Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:30:00.950Z Has data issue: false hasContentIssue false

7 - Mössbauer Spectroscopy

Theory and Laboratory Spectra of Geologic Materials

from Part I - Theory of Remote Compositional Analysis Techniques and Laboratory Measurements

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

The technique of Mössbauer spectroscopy is the gold standard for measurements of the redox state, coordination environment, and site occupancy of iron in geologic materials. Laboratory measurements typically involve measurements on 5–300 mg of powdered material. Mössbauer is also used to identify mineralogy of iron oxide phases and in some cases to constrain the distribution of Fe among mixed silicate phases in a rock. Together, these uses fill a need in the terrestrial and extraterrestrial communities for understanding Fe redox states, and by inference, oxygen fugacity, as oxygen evolves on planetary bodies. This chapter provides a background for understanding the Mössbauer effect and interpretation of its hyperfine parameters.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 147 - 167
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanas’ev, A.M., Chuev, M.A., & Hesse, J. (1999) Mössbauer spectra of Stoner-Wohlfarth particles in rf fields in a modified relaxation model. Journal of Experimental and Theoretical Physics, 89, 533546.CrossRefGoogle Scholar
Alp, E.E., Sturhahn, W., & Toellner, T. (1995) Synchrotron Mössbauer-spectroscopy of powder samples. Nuclear Instruments and Methods in Physics Research B, 97, 526529.CrossRefGoogle Scholar
Annersten, H. (1975) Mössbauer study of iron in natural and synthetic biotites. Fortschritte der Mineralogie, 52, 583590.Google Scholar
Bancroft, G.M. (1970) Quantitative site populations in silicate minerals by the Mössbauer effect. Chemical Geology, 5, 255258.CrossRefGoogle Scholar
Bancroft, G.M. (1973) Mössbauer spectroscopy: An introduction for inorganic chemists and geochemists. McGraw Hill, New York.Google Scholar
Bancroft, G.M. & Brown, J.R. (1975) A Mössbauer study of coexisting hornblendes and biotites: Quantitative Fe3+/Fe2+ ratios. American Mineralogist, 60, 265272.Google Scholar
Blume, M. & Tjon, J.A. (1968) Mössbauer spectra in a fluctuating environment. Physics Reviews, 165, 446456.CrossRefGoogle Scholar
Burns, R.G. & Solberg, T.C. (1988) 57Fe-bearing oxide, silicate, and aluminosilicate minerals. In: Spectroscopic characterization of minerals and their surfaces (Coyne, L.M., Blake, D.F., & McKeever, S.W.S., eds.). American Chemical Society, Symposium Series. Oxford University Press, Los Angeles, 263282.Google Scholar
Carmichael, I.S.E. (1991) The oxidation state of basic magmas: A reflection of their source region? Contributions to Mineralogy and Petrology, 106, 129142.Google Scholar
Chandra, R. & Lokanathan, S. (1977) Electric field gradient in biotite mica. Physica Status Solidi, 83, 273280.Google Scholar
Clark, M.G., Bancroft, G.M., & Stone, A.J. (1967) Mössbauer spectrum of Fe2+ in a square planar environment. Journal of Chemical Physics, 47, 42504261.Google Scholar
Cottenier, S. (2016) www.hyperfinecourse.org : an open on-line course on hyperfine interaction methods by S. Cottenier (spring 2016 edition).Google Scholar
De Grave, E. & Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337342.Google Scholar
De Grave, E., Verbeeck, A.E., & Chambaere, D.G. (1985) Influence of small aluminum substitutions on the hematite lattice. Physics Letters, A107, 181184.CrossRefGoogle Scholar
De Grave, E., Vandenberghe, R.E., & Dauwe, C. (2005) ILEEMS: Methodology and applications to iron oxides. Hyperfine Interactions, 161, 147160.Google Scholar
Delattre, J.L., Stacy, A.M., Young, V.G., Long, G.J., Hermann, R., & Grandjean, F. (2002) Study of the structural, electronic, and magnetic properties of the barium-rich iron(IV) iron(IV) oxides, Ba2FeO4 and Ba3FeO5. Inorganic Chemistry, 41, 28342838.Google Scholar
Dyar, M.D. (1984) Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. American Mineralogist, 69, 11271144.Google Scholar
Dyar, M.D. (1986) Practical application of Mössbauer goodness-of-fit parameters for evaluation of real experimental results: A reply. American Mineralogist, 71, 12661267.Google Scholar
