozh. 37 (2003), no. 4 (Russian); English translation in Functional Analysis and its Applications
37 (2003), 281–301.
[91] G., Olshanski, The problem of harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal.
205 (2003), 464–524; arXiv:math/0109193.
[92] G., Olshanski, An introduction to harmonic analysis on the infinite symmetric group. In: Asymptotic Combinatorics with Applications to Mathematical Physics (A., Vershik, ed). Springer Lecture Notes in Math. 1815, 2003, pp. 127–160.
[93] G., Olshanski, Difference operators and determinantal point processes. Funct. Anal. Appl.
42 (2008), no. 4, 317–329; arXiv:0810.3751.
[94] G., Olshanski, Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter. Intern. Math. Research Notices
2010 (2010), no. 6, 1102–1166; arXiv:0902.3395.
[95] G., Olshanski, Laguerre and Meixner symmetric functions, and infinitedimensional diffusion processes. Zapiski Nauchnyh Seminarov POMI
378 (2010), 81–110; reproduced in J. Math. Sci. (New York)
174 (2011), no. 1, 41–57; arXiv:1009.2037.
[96] G., Olshanski, Laguerre and Meixner orthogonal bases in the algebra of symmetric functions.
Intern. Math. Research Notices
2012 (2012), 3615–3679 arXiv:1103.5848.
[97] G., Olshanski, A., Regev, and A., Vershik, Frobenius–Schur functions: summary of results; arXiv:math/0003031.
[98] G., Olshanski, A., Regev, and A., Vershik, Frobenius-Schur functions. In: Studies in Memory of Issai Schur (A., Joseph, A., Melnikov, R., Rentschler, eds.). Progress in Mathematics 210, pp. 251–300. Birkhäuser, 2003; arXiv:math/0110077.
[99] A.A., Osinenko, Harmonic analysis on the infinite-dimensional unitary group. Zapiski Nauchnyh Seminarov POMI
390 (2011), 237–285 (Russian); English translation in J. Math. Sci. (New York)
181 (2012), no. 6, 886–913.
[100] K.R., Parthasarathy, Probability Measures on Metric Spaces. Academic Press, 1967.
[101] R.R., Phelps, Lectures on Choquet's Theorems. Van Nostrand, 1966.
[102] D., Pickrell, Measures on infinite-dimensional Grassmann manifold. J. Func. Anal.
70 (1987), 323–356.
[103] D., Pickrell, Separable representations for automorphism groups of infinite symmetric spaces. J. Funct. Anal.
90 (1990), 1–26.
[104] J., Pitman, Combinatorial Stochastic Processes. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002. Springer Lecture Notes in Mathematics 1875, 2006.
[105] M., Reed and B., Simon, Methods of Modern Mathematical Physics. Vol. 1. Functional Analysis. Academic Press, 1972.
[106] M., Reed and B., Simon, Methods of Modern Mathematical Physics. Vol. 2. Fourier Analysis. Self-Adjointness. Academic Press, 1975.
[107] B.E., Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions. Second edition, Springer, 2001.
[108] S.A., Sawyer, Martin boundaries and random walks. In: Harmonic Functions on Trees and Buildings, Adam, Koranyi (ed). Contemporary Mathematics 206, Providence, RI: American Mathematical Society, 1997, pp. 17–44.
[109] I.J., Schoenberg, Some analytical aspects of the problem of smoothing. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, New York, NY: Interscience Publishers, Inc., 1948, pp. 351–370.
[110] A.N., Shiryaev, Probability, Graduate Texts in Mathematics vol. 95. Springer, 1996.
[111] B., Simon, Representations of Finite and Compact Groups. Amer. Math. Soc., 1996.
[112] R.P., Stanley, Enumerative Combinatorics, vol. 1. Cambridge University Press, 1997.
[113] R.P., Stanley, Enumerative Combinatorics, vol. 2. Cambridge University Press, 1999.
[114] E., Strahov, Generalized characters of the symmetric group. Adv. Math.
212 (2007), no. 1, 109–142; arXiv:math/0605029.
