Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T05:10:40.770Z Has data issue: false hasContentIssue false

26 - Compositional and Mineralogic Analyses of Mars Using Multispectral Imaging on the Mars Exploration Rover, Phoenix, and Mars Science Laboratory Missions

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Multispectral imaging – the acquisition of spatially contiguous imaging data in a modest number (~3–16) of spectral bandpasses – has proven to be a powerful technique for augmenting panchromatic imaging observations on Mars focused on geologic and/or atmospheric context. Specifically, multispectral imaging using modern digital CCD photodetectors and narrowband filters in the 400–1100 nm wavelength region on the Mars Pathfinder, Mars Exploration Rover, Phoenix, and Mars Science Laboratory missions has provided new information on the composition and mineralogy of fine-grained regolith components (dust, soils, sand, spherules, coatings), rocky surface regions (cobbles, pebbles, boulders, outcrops, and fracture-filling veins), meteorites, and airborne dust and other aerosols. Here we review recent scientific results from Mars surface-based multispectral imaging investigations, including the ways that these observations have been used in concert with other kinds of measurements to enhance the overall scientific return from Mars surface missions.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 513 - 537
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.B. (1974) Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research, 79, 48294836.Google Scholar
Arvidson, R.E. (2016) Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. Journal of Geophysical Research, 121, 16021626.Google Scholar
Arvidson, R.E., Squyres, S.W., Anderson, R.C., et al. (2006) Overview of the spirit Mars exploration rover mission to Gusev crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002499.CrossRefGoogle Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.CrossRefGoogle Scholar
Arvidson, R.E., Bonitz, R.G., Robinson, M.L., et al. (2009) Results from the Mars Phoenix Lander robotic arm experiment. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003408.CrossRefGoogle Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, DOI:10.1029/2010JE003633.CrossRefGoogle Scholar
Arvidson, R.E., Ashley, J.W., Bell, J., et al. (2011) Opportunity Mars rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003746.CrossRefGoogle Scholar
Arvidson, R.E., Squyres, S.W., Bell, J.F., et al. (2014) Ancient aqueous environments at Endeavour crater, Mars. Science, 343, 1248097.Google Scholar
Arvidson, R.E., Squyres, S.W., Morris, R.V., et al. (2016) High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour crater, Mars. American Mineralogist, 101, 13891405.CrossRefGoogle Scholar
Ashley, J.W., Golombek, M., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, E00F20, DOI:10.1029/2010JE003672.Google Scholar
Bell, J.F. III (1996) Iron, sulfate, carbonate, and hydrated minerals on Mars. In: Mineral spectroscopy: A tribute to Roger G. Burns. (Dyar, M.D., McCammon, C., & Schaefer, M.W., eds.). Geochemical Society Special Publication 5. Geochemical Society, Houston, TX, 359380.Google Scholar
Bell, J.F. III & Ansty, T. (2007) High spectral resolution UV to near-IR observations of Mars during 1999, 2001, and 2003 using HST/STIS. Icarus, 191, 581602.Google Scholar
Bell, J.F. III, McCord, T.B., & Owensby, P.D. (1990) Observational evidence of crystalline iron oxides on Mars. Journal of Geophysical Research, 95, 1444714461.CrossRefGoogle Scholar
Bell, J.F. III, McSween, H.Y. Jr., Murchie, S.L., et al. (2000) Mineralogic and compositional properties of martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 105, 17211755.Google Scholar
Bell, J.F. III, Squyres, S., Herkenhoff, K., et al. (2003) Mars exploration rover Athena panoramic camera (Pancam) investigation. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002070.CrossRefGoogle Scholar
Bell, J.F. III, Squyres, S.W., Arvidson, R.E., et al. (2004a) Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science, 306, 17031709.Google Scholar
Bell, J.F. III, Squyres, S.W., Arvidson, R., et al. (2004b) Pancam multispectral imaging results from the Spirit rover at Gusev crater. Science, 305, 800806.Google Scholar