Dyar, M.D. (1989) Applications of Mössbauer goodness-of-fit parameters to experimental spectra: Further discussion. American Mineralogist, 74, 688689.Google Scholar
Dyar, M.D. (1990) Mössbauer spectra of biotites from metapelites. American Mineralogist, 75, 656666.Google Scholar
Dyar, M.D., Mackwell, S.J., McGuire, A.V., Cross, L.R., & Robertson, J.D. (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: Implications for mantle metasomatism. American Mineralogist, 78, 968979.Google Scholar
Dyar, M.D., Agresti, D.G., Schaefer, M., Grant, C.A., & Sklute, E.C. (2006) Mössbauer spectroscopy of earth and planetary materials. Annual Reviews in Earth and Planetary Science, 34, 83125.Google Scholar
Dyar, M.D., Klima, R.L., & Pieters, C.M. (2007a) Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes. American Mineralogist, 92, 424428.Google Scholar
Dyar, M.D., Schaefer, M.W., Sklute, E.C., & Bishop, J.L. (2007b) Mössbauer spectroscopy of phyllosilicates: Effects of fitting models on recoil-free fractions and redox ratios. Clay Minerals, 43, 131.Google Scholar
Dyar, M.D., Breves, E.A., Jawin, E., et al. (2013a) Mössbauer parameters of iron in sulfate minerals. American Mineralogist, 98, 19431965.Google Scholar
Dyar, M.D., Klima, R.L., Fleagle, A., & Peel, S.E. (2013b) Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. American Mineralogist, 98, 11721186.Google Scholar
Dyar, M.D., Jawin, E., Breves, E.A., et al. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914942.Google Scholar
Ericsson, T. & Wäppling, R. (1976) Texture effects in 3/2–1/2 Mössbauer spectra. Journal de Physique Colloques, 37, C6-719–C6-723.Google Scholar
Frauenfelder, H. (1962) The Mössbauer effect. W.A. Benjamin, New York.Google Scholar
Gee, L.B., Lin, C.Y., Jenney, F.E., et al. (2016) Synchrotron-based nickel Mössbauer spectroscopy. Inorganic Chemistry, 55, 68666872.Google Scholar
Gibb, T.C. (1976) Principles of Mössbauer spectroscopy. Springer-Verlag, Dordrecht.Google Scholar
Greenwood, N.B. & Gibb, T.C. (1971) Mössbauer spectroscopy. Chapman and Hall, London.Google Scholar
Gütlich, P., Eckhard, B., & Trautwein, A.X. (2011) Mössbauer spectroscopy and transition metal chemistry. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Handke, B., Kozlowski, A., Parlinski, K., Przewoznik, J., & Slezak, T. (2005) Experimental and theoretical studies of vibrational density of states in Fe3O4 single-crystalline thin films. Physical Review B: Condensed Matter and Materials Physics, 71, 144301.Google Scholar
Herber, R.H. (1984) Chemical Mössbauer spectroscopy. Plenum, New York.CrossRefGoogle Scholar
Herber, R.H. & Johnson, D. (1979) Lattice dynamics and hyperfine interactions in M2FeO4 (M = K+, Rb+, Cs+) and M`FeO4 (M`=Sr2+, Ba2+). Inorganic Chemistry, 18, 27862790.Google Scholar
Herberle, J. (1971) The Debye integrals, the thermal shift, and the Mössbauer fraction. In: Mössbauer effect methodology (Gruverman, I.J., ed.). Plenum, New York.Google Scholar
Herd, C.D.K., Papike, J.J., & Brearley, A.J. (2001) Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American Mineralogist, 86, 10151024.Google Scholar
Herd, C.D.K., Borg, L.E., Jones, J.H., & Papike, J.J. (2002) Oxygen fugacity and geochemical variations in the martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta, 66, 20252036.Google Scholar
Klingelhöfer, G. (1998) In-situ analysis of planetary surfaces by Mössbauer spectroscopy. Hyperfine Interactions, 113, 369374.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2003) Athena MIMOS II Mössbauer spectrometer investigation. Journal of Geophysical Research, 108, 8067.Google Scholar
Kojima, N., Ikeda, K., Kobayashi, Y., et al. (2012) Study of the structure and electronic state of thiolate-protected gold clusters by means of Au-197 Mössbauer spectroscopy. Hyperfine Interactions, 207, 127131.Google Scholar
Ladrière, J., Meykens, A., Coussement, R., et al. (1979) Isomer shift calibration of 57Fe by life-time variations in the electron capture decay of 57Fe. Journal de Physique Colloques, 40, C2-20–C2-22.Google Scholar
LaFleur, L.D. & Goodman, C. (1971) Characteristic temperatures of the Mössbauer fraction and thermal-shift measurements in iron and iron salts. Physics Reviews B, 4, 29152920.CrossRefGoogle Scholar