[115] E., Strahov, A differential model for the deformation of the Plancherel growth process. Adv. Math. 217 (2008), no. 6, 2625–2663.
[116] E., Strahov, The z-measures on partitions, Pfaffian point processes, and the matrix hypergeometric kernel. Adv. Math. 224 (2010), no. 1, 130–168.
[117] E., Thoma, Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Zeitschr.,
85 (1964), 40–61.
[118] A.M., Vershik, Intrinsic metric on graded graphs, standardness, and invariant measures. Zapiski Nauchn. Semin. POMI
421 (2014), 58–67 (Russian). English translation: J. Math. Sci. (New York) 200 no. 6 (2014), 677–681.
[119] A.M., Vershik, The problem of describing central measures on the path spaces of graded graphs. Funct. Anal. Appl. 48 (2014), no. 4, 256–271.
[120] A.M., Vershik, Equipped graded graphs, projective limits of simplices, and their boundaries. Zapiski Nauchn. Semin. POMI
432 (2015), 83–104 (Russian). English translation: J.Math. Sci. (New York)
209 (2015), 860–873.
[121] A.M., Vershik and S.V., Kerov, Characters and factor representations of the infinite symmetric group. Dokl. Akad. Nauk SSSR
257 (1981), 1037–1040 (Russian); English translation in Soviet Math., Doklady
23 (1981), 389–392.
[122] A.M., Vershik and S.V., Kerov, Asymptotic theory of characters of the symmetric group.
Funct. Anal. Appl.
15 (1981), no. 4, 246–255.
[123] A.M., Vershik and S.V., Kerov, Characters and factor representations of the infinite unitary group. Doklady AN SSSR
267 (1982), no. 2, 272–276 (Russian); English translation: Soviet Math. Doklady
26 (1982), 570–574.
[124] A.M., Vershik and S.V., Kerov, The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth correspondence. SIAM J. Alg. Disc. Meth.
7 (1986), 116–123.
[125] A.M., Vershik and S.V., Kerov, Locally semisimple algebras. Combinatorial theory and the K0-functor. J. Soviet Math.
38 (1987), 1701–1733.
[126] A.M., Vershik and S.V., Kerov, The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of K0- functor for AF-algebas). In: Representations of Lie Groups and Related Topics. Advances in Contemp. Math., vol. 7 (A.M., Vershik and D.P., Zhelobenko, editors). New York, NY; London: Gordon and Breach, 1990, pp. 39–117.
[127] A.V., Vershik and N.I., Nessonov, Stable representations of the infinite symmetric group. Izvestiya: Mathematics
79 (2015), no. 6, 93–124; English translation: Izvestiya: Mathematics
79 (2015), no. 6, 1184–1214.
[128] G., Viennot, Maximal chains of subwords and up-down sequences of permutations. J. Comb. Theory. Ser. A
34 (1983), 1–14.
[129] E.B., Vinberg, Linear Representations of Groups. Birkhäuser, 1989. (English translation of the original Russian edition: Nauka, Moscow, 1985.)
[130] D., Voiculescu, Sur les représentations factorielles finies de U(∞) et autres groupes semblables. C. R. Acad. Sci., Paris, Sér. A
279 (1974), 945–946.
[131] D., Voiculescu, Représentations factorielles de type II1 de U(∞). J. Math. Pures et Appl.
55 (1976), 1–20.
[132] A.J., Wassermann, Automorphic actions of compact groups on operator algebras. Unpublished Ph.D. dissertation. Philadelphia, PA: University of Pennsylvania, 1981.
[133] H., Weyl, The Classical Groups. Their Invariants and Representations. Princeton University Press, 1939; 1997 (fifth edition).
[134] G., Winkler, Choquet Order and Simplices. With Applications in Probabilistic Models. Springer Lect. Notes Math. 1145, Springer, 1985.
[135] A.V., Zelevinsky, Representations of Finite Classical Groups. A Hopf Algebra Approach. Springer Lecture Notes in Math. 869, Springer, 1981.
[136] D.P., Zhelobenko, Compact Lie Groups and their Representations. Nauka, 1970 (Russian); English translation: Transl.Math. Monographs 40, Amer.Math. Soc., 1973.