Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: June 2013

Chapter 9 - The role of neuropsychology in the rehabilitation of people with movement disorders

from Section 3 - Roles of the multidisciplinary team

Related content

Powered by UNSILO

References

1. SchragA, JahanshahiM, QuinnNP. What contributes to quality of life in patients with Parkinson’s disease?J Neurol Neurosurgery & Psychiatry 2000;69:308–312.
2. LezakM. Neuropsychological Assessment, 4th Edition. New York: Oxford University Press, 2004.
3. JahanshahiM, JenkinsIH, BrownRG, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995;118:913–33.
4. JahanshahiM, ArdouinC, BrownRG, et al. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 2000;123:1142–54.
5. DirnbergerG, FrithCD, JahanshahiM. Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage 2005;25:588–99.
6. Floyer-LeaA, MatthewsPM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 2005;94:512–18.
7. JahanshahiM, RothwellJC. Transcranial magnetic stimulation studies of cognition: An emerging field. Exp Brain Res 2000;131:1–9.
8. RepovsG, BaddeleyA. The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience 2006;139:5–21.
9. NormanDA, ShalliceT. Attention to action: willed and automatic control of behaviour. In RJ Davidson, GE Schwartz & DA Shapiro, eds. Consciousness and Self-regulation, Volume 4, New York: Plenum, 1986; 1–18.
10. MillerEK, CohenJD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001;24:167–202.
11. AlexanderGE, DeLongMR, StrickPL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–81.
12. MiddletonFA, StrickPL. The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci USA 1996;93:8683–7.
13. ClowerDM, DumRP, StrickPL. Basal ganglia and cerebellar inputs to ‘AIP’. Cerebr Cortex 2005;15:913–20.
14. DraganskiB, KherifF, KloeppelS, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 2008;28:7143–52.
15. LehericyS, DucrosM, Van de MoortelePF, et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 2004;55:522–9.
16. CummingsJL. Frontal-subcortical circuits and human behavior. Arch Neurol 1993;50:873–80.
17. JahanshahiM, FrithCD. Willed action and its impairments. Cogn Neuropsychol 1998;15:483–533.
18. ArdouinC, PillonB, PeifferE, et al. Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 1999;46:217–23.
19. JahanshahiM, RoweJ, SaleemT, et al. Striatal contribution to cognition: working memory and executive function in Parkinson’s disease before and after unilateral pallidotomy. J Cognit Neurosci 2002;14:298–310.
20. PillonB, ArdouinC, DujardinK, et al. Preservation of cognitive function in dystonia treated by pallidal stimulation. Neurology 2006;66:1556–8.
21. HalbigTD, GruberD, KoppUA, et al. Pallidal stimulation in dystonia: effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry 2005;76:1713–16.
22. JahanshahiM, CzerneckiV, ZurowskiAM. Neuropsychological, neuropsychiatric, and quality of life issues in DBS for dystonia. Mov Disord 2011;26:S63–78.
23. EmreM, AarslandD, BrownR, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 2007;22:1689–707.
24. DuboisB, BurnD, GoetzC, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the Movement Disorder Society Task Force. Mov Disord 2007;22:2314–24.
25. MattisS. Dementia Rating Scale Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc, 1988.
26. CummingsJL, MegaM, GrayK, Rosenberg-ThompsonS, CarusiDA, GornbeinJ. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308–14.
27. FolsteinMF, FolsteinSE, McHughPR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psych Res 1975;12:189–98.
28. NasreddineZS, PhillipsNA, BedirianV, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatric Soc 2005;53:695–9.
29. DuboisB, SlachevskyA, LitvanI, PillonB. The FAB: a Frontal Assessment Battery at bedside. Neurology 2000;55:1621–6.
30. PaviourDC, WinterburnD, SimmondsS, et al. Can the frontal assessment battery (FAB) differentiate bradykinetic rigid syndromes? Relation of the FAB to formal neuropsychological testing. Neurocase 2005;11:274–82.
31. RobbinsTW, JamesM, OwenAM, et al. Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 1994;57:79–88.
32. PagonabarragaJ, KulisevskyJ, LlebariaG, et al. Parkinson’s Disease – Cognitive Rating Scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord 2008;23:998–1005.
