Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: November 2019

12 - Raman Spectroscopy

from Part II - Terrestrial Field and Airborne Applications


Stand-off Raman spectroscopy is emerging as a critical new tool for planetary exploration. Mounted on a rover, a stand-off Raman system can be used to rapidly identify areas of interest for subsequent, synergistic investigations with other stand-off or close-up (arm-mounted) instruments; survey broad areas and perform reconnaissance tasks from a fixed location; and increase the efficiency of mission operations where targets of interest are in areas that are too hard to access for a rover. Not surprisingly, NASA’s next Mars mission will fly a stand-off Raman system as part of the SuperCam instrument package. This chapter reviews two stand-off Raman systems that paved the way for the development of new technologies and instrument architectures for robotic stand-off planetary exploration using Raman spectroscopy, including the SuperCam instrument suite.

Related content

Powered by UNSILO
Acosta-Maeda, T.E., Misra, A.K., Muzangwa, L.G., et al. (2016) Remote Raman measurements of minerals, organics, and inorganics at 430 m range. Applied Optics, 55, 1028310289.
Angel, S.M., Gomer, N.R., Sharma, S.K., & McKay, C. (2012) Remote Raman spectroscopy for planetary exploration: A review. Applied Spectroscopy, 66, 137150.
Beegle, L.W., Bhartia, R., DeFlores, L., et al. (2014) SHERLOC: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals, an investigation for 2020. 45th Lunar Planet. Sci. Conf., 178, Abstract #2835.
Beegle, L., Bhartia, R., White, M., et al. (2015) SHERLOC: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals. Proceedings of the 2015 IEEE Aerospace Conference, 111.
Bremer, M.T. & Dantus, M. (2014) Detecting micro-particles of explosives at ten meters using selective stimulated Raman scattering. CLEO: 2014, JTh2A.5.
Bykov, S.V., Mao, M., Gares, K.L., & Asher, S.A. (2015) Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer: Measurements of nitrate photochemistry. Applied Spectroscopy, 69, 895901.
Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 679698.
Dantus, M. (2014) Single-beam stimulated Raman scattering for sub-microgram standoff detection of explosives. Frontiers in Optics 2014, LW5I.1.
Dogariu, A.E.D.D.J.P. & Gauthier, D. (2013) Standoff explosive detection and hyperspectral imaging using coherent anti-Stokes Raman spectroscopy. Frontiers in Optics 2013, LTh4G.4.
Fulton, J. (2011) Remote detection of explosives using Raman spectroscopy. Proceedings of SPIE 8018, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing, XII, 80181A, DOI:10.1117/12.887101.
Furić, K. & Volovšek, V. (2010) Water ice at low temperatures and pressures: New Raman results. Journal of Molecular Structure, 976, 174180.
Gaft, M. & Nagli, L. (2008) UV gated Raman spectroscopy for standoff detection of explosives. Optical Materials, 30, 17391746.
Gasda, P.J., Acosta-Maeda, T.E., Lucey, P.G., Misra, A.K., Sharma, S.K., & Taylor, G.J. (2015) Next generation laser-based standoff spectroscopy techniques for Mars exploration. Applied Spectroscopy, 69, 173192.
González, R.C., Woods, R.R.E., & Eddins, S.L. (2004) Digital image processing using Matlab. Dorling Kindersley, London.
Hansen, G.B. & McCord, T.B. (2004) Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes. Journal of Geophysical Research, 109, E01012.
Hokr, B.H., Bixler, J.N., Noojin, G.D., et al. (2014) Single-shot stand-off chemical identification of powders using random Raman lasing. Proceedings of the National Academy of Sciences of the USA, 111, 1232012324.
Hopkins, A.J., Cooper, J.L., Profeta, L.T., & Ford, A.R. (2016) Portable Deep-Ultraviolet (DUV) Raman for standoff detection. Applied Spectroscopy, 70, 861873.
Hutchinson, I.B., Ingley, R., Edwards, H.G.M., et al. (2014) Raman spectroscopy on Mars: Identification of geological and bio-geological signatures in martian analogues using miniaturized Raman spectrometers. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372, DOI:10.1098/rsta.2014.0204.