Bell, J.F. III, Savransky, D., & Wolff, M.J. (2006) Chromaticity of the martian sky as observed by the Mars Exploration Rover Pancam instruments. Journal of Geophysical Research, 111, E12S05, DOI:10.1029/2006JE002687.CrossRefGoogle Scholar
Bell, J.F. III, Calvin, W.M., Farrand, W.H., et al. (2008) Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust in Gusev crater and Meridiani Planum. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 281314.Google Scholar
Bell, J.F. III, Maki, J.N., Mehall, G.L., Ravine, M.A., Caplinger, M.A., & Mastcam-Z Team. (2016) Mastcam-Z: Designing a geologic, stereoscopic, and multispectral pair of zoom cameras for the NASA Mars 2020 rover. 3rd International Workshop on Instrumentation for Planetary Missions, Abstract #4126.Google Scholar
Bell J.F. III, Godber, A., McNair, S., et al. (2017) The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving. Earth and Space Science, 4, 396452.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Bish, D.L., Blake, D., Vaniman, D., et al. (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, 1238932.Google Scholar
Blake, D., Vaniman, D., Achilles, C., et al. (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Science Reviews, 170, 341399.Google Scholar
Christensen, P., Wyatt, M., Glotch, T., et al. (2004) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 17331739.Google Scholar
Clark, B.C., Arvidson, R.E., Gellert, R., et al. (2007) Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. Journal of Geophysical Research, 112, E06S01, DOI:10.1029/2006JE002756.CrossRefGoogle Scholar
Clark, B.C., Morris, R.V., Herkenhoff, K.E., et al. (2016) Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars. American Mineralogist, 101, 15151526.CrossRefGoogle Scholar
Crumpler, L.S., Arvidson, R.E., Squyres, S.W., et al. (2011) Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. Journal of Geophysical Research, 116, E00F24, DOI:10.1029/2010JE003749.Google Scholar
Crumpler, L., Arvidson, R., Bell, J., et al. (2015) Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour crater. Journal of Geophysical Research, 120, 538569.Google Scholar
Cull, S.C., Arvidson, R.E., Catalano, J.G., et al. (2010a) Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203, DOI:10.1029/2010GL045269.Google Scholar
Cull, S., Arvidson, R.E., Mellon, M.T., Skemer, P., Shaw, A., & Morris, R.V. (2010b) Compositions of subsurface ices at the Mars Phoenix landing site. Geophysical Research Letters, 37, L24203, DOI:10.1029/2010GL045372.Google Scholar
Cull, S., Arvidson, R.E., Morris, R.V., Wolff, M., Mellon, M.T., & Lemmon, M.T. (2010c) Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations. Journal of Geophysical Research, 115, E00E19. DOI:10.1029/2009JE003410.Google Scholar
Cull, S., Kennedy, E., & Clark, A. (2014) Aqueous and non-aqueous soil processes on the northern plains of Mars: Insights from the distribution of perchlorate salts at the Phoenix lfanding site and in Earth analog environments. Planetary and Space Science, 96, 2934.Google Scholar
Drube, L., Leer, K., Goetz, W., et al. (2010) Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. Journal of Geophysical Research, 115, E00E23. DOI:10.1029/2009JE003419.Google Scholar
Edgett, K.S., Yingst, R.A., Ravine, M.A., et al. (2012) Curiosity’s Mars hand lens imager (MAHLI) investigation. Space Science Reviews, 170, 259317.Google Scholar
Ellehoj, M.D., Gunnlaugsson, H.P., Taylor, P.A., et al. (2010) Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research, 115, E00E16. DOI:10.1029/2009JE003413.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Squyres, S.W., Soderblom, J., & Ming, D.W. (2006) Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophysical Research, 111, E02S15, DOI:10.1029/2005JE002495.Google Scholar
Farrand, W.H., Bell, J.F., Johnson, J.R., et al. (2007) Visible and near‐infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 112, E06S02, DOI:10.1029/2006JE002773.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Bishop, J.L., & Morris, R.V. (2008a) Multispectral imaging from Mars Pathfinder. In: The martian surface (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 265280.Google Scholar
Farrand, W.H., Bell, J., Johnson, J.R., et al. (2008b) Rock spectral classes observed by the Spirit rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills. Journal of Geophysical Research, 113, E12S38, DOI:10.1029/2008JE003237.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Rice, M.S., & Hurowitz, J.A. (2013) VNIR multispectral observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover’s Pancam. Icarus, 225, 709725.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Rice, M.S., Jolliff, B.L., & Arvidson, R.E. (2014a) Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour crater, Mars. Journal of Geophysical Research, 119, 23492369.CrossRefGoogle Scholar