33. KalbeE, CalabreseP, NilsK, et al. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat Disord 2008;14:93–101.
34. MarinusJ, VisserM, VerweyNA, et al. Assessment of cognition in Parkinson’s disease. Neurology 2003;61:1222–8.
35. KulisevskyJ, PagonabarragaJ. Cognitive impairment in Parkinson’s disease: tools for diagnosis and assessment. Mov Disord 2009;24:1103–10.
36. SchragA, BaroneP, BrownRG, et al. Depression rating scales in Parkinson’s disease: critique and recommendations. Mov Disord 2007;22:1077–92.
37. LeentjensA, DujardinK, MarshL, et al. Anxiety rating scales in Parkinson’s disease: critique and recommendations. Mov Disord 2008;23:2015–25.
38. LeentjensA, DujardinK, MarshL, et al. Apathy and anhedonia rating scales in Parkinson’s disease: critique and recommendations. Mov Disord 2008;23:2004–14.
39. FriedmanJH, AlvesG, HagellP, MarinusJ, MarshL, Martinez-MartinP, GoetzCG, PoeweW, RascolO, SampaioC, StebbinsG, SchragA. Fatigue rating scales critique and recommendations by the Movement Disorders Society task force on rating scales for Parkinson’s disease. Mov Disord 2010 May 15;25(7):805–22. doi: 10.1002/mds.22989. Review
40. FernandezHH, AarslandD, FenelonG, et al. Scales to assess psychosis in Parkinson’s disease: critique and recommendations. Mov Disord 2008;23:484–500.
41. GothamAM, BrownRG, MarsdenCD: ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 1988;111:299–321.
42. CoolsR. Dopaminergic modulation of cognitive function – implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 2006;30:1–23.
43. JahanshahiM, WilkinsonL, GahirH, DharmindaA, LagnadoDA. Medication impairs probabilistic classification learning in Parkinson’s disease. Neuropsychologia 2010;48:1096–103.
44. TaylorAE, Saint-CyrJA, LangA. Frontal lobe dysfunction in Parkinson’s disease: the cortical focus of neostriatal outflow. Brain 1986;109:279–92.
45. OwenAM, IddonJL, HodgesJR, SummersBA, RobbinsTW. Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 1997;35:519–32.
46. BrownRG, SoliveriP, JahanshahiM. Executive processes in Parkinson’s disease – random number generation and response suppression. Neuropsychologia 1998;36:1355–62.
47. ObesoI, WilkinsonL, CasabonaE, BringasML, ÁlvarezM, ÁlvarezL, PavónN, Rodríguez-OrozMC, MacíasR, ObesoJA, JahanshahiM. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 2011 Jul;212(3):371–84.
48. BrownRG, MarsdenCD. Internal versus external cues and the control of attention in Parkinson’s disease. Brain 1988;111:323–45.
49. BoeveB. Parkinson-related dementias. Neurol Clin 2007;25:761–81.
50. WhittingtonCJ, PoddJ, KanMM. Recognition memory impairment in Parkinson’s disease: power and meta-analysis. Neuropsychology 2000;14:233–46.
51. ElghE, DomellofM, LinderJ, et al. Cognitive function in early Parkinson’s disease: a population-based study. Eur J Neurol 2009;16:1278–84.
52. AarslandD, BrønnickK, AlvesG, et al. The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J Neurol Neurosurg Psychiatr 2009;80;928–30.
53. LevyG, TangMX, CoteLJ, et al. Do risk factors for Alzheimer’s disease predict dementia in Parkinson’s disease?Mov Disord 2002;17:250–7.
54. Williams-GrayCH, FoltynieT, BrayneCE, RobbinsTW, BarkerRA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 2007;130:1787–98.
55. WeintraubD, KoesterJ, PotenzaMN, et al. Impulse control disorders in Parkinson disease a cross-sectional study of 3090 patients. Arch Neurol 2010;67:589–95.
56. SchragA, SheikhS, QuinnNP, et al. A comparison of depression, anxiety, and health status in patients with progressive supranuclear palsy and multiple system atrophy. Mov Disord 2010;25:1077–81.
57. AlbertM, FeldmanRG, WillisAL. The ‘subcortical dementia’ of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 1974;37:121–30.