Izake, E.L., Cletus, B., Olds, W., Sundarajoo, S., Fredericks, P.M., & Jaatinen, E. (2012) Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents. Talanta, 94, 342347.
Lin, Q., Niu, G., Wang, Q., Yu, Q., & Duan, Y. (2013) Combined laser-induced breakdown with Raman spectroscopy: Historical technology development and recent applications. Applied Spectroscopy Reviews, 48, 487508.
Loeffen, P.W., Maskall, G., Bonthron, S., Bloomfield, M., Tombling, C., & Matousek, P. (2011) Spatially offset Raman spectroscopy (SORS) for liquid screening. Proceedings of SPIE 8189 Optics and Photonics for Counterterrorism and Crime Fighting VII, 81890C.
Maurice, S., Wiens, R.C., Le Mouélic, S., et al. (2015) The SuperCam instrument for the Mars 2020 rover. European Planetary Science Congress Abstracts, 10, EPSC2015-185.
Misra, A.K., Sharma, S.K., Acosta, T.E., & Bates, D.E. (2011) Compact remote Raman and LIBS system for detection of minerals, water, ices, and atmospheric gases for planetary exploration. Proceedings of the SPIE 8032, Next-Generation Spectroscopic Technologies IV, 80320Q.
Misra, A.K., Sharma, S.K., Acosta, T.E., Porter, J.N., & Bates, D.E. (2012) Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime. Applied Spectroscopy, 66, 12791285.
Moros, J. & Laserna, J.J. (2011) New Raman-Laser-Induced Breakdown Spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Analytical Chemistry, 83, 62756285.
Moros, J., Lorenzo, J.A., & Laserna, J.J. (2011) Standoff detection of explosives: Critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Analytical and Bioanalytical Chemistry, 400, 33533365.
Pettersson, A., Wallin, S., Östmark, H., et al. (2010) Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection. Proceedings of SPIE, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets, XV, 76641K, DOI:10.1117/12.852544.
Rull, F., Sansano, A., Sobron, P., & Amase, T. (2010) In-situ Raman-LIBS analysis of regolithes during AMASE 2008 and 2009 expeditions. 41st Lunar Planet. Sci. Conf., Abstract #2731.
Rull, F., Vegas, A., Sansano, A., & Sobron, P. (2011) Analysis of Arctic ices by remote Raman spectroscopy. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 80, 148155.
Scaffidi, J.P., Gregas, M.K., Lauly, B., Carter, J.C., Angel, S.M., & Vo-Dinh, T. (2010) Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering at a distance of 15 meters. Applied Spectroscopy, 64, 485492.
Sharma, S.K., Misra, A.K., Lucey, P.G., Angel, S.M., & McKay, C.P. (2006) Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters. Applied Spectroscopy, 60, 871876.
Sharma, S.K., Misra, A.K., Lucey, P.G., & Lentz, R.C.F. (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 73, 468476.
Sharma, S.K., Misra, A.K., Clegg, S.M., et al. (2011) Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 80, 7581.
Skulinova, M., Lefebvre, C., Sobron, P., et al. (2014) Time-resolved stand-off UV-Raman spectroscopy for planetary exploration. Planetary and Space Science, 92, 88100.
Sobron, P., Sanz, A., Thompson, C., Cabrol, N., & Team, P.L.L.P. (2014) In-situ lake bio-geochemistry using laser Raman spectroscopy and optrode sensing. 11th International GeoRaman Conference, Abstract #5027.
Sobron, P., Andersen, D.T., & Pollard, W.H. (2016) In-situ exploration of habitable environments and biosignatures in Arctic cold springs and Antarctic paleolakes. Conference on Biosignature Preservation and Detection in Mars Analog Environments, Abstract #1912.
Steele, A., Amundsen, H.E.F., Fogel, M., et al. (2011) The Arctic Mars Analogue Svalbard Expedition (AMASE) 2010. 42nd Lunar Planet. Sci. Conf., Abstract #1588.
Vítek, P., Edwards, H.G.M., Jehlička, J., et al. (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 32053221.
Wei, J., Wang, A., Lambert, J.L., et al. (2015) Autonomous soil analysis by the Mars Micro-beam Raman Spectrometer (MMRS) on-board a rover in the Atacama Desert: A terrestrial test for planetary exploration. Journal of Raman Spectroscopy, 46, 810821.
Zachhuber, B., Gasser, C., Chrysostom, E.t.H., & Lendl, B. (2011) Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects. Analytical Chemistry, 83, 94389442.