Farrand, W.H., Bell, J.F., Johnson, J.R., & Mittlefehldt, D.W. (2014b) Multispectral VNIR evidence of alteration processes on Solander Point, Endeavour crater, Mars. 8th International Conference on Mars, Abstract #1354.Google Scholar
Farrand, W.H., Johnson, J.R., Rice, M.S., Wang, A., & Bell, J.F. III (2016) VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers. American Mineralogist, 101, 20052019.Google Scholar
Fox, V., Arvidson, R., Guinness, E., et al. (2016) Smectite deposits in Marathon Valley, Endeavour crater, Mars, identified using CRISM hyperspectral reflectance data. Geophysical Research Letters, 43, 48854892.Google Scholar
Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al. (2013) A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology, 41, 11031106.CrossRefGoogle Scholar
Fraeman, A.A., Johnson, J.R., Wellington, D.F., et al. (2016) Distribution of iron oxides in lower Mt. Sharp from Curiosity and orbital datasets, and implications for their formation. AGU Fall Meeting Abstracts, Abstract #P23B-2173.Google Scholar
Gaffey, M.J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Goetz, W., Bertelsen, P., Binau, C., et al. (2005) Chemistry and minearology of atmospheric dust at Gusev crater: Indication of dryer periods on Mars. Nature, 436, 6265.Google Scholar
Goetz, W., Pike, W.T., Hviid, S.F., et al. (2010) Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties. Journal of Geophysical Research, 115, E00E22, DOI:10.1029/2009JE003437.Google Scholar
Goetz, W., Hecht, M.H., Hviid, S.F., et al. (2012) Search for ultraviolet luminescence of soil particles at the Phoenix landing site, Mars. Planetary and Space Science, 70, 134147.CrossRefGoogle Scholar
Grotzinger, J.P., Arvidson, R.E., Bell, J.F., et al. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.Google Scholar
Grotzinger, J.P., Crisp, J., Vasavada, A.R., et al. (2012) Mars Science Laboratory mission and science investigation. Space Science Reviews, 170, 556.Google Scholar
Grotzinger, J.P., Sumner, D.Y., Kah, L.C., et al. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science, 343, 1242777.Google Scholar
Gunn, M.D. & Cousins, C.R. (2016) Mars surface context cameras past, present, and future. Earth and Space Science, 3, 144162.Google Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Hecht, M.H., Marshall, J., Pike, W.T., et al. (2008) Microscopy capabilities of the Microscopy, Electrochemistry, and Conductivity Analyzer. Journal of Geophysical Research, 113, E00A22, DOI:10.1029/2008JE003077.Google Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., et al. (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325, 6467.Google Scholar
Holstein-Rathlou, C., Gunnlaugsson, H.P., Merrison, J.P., et al. (2010) Winds at the Phoenix landing site. Journal of Geophysical Research, 115, E00E18. DOI:10.1029/2009JE003411.Google Scholar
Horgan, B., Fraeman, A.A., Rice, M.S., Bell, J.F., Wellington, D., & Johnson, J.R. (2017) New constraints from CRISM and Mastcam spectra on the mineralogy and origin of Mt. Sharp geologic units, Gale crater, Mars. 48th Lunar Planet. Sci. Conf., Abstract #3021.Google Scholar
Huck, F.O., Jobson, D.J., Park, S.K., et al. (1977) Spectrophotometric and color estimates of the Viking Lander sites. Journal of Geophysical Research, 82, 44014411.Google Scholar
Johnson, J.R., Grundy, W.M., & Lemmon, M.T. (2003) Dust deposition at the Mars Pathfinder landing site: Observations and modeling of visible/near-infrared spectra. Icarus, 163, 330346.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., et al. (2006a) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002494.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., et al. (2006b) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002762.Google Scholar
Johnson, J.R., Bell, J.F. III, Cloutis, E.A., et al. (2007) Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophysical Research Letters, 34, L13202, DOI:10.1029/2007GL029894.Google Scholar