Lindsley, D.H., Frost, B.R, Ghiorso, M.S., & Sack, R.O. (1991) Oxides lie; the Bishop Tuff did not erupt from a thermally zoned magma body (abstr.). Eos, Transactions AGU, 72, 312.Google Scholar
Long, G.J., Cranshaw, T.E., & Longworth, G. (1983) The ideal Mössbauer effect absorber thicknesses. Mössbauer Effect Reference Data Journal, 6, 4249.Google Scholar
Masai, H., Matsumoto, S., Ueda, Y., & Koreeda, A. (2016) Correlation between valence state of tin and elastic modulus of Sn-doped Li2O-B2O3-SiO2 glasses. Journal of Applied Physics, 119, 185104, DOI:10.1063/1.4948685.Google Scholar
McCammon, C.A. (1994) A Mössbauer milliprobe: Practical considerations. Hyperfine Interactions, 92, 12351239.Google Scholar
McCanta, M.C., Rutherford, M.J., & Muselwhite, D.S. (2002) An experimental study of REE partitioning between a dry shergottite melt and pigeonite as a function of fO(2): Implications for the martian interior. Meteoritics and Planetary Science, 37, A97–A97.Google Scholar
McCanta, M.C., Rutherford, M.J., & Jones, J.H. (2004) An experimental study of rare earth element partitioning between a shergottite melt and pigeonite: Implications for the oxygen fugacity of the martian interior. Geochimica et Cosmochimica Acta, 68, 19431952.Google Scholar
McCanta, M.C., Elkins-Tanton, L., & Rutherford, M.J. (2009) Expanding the application of the Eu oxybarometer to the lherzolitic shergottites and nakhlites: Implications for the oxidation state heterogeneity of the martian interior. Meteoritics and Planetary Science, 44, 725745.CrossRefGoogle Scholar
Menil, F. (1985) Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra: Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) (where X is O or F and T any element with a formal positive charge. Journal of Physics and Chemistry of Solids, 46, 763789.Google Scholar
Moon, N., Coffin, C.T., Steinke, D.C., Sands, R.H., & Dunham, W.R. (1996) A high-sensitivity Mössbauer spectrometer facilitates the study of iron proteins at natural abundance. Nuclear Instruments and Methods in Physics Research B, 119, 555564.Google Scholar
Mørup, S. (2011) Magnetic relaxation phenomena. In: Mössbauer spectroscopy and transition metal chemistry (Bill Gutlich, P.E. & Trautwein, A.X., eds.). Springer-Verlag, Berlin, 201234.Google Scholar
Mössbauer, R.L. (1958) Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik, 151, 124143.Google Scholar
Munck, E., Groves, J.L., Tumolillo, T.A., & Debrunner, P.G. (1973) Computer simulations of Mössbauer-spectra for an effective spin S = 1/2 Hamiltonian. Computer Physics Communications, 5, 225238.CrossRefGoogle Scholar
Murad, E. & Cashion, J. (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer, Dordrecht.Google Scholar
Neese, F. & Petrenko, T. (2011) Quantum chemistry and Mössbauer spectroscopy. In: Mössbauer spectroscopy and transition metal chemistry: Fundamentals and Applications (Gütlich, P., Bill, E., & Trautwein, A.X., eds.). Springer, Berlin and Heidelberg, 137199.Google Scholar
Oosterhuis, W.T. & Spartalian, K. (1976) Biological iron transport and storage compounds. In: Applications of Mossbauer spectroscopy, 1 (Cohen, R.L., ed.). Elsevier, New York, 142170.Google Scholar
Parkinson, I.J. & Arculus, R.J. (1999) The redox state of subduction zones: Insights from arc-peridotites. Chemical Geology, 160, 409423.Google Scholar
Perfiliev, Y.D. & Sharma, V.K. (2008) Higher oxidation states of iron in solid state: Synthesis and their Mössbauer characterization. In: Ferrates: Synthesis, properties, and applications in water and wastewater treatment (Sharma, V.K., ed.). ACS Symposium Series. Oxford University Press, Los Angeles, 112123.Google Scholar
Ping, J.Y. & Rancourt, D.G. (1992) Thickness effects with intrinsically broad absorption. Hyperfine Interactions, 71, 14331436.Google Scholar
Popa, T, Fan, M. Argyle, M.D., et al. (2013) H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst. Applied Catalysis, 464465, 207217.Google Scholar
Prisecaru, I. & Kent, T.A. (2012) Manual for WMOSS4, www.wmoss.org/downloads/ WMOSS4F_Letter.pdfGoogle Scholar
Rancourt, D.G. (1994a) Mössbauer spectroscopy of minerals I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Physics and Chemistry of Minerals, 21, 244249.CrossRefGoogle Scholar