58. LeiguardaRC, PramstallerPP, MerelloM, et al. Apraxia in Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy and neuroleptic-induced parkinsonism. Brain 1997;120:75–90.
59. PirtosekZ, JahanshahiM, BarrettG, LeesAJ. Attention and cognition in bradykinetic-rigid syndromes: an event-related potential study. Ann Neurol 2001;50:567–73.
60. LitvanI, MangoneCA, McKeeA, et al. Natural history of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry 1996;60:615–20.
61. DuboisB, PillonB, LegaultF, AgidY, LhermitteF. Slowing of cognitive processing in progressive supranuclear palsy. A comparison with Parkinson’s disease. Arch Neurol 1988;45:1194–9.
62. PillonB, BlinJ, VidailhetM, et al. The neuropsychological pattern of corticobasal degeneration: comparison with progressive supranuclear palsy and Alzheimer’s disease. Neurology 1995;45:1477–83.
63. SoliveriP, MonzaD, ParidiD, et al. Neuropsychological follow up in patients with Parkinson’s disease, striatonigral degeneration-type multisystem atrophy, and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2000;69:313–18.
64. DujardinK, DefebvreL, KrystkowiakP, et al. Executive function differences in multiple system atophy and Parkinson’s disease. Parkinsonism Relat Disord 2003;9:205–11.
65. BrownRG, LacomblezL, LandwehrmeyerBG, et al. Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain 2010;133:2382–93.
66. LitvanI, CummingsJ, MegaM. Neuropsychiatric features of corticobasal degeneration. J Neurol Neurosurg Psychiatry 1998;65:717–21.
67. KawaiY, SuenagaM, TakedaA, et al. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 2008;70:1390–6.
68. ColosimoC, MorganteL, AntoniniA, et al. Non-motor symptoms in atypical and secondary parkinsonism: the PRIAMO study. J Neurol 2010;257:5–14.
69. GrahamN, BakT, HodgesJ. Corticobasal degeneration as a cognitive disorder. Mov Disord 2003;18:1224–32.
70. GedaYE, BoeveBF, NegashS, et al. Neuropsychiatric features in 36 pathologically confirmed cases of corticobasal degeneration. J Neuropsychiatry Clin Neurosci 2007;19:77–80.
71. BrandtJ, ButtersN. The neuropsychology of Huntington’s disease. Rends Neurosci 1986;9:118–20.
72. HoA, SahakianB, BrownR, et al. Profile of cognitive progression in early Huntington’s disease. Neurology 2003;61:1702–6.
73. DuffK, PaulsenJ, MillsJ, et al. Mild cognitive impairment in prediagnosed Huntington disease. Neurology 2010;75:500–7.
74. PaulsenJS, NehlC, HothKF, et al. Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 2005;17:496–502.
75. JahanshahiM, RoweJ, FullerR. Impairment of movement initiation and execution but not preparation in idiopathic dystonia. Exp Brain Res 2001;140:460–8.
76. LombardiWJ, WoolstonDJ, RobertsJW, GrossRE. Cognitive deficits in patients with essential tremor. Neurology 2001;57:785–90.
77. BakT, CrawfordL, HearnV, MathuranathP, HodgesJ. Subcortical dementia revisited: similarities and differences in cognitive function between progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA). Neurocase 2005;11:268–73.
78. MayeuxR, SternY. Intellectual dysfunction and dementia in Parkinson disease. Adv Neurol 1983;38:211–27.
79. BrownRG, MarsdenCD. Subcortical dementia: the neuropsychological evidence. Neuroscience 1988;25:363–87.
80. JahanshahiM, BrownRG, MarsdenCD. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain 1992;115:539–64.
81. JahanshahiM, BrownRG, MarsdenCD. A comparative study of simple and choice reaction time in Parkinson’s, Huntington’s and cerebellar disease. J Neurol Neurosurg Psychiatry 1993;56:1169–77.
82. JahanshahiM, HallettM, eds. The Bereitschaftspotential. Movement-Related Cortical Potentials. Dordrecht: Kluwer-Plenum, 2003.
83. PastorMA, ArtiedaJ, JahanshahiM, ObesoJA. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 1992;115:211–25.
84. JonesC, MaloneT, DirnbergerG, EdwardsM, JahanshahiM. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cognit, 2008;68:30–41.