Johnson, J.R., Bell, J.F. III, Geissler, P., et al. (2008) Physical properties of the martian surface from spectrophotometric observations. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 428450.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2013) Preliminary Mastcam visible/near-infrared spectrophotometric observations at the Curiosity landing site, Mars. 44th Lunar Planet. Sci. Conf., Abstract #1374.Google Scholar
Johnson, J.R., Bell, J.F. III, Gasnault, O., et al. (2014a) First iron meteorites observed by the Mars Science Laboratory (MSL) rover Curiosity. AGU Fall Meeting Abstracts, Abstract #P51E-3989.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2014b) New Mastcam and Mahli visible/near-infrared spectrophotometric observations at the Curiosity landing site, Mars. 8th International Conference on Mars, Abstract #1073.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., JBell, J.F. III, & Deen, R.G. (2015a) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500–1525. Icarus, 248, 2571.Google Scholar
Johnson, J.R., Bell, J.F. III, Guinness, E., & Deen, R. (2015b) The Mars Exploration Rovers Planetary Data System Archive of Pancam Photometry QUBS. Geologic Society of America Annual Meeting, Baltimore, MD, November 1–4, 2015, Abstract #260213.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2015c) Recent Mastcam and MAHLI visible/near-infrared spectrophotometric observations: Kimberley to Hidden Valley. 46th Lunar Planet. Sci. Conf., Abstract #1424.Google Scholar
Johnson, J.R., Bell, J.F. III, Deen, R., et al. (2015d) Recent Mastcam and MAHLI visible/near-infrared spectrophotometric observations: Pahrump Hills to Marias Pass. AGU Fall Meeting, Abstract #P43B-2125.Google Scholar
Johnson, J.R., Bell, J.F. III, Bender, S., & MSL Science Team. (2015e) ChemCam Passive Reflectance Spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 249, 7492.Google Scholar
Johnson, J.R., Bell, J.F., Bender, S., et al. (2016) Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale crater, Mars. American Mineralogist, 101, 15011514.CrossRefGoogle Scholar
Johnson, J.R., Achilles, C., Bell, J.F., et al. (2017) Visible/near‐infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale crater, Mars. Journal of Geophysical Research, 122, 26552684.Google Scholar
Keller, H.U., Goetz, W., Hartwig, H., et al. (2008) Phoenix Robotic Arm Camera. Journal of Geophysical Research, 113, E00A17, DOI:10.1029/2007JE003044.Google Scholar
Kinch, K.M., Merrison, J.P., Gunnlaugsson, H.P., Bertelsen, P., Madsen, M.B., & Nørnberg, P. (2006) Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model. Planetary and Space Science, 54, 2844.CrossRefGoogle Scholar
Kinch, K.M., Bell, J.F., Goetz, W., et al. (2015) Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets. Earth and Space Science, 2, 144172.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2004) Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science, 306, 17401745.Google Scholar
Knoll, A.H., Jolliff, B.L., Farrand, W.H., et al. (2008) Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. Journal of Geophysical Research, 113, E06S16, DOI:10.1029/2007JE002949.Google Scholar
Lane, M., Morris, R.V., & Christensen, P.R. (1999) Spectral behavior of hematite at visible/near infrared and mid-infrared wavelengths. 5th International Conference on Mars, Abstract #6085.Google Scholar
Lane, M., Bishop, J., Dyar, M.D., King, P., Parente, M., & Hyde, B. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.Google Scholar
Lemmon, M.T., Wolff, M.J., Bell, J.F. III, Smith, M.D., Cantor, B.A., & Smith, P.H. (2015)Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96111, DOI:10.1016/j.icarus.2014.03.029.Google Scholar
Lemmon, M., Smith, P.H., Shinohara, C., et al. (2008) The Phoenix surface stereo imager (SSI) investigation. 39th Lunar Planet. Sci. Conf., Abstract #2156.Google Scholar
Lemmon, M.T., Wolff, M.J., Smith, M.D., et al. (2004) Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306, 17531756.Google Scholar
Madsen, M.B., Goetz, W., Bertelsen, P., et al. (2009) Overview of the magnetic properties experiments on the Mars Exploration Rovers. Journal of Geophysical Research, 114, E06S90, DOI:10.1029/2008je003098.Google Scholar
Mahaffy, P.R., Webster, C.R., Cabane, M., et al. (2012) The sample analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 170, 401478.Google Scholar
Malin, M.C., Ravine, M.A., Caplinger, M.A., et al. (2017) The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 4, 506539.Google Scholar