Rancourt, D.G. (1994b) Mössbauer spectroscopy of minerals II. Problem of resolving cis and trans octahedral Fe2+ sites. Physics and Chemistry of Minerals, 21, 250257.Google Scholar
Rancourt, D.G., McDonald, A.M., Lalonde, A.E., & Ping, J.Y. (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 17.Google Scholar
Rancourt, D.G., Ping, J.Y., & Berman, R.G. (1994) Mössbauer spectroscopy of minerals III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series. Physics and Chemistry of Minerals, 21, 258267.CrossRefGoogle Scholar
Reiff, W.M. (1984) Zero and high field Mössbauer spectroscopy studies of the magnetic ordering behavior of one, two, and three dimensional systems. In: Chemical Mössbauer spectroscopy (Herber, R.H., ed.). Plenum Press, New York, 6594.Google Scholar
Sarma, P.R., Prakash, V., & Tripathi, K.C. (1980) Optimization of the absorber thickness for improving the quality of a Mössbauer spectrum. Nuclear Instruments and Methods in Physics Research B, 178, 167171.Google Scholar
Scepaniak, J.J., Vogel, C.S., Khusniyarov, M.M., Heinemann, F.W., Meyer, K., & Smith, J.M. (2011) Synthesis, structure, and reactivity of an iron(V) nitride. Science, 331, 10491052.Google Scholar
Shimony, U. (1965) Condition for maximum single-line Mössbauer absorption. Nuclear Instruments and Methods in Physics Research B, 37, 348350.Google Scholar
Shinjo, T., Ichida, T., & Takada, T. (1970) Fe57 Mössbauer effect and magnetic susceptibility of hexavalent iron compounds – K2FeO4, SrFeO4, and BaFeO4. Journal of the Physical Society of Japan, 29, 111115.Google Scholar
Sklute, E.C., Dyar, M.D., Kashyap, S., & Holden, J. (2016) The challenge of dist8inguishing iron (hydr)oxides and what it means for Mars (abstr.). Geological Society of America National Meeting, Denver, CO, #197–10.Google Scholar
Sturhahn, W. (2004) Nuclear resonant spectroscopy. Journal of Physics – Condensed Matter, 16, S497S530.Google Scholar
Sturhahn, W., Alp, E.E., Toellner, T.S., Hession, P., Hu, M., & Sutter, J. (1998) Introduction to nuclear resonant scattering with synchrotron radiation. Hyperfine Interactions, 113, 4758.Google Scholar
Treiman, A.H., McCanta, M., Dyar, M.D., et al. (2006) Brown and clear olivine in Chassignite NWA 2737: water and deformation (abstr.). 37th Lunar Planet. Sci. Conf., Abstract #1314.Google Scholar
Van Alboom, A. & De Grave, E. (2016) Temperature dependences of the hyperfine parameters of Fe2+ in FeTiO3 as determined by 57Fe-Mössbauer spectroscopy. American Mineralogist, 101, 735743.Google Scholar
Van Alboom, A., De Resende, V.G., De Grave, E., & Gomez, J.M. (2009) Hyperfine interactions in szomolnokite (FeSO₄∙H₂O). Journal of Molecular Structure, 924926, 448456.Google Scholar
Van Alboom, A., De Grave, E., & Wohlfahrt-Mehrens, M. (2011) Temperature dependence of the Fe2+ Mössbauer parameters in triphylite (LiFePO4). American Mineralogist, 96, 408416.Google Scholar
Van Alboom, A., De Resende, V.G., da Costa, G.M., & De Grave, E. (2015) Mössbauer spectroscopic study of natural eosphorite, [(Mn, Fe)AlPO4(OH)2H2O]. American Mineralogist, 100, 580587.Google Scholar
Visscher, W.M. (1960) Study of lattice vibrations by resonance absorption of nuclear gamma rays. Annals of Physics, 9, 194210.Google Scholar
Voigt, W. (1912) On the intensity distribution within lines of a gaseous spectrum, Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften zu München, 1912, 603620.Google Scholar
Wadhwa, M. (2001) Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science, 291, 15271530.Google Scholar
Waychunas, G.A. (1986) Performance and use of Mössbauer goodness of fit parameters: Response to spectra of various signal/noise ratios and possible misinterpretations. American Mineralogist, 71, 12611265Google Scholar
Waychunas, G.A. (1989) Applications of Mössbauer goodness-of-fit parameters to experimental spectra: A discussion of random noise versus systematic effects. American Mineralogist, 74, 685687.Google Scholar
Whipple, E.R. (1968) Quantitative Mössbauer spectra and chemistry of iron. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Yan, L., Zhao, J., Toellner, T.S., et al. (2012) Exploration of synchrotron Mössbauer microscopy with micrometer resolution: Forward and a new backscattering modality on natural samples. Journal of Synchrotron Radiation, 19, 814820.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×