85. JahanshahiM, JonesCRG, ZijlmansJ, et al. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 2010;133:727–45.
86. BradleyD, WhelanR, WalshR, et al. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain 2009;132:2327–35.
87. BesteC, SaftC, AndrichJ, et al. Time processing in Huntington’s disease: a group-control study. PLOS ONE 2007;2:e1263.
88. RedgraveP, RodriguezM, SmithY, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 2010;11:760–72.
89. BrownRG, MarsdenCD. Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 1991 Feb;114(Pt 1A):215–31.
90. BeneckeR, RothwellJC, DickJP, DayBL, MarsdenCD. Performance of simultaneous movements in patients with Parkinson’s disease. Brain 1986;109:739–57.
91. BrownRG, JahanshahiM, MarsdenCD. The execution of bimanual movements in patients with Parkinson’s, Huntington’s and cerebellar disease. J Neurol Neurosurg Psychiatry 1993;56:295–7.
92. AronAR, SchlagheckenF, FletcherPC, BullmoreET, EimerM, BarkerR, SahakianBJ, RobbinsTW. Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington’s disease. Brain 2003;126:713–23.
93. DirnbergerG, NovakJ, NaselC, ZehnterM. Separating coordinative and executive dysfunction in cerebellar patients during motor skill acquisition. Neuropsychologia 2010;48:1200–8.
94. ZinziP, SalmasoD, De GrandisR, et al. Effects of an intensive rehabilitation programme on patients with Huntington’s disease: a pilot study. Clin Rehabil 2007;21:603–13.
95. NieuwboerA, RochesterL, MuncksL, SwinnenSP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord 2009;15:53–8.
96. WilkinsonL, JahanshahiM. The striatum and probabilistic implicit sequence learning. Brain Res 2007;1137:117–30.
97. WilkinsonL, KhanZ, JahanshahiM. The role of the basal ganglia and its cortical connections in sequence learning: evidence from implicit and explicit sequence learning in Parkinson’s disease. Neuropsychologia 2009;47:2564–73.
98. SchneiderSA, WilkinsonL, BhatiaKP, et al. Abnormal explicit but normal implicit sequence learning in premanifest and early Huntington’s disease. Mov Disord 2010;25:1343–9.
99. MorrisME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther 2000;80:578–97.
100. GriffinH, GreenlawR, LimousinP, et al. The effect of real and virtual visual cues on walking in Parkinson’s disease. J Neurol 2011;258:991–1000.
101. LimI, van WegenE, de GoodeC, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil 2005;19:695–713.
102. OliveiraRM, GurdJM, NixonP, et al. Micrographia in Parkinson’s disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry. 1997;63:429–33.
103. BassettS. Cognitive impairment in Parkinson’s disease. Primary Psychiatry 2005;12:50–5.
104. SpeelmanAD, van de WarrenburgBP, van NimwegenM, et al. Physical activity benefit patients with Parkinson disease?Nat Rev Neurol 2011;7:528–34.
105. SubramanianL, HindleJV, JohnstonS, et al. Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J Neurosci 2011;31:16309–17.
106. SinforianiE, BanchieriL, ZucchellaC, PacchettiC, SandriniG. Cognitive rehabilitation in Parkinson’s disease. Arch Gerontol Geriatr 2004;9:S387–91.
107. RidgelAL, KimCH, FickesEJ, MullerMD, AlbertsJL. Changes in executive function after acute bouts of passive cycling in Parkinson’s disease. J Aging Phys Act 2011;19:87–98.
108. TaubE, UswatteG, ElbertT. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 2002;3:228–36.
109. Pascual-LeoneA. Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse TMS. Neurology 1994;44:884–91.
110. SiebnerHR, RossmeierC, MentschelC, PeinemannA, ConradB. Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 2000;178: 91–4.
111. DobkinRD, MenzaM, AllenLA, et al. Telephone-based cognitive-behavioral therapy for depression in Parkinson disease. J Geriatr Psychiatry Neurol 2011;24:206–14.
112. SeckerDL, BrownRG. Cognitive behavioural therapy (CBT) for carers of patients with Parkinson’s disease: a preliminary randomised controlled trial. J Neurol Neurosurg Psychiatry 2005;76:491–7.