Matijevic, J.R., Crisp, J., Bickler, D.B., et al. (1997) Characterization of the martian surface deposits by the Mars Pathfinder rover, Sojourner. Science, 278, 17651768.Google Scholar
McLennan, S.M., Bell, J.F., Calvin, W.M., et al. (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95121.Google Scholar
McSween, H.Y., Wyatt, M.B., Gellert, R., et al. (2006a) Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars Journal of Geophysical Research, 111, E02S10, DOI:10.1029/2005JE002477.CrossRefGoogle Scholar
McSween, H.Y., Ruff, S.W., Morris, R.V., et al. (2006b) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 111, E09S91, DOI:10.1029/2006JE002698.Google Scholar
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., et al. (2009) Ground ice at the Phoenix landing site: Stability state and origin. Journal of Geophysical Research, 114, E00E07. DOI:10.1029/2009JE003417.Google Scholar
Milliken, R.E., Grotzinger, J.P., & Thomson, B.J. (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophysical Research Letters, 37, L04201. DOI:10.1029/2009GL041870.Google Scholar
Ming, D.W., Mittlefehldt, D.W., Morris, R.V., et al. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12, DOI:10.1029/2005JE002560.CrossRefGoogle Scholar
Ming, D.W., Gellert, R., Morris, R.V., et al. (2008) Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S39, DOI:10.1029/2008JE003195.Google Scholar
Moores, J.E., Lemmon, M.T., Smith, P.H., Komguem, L., & Whiteway, J.A. (2010) Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. Journal of Geophysical Research, 115, E00E08. DOI:10.1029/2009JE003409.Google Scholar
Moores, J.E., Komguem, L., Whiteway, J.A., Lemmon, M.T., Dickinson, C., & Daerden, F. (2011) Observations of near-surface fog at the Phoenix Mars landing site. Geophysical Research Letters, 38, L04203, DOI:10.1029/2010GL046315.Google Scholar
Morris, R.V. & Klingelhöfer, G. (2008) Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers. In: The martian surface: Composition, mineralogy and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 339365.Google Scholar
Morris, R.V., Golden, D.C., Bell, J.F., Lauer, H.V., & Adams, J.B. (1993) Pigmenting agents in martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochimica et Cosmochimica Acta, 57, 45974609.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Ming, D.W., Yen, A., et al. (2007) Possible evidence for iron sulfates, iron sulfides, and elemental sulfur at Gusev crater, Mars, from MER, CRISM, and analog data. 7th International Conference on Mars, Abstract #3933.Google Scholar
Morris, R.V., Klingelhofer, G., Schroder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003201.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 421424.Google Scholar
Murchie, S., Kirkland, L., Erard, S., Mustard, J., & Robinson, M. (2000) Near-infrared spectral variations of martian surface materials from ISM Imaging Spectrometer Data. Icarus, 147, 444471.Google Scholar
Mustard, J.F. & Bell, J.F. III (1994) New composite reflectance spectra of Mars from 0.4 to 3.14 μm. Geophysical Research Letters, 21, 353356.Google Scholar
Nachon, M., Mangold, N., Forni, O., et al. (2017) Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus, 281, 121136.Google Scholar
Parente, M., Bishop, J.L., & Bell, J.F. (2009) Spectral unmixing for mineral identification in pancam images of soils in Gusev crater, Mars. Icarus, 203, 421436.CrossRefGoogle Scholar
Pollack, J.B., Ockert-Bell, M.E., & Shepard, M.K. (1995) Viking Lander image analysis of martian atmospheric dust. Journal of Geophysical Research, 100, 52355250.Google Scholar
Renno, N.O., Bos, B.J., Catling, D.C., et al. (2009) Physical and thermodynamical evidence for liquid water on Mars. Journal of Geophysical Research, 114, E00E03. DOI:10.1029/2009JE003362.Google Scholar
Rice, M.S. & Bell, J.F. III (2011) Mapping hydrated materials with MER Pancam and MSL Mastcam: Results from Gusev crater and Meridiani Planum, and plans for Gale crater. AGU Fall Meeting, Abstract #P22A-02.Google Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., et al. (2010) Silica-rich deposits and hydrated minerals at Gusev crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus, 205, 375395.Google Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., et al. (2011) Temporal observations of bright soil exposures at Gusev crater, Mars. Journal of Geophysical Research, 116, E00F14, DOI:10.1029/2010JE003683.Google Scholar
Rice, M.S., Bell, J.F. III, Godber, A., et al. (2013a) Mastcam Multispectral Imaging results from the Mars Science Laboratory investigation in Yellowknife Bay. European Planetary Science Congress, Abstract #762.Google Scholar
Rice, M.S., Cloutis, E.A., Bell, J.F., et al. (2013b) Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499533.Google Scholar
Rice, M.S., Bell, J.F. III, Wellington, D.F., et al. (2013c) Hydrated minerals at Yellowknife Bay, Gale crater, Mars: Observations from Mastcam’s science filters. AGU Fall Meeting Abstracts, Abstract #P23C-1795.Google Scholar
Ruff S.W. and J.D. Farmer (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile, Nature Communications, 7, 13554, DOI:10.1038/ncomms13554.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D.L., et al. (2006) The rocks of Gusev crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002747.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23, DOI:10.1029/2010JE003767.CrossRefGoogle Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 113, E06S22. DOI:10.1029/2007JE002990.Google Scholar
Seelos, K.D., Seelos, F.P., Viviano‐Beck, C.E., et al. (2014) Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophysical Research Letters, 41, 48804887.Google Scholar
Shaw, A., Arvidson, R.E., Bonitz, R., et al. (2009) Phoenix soil physical properties investigation. Journal of Geophysical Research, 114, E00E05. DOI:10.1029/2009JE003455.Google Scholar
Smith, P.H., Tomasko, M., Britt, D., et al. (1997) The imager for Mars Pathfinder experiment. Journal of Geophysical Research, 102, 40034025.Google Scholar
Smith, P.H., Tamppari, L., Arvidson, R.E., et al. (2008) Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science. Journal of Geophysical Research, 113, E00A18, DOI:10.1029/2007JE003083.Google Scholar
Smith, P.H., Tamppari, L., Arvidson, R., et al. (2009) Water at the Phoenix landing site. Science, 325, 5861.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Blaney, D.L., et al. (2006a) Rocks of the Columbia Hills. Journal of Geophysical Research, 111, E02S11, DOI:10.1029/2005JE002562.Google Scholar
Squyres, S.W., Arvidson, R.E., Bollen, D., et al. (2006b) Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002771.CrossRefGoogle Scholar
Squyres, S.W., Aharonson, O., Clark, B.C., et al. (2007) Pyroclastic activity at Home Plate in Gusev crater. Science, 316, 738742.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J., et al. (2012) Ancient impact and aqueous processes at Endeavour crater, Mars. Science, 336, 570576.Google Scholar
Stoker, C.R., Zent, A., Catling, D.C., et al. (2010) Habitability of the Phoenix landing site. Journal of Geophysical Research, 115, E00E20. DOI:10.1029/2009JE003421.Google Scholar
Thomson, B., Bridges, N., Milliken, R., et al. (2011) Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214, 413432.Google Scholar
Tomasko, M.G., Doose, L.R., Lemmon, M., Smith, P.H., & Wegryn, E. (1999) Properties of dust in the martian atmosphere from the Imager on Mars Pathfinder. Journal of Geophysical Research, 104, 89879007.Google Scholar
Vaniman, D.T., Bish, D.L., Ming, D.W., et al. (2014) Mineralogy of a Mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480.Google Scholar
Vaughan, A.F., Johnson, J.R., Herkenhoff, K.E., et al. (2010) Pancam and Microscopic Imager observations of dust on the Spirit rover: Cleaning events, spectral properties, and aggregates. MARS, 5, 129145.Google Scholar
Wang, A. & Ling, Z. (2011) Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. Journal of Geophysical Research, 116, E00F17, DOI:10.1029/2010JE003665.Google Scholar
Wang, A., Bell, J.F. III, Li, R., et al. (2008) Light‐toned salty soils and coexisting Si‐rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research, 113, E12S40, DOI:10.1029/2008JE003126.Google Scholar
Wellington, D.F., Bell, J.F., Johnson, J.R., et al. (2017) Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale crater, Mars. American Mineralogist, 102, 12021217.Google Scholar
Williams, R.M., Grotzinger, J.P., Dietrich, W., et al. (2013) Martian fluvial conglomerates at Gale crater. Science, 340, 10681072.Google Scholar
Wolff, M.J., Smith, M.D., Clancy, R.T., et al. (2009) Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003350.Google Scholar
Yen, A.S., Morris, R.V., Clark, B.C., et al. (2008) Hydrothermal processes at Gusev crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10, DOI:10.1029/2007JE002978.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×