Skip to main content Accessibility help
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: April 2013

11 - Gap Junction–Mediated Therapies to Eliminate Cardiac Arrhythmias

from Section III - Future Applications of Regenerative Pharmacology

Related content

Powered by UNSILO


Asklund, T., I.B. Appelskog, O. Ammerpohl, T.J. Ekstrom, and P.M. Almqvist. Histone Deacetylase Inhibitor 4-phenylbutyrate Modulates Glial Fibrillary Acidic Protein and Connexin 43 Expression, and Enhances Gap-junction Communication, in Human Glioblastoma Cells. Eur. J. Cancer 40: 1073–1081, 2004.
Axelsen, L.N., M. Stahlhut, S. Mohammed, B.D. Larsen, M. Nielsen, N. Holstein-Rathlou, S. Andersen, O.N. Jensen, J.K. Hennan, and A.L. Kjolbye. Identification of Ischemia-regulated Phosphorylation Sites in Connexin43: A Possible Target for the Antiarrhythmic Peptide Analogue Rotigaptide (ZP123). J. Mole. Cell. Cardiol. 40: 790–798, 2006.
Barr, L., M. Dewey, and Berger, W.Propagation of Action Potentials and the Structure of the Nexus in Cardiac Muscle. J. Gen. Physiol. 48: 797–823, 1965.
Beauchamp, P. K. Yamada, A Baertschi, K. Green, E. Kanter, J. Saffitz, and A. KleberRelative contributions of connexins 40 and 43 to artial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes. Circ. Res. 99: 1216–1224, 2006.
Belluardo, N., T.W. White, M. Srinivas, A. Trovato-Salinaro, H. Ripps, G. Mudo, R. Bruzzone, and D.F. Condorelli. Identification and functional expression of HCx31.9. Cell Comm. Adhesion, 8(4–6): 173–178, 2001.
Betsuyaku, T., S. Kanno, D.L. Lerner, R.B. Schuessler, J.E. Saffitz, and K.A. Yamada. Spontaneous and inducible ventricular arrhythmias after myocardial infarction in mice. Cardiovasc. Pathol. 13: 156–164, 2004.
Betsuyaku, T., N.S. Nnebe, R. Sundset, S. Patibandla, C.M. Drueger, and K.A. YamadaOverexpression of cardiac Connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo. Am. J. Physiol. Heart Circ. Physiol. 290: H163–171, 2006.
Beyer, E.C.Gap junctions. Int Rev Cytol. 137C: 1–37, 1993.
Boyett, M., S. Inada, S. Yoo, J. Li, J. Liu, J. Tellez, I. Greener, H. Honjo, R. Billeter, M. Lei, H. Zhang, I. Efimov, and H. DorzynskiConnexins in the SA and AV nodes. Adv. Cardiol. 42:175–197, 2006.
Brink, P.R., V. Valiunas, H.Z. Wang, W. Zhao, K. Davies, and G.J. Christ. Experimental diabetes alters connexin43 derived gap junction permeability in short-term cultures of rat corporeal vascular smooth muscle cells. J. Urol. 175(1): 381–386, 2006.
Brink, P.R., K. Cronin, K. Banach, E. Peterson, E. Westphale, K.H. Seul, S.V. Ramanan, and E.C. Beyer. Evidence of heteromeric gap junction channels Formed from rat connexin43 and human connexin37. Am. J. Physiol. 273: C1386–C1396, 1997.
Brink, P.R., S.V. Ramanan, and G.J. Christ. Human connexin43 gap junction channel gating: evidence for mode shifts and/or heterogeneity. Am. J. Physiol. 271: C321–C331, 1996.
Bukauskas, F.F., M.M. Kreuzberg, M. Rackauskas, A. Bukauskiene, M.V.L. Bennett, V.K. Verselis, and K. Willecke. Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. PNAS. 103(25): 9726–9731, 2006.
Cascia, W.E., H. Yang, B.J. Muller-Borer, and T.A. Johnson. Ischemia-induced Arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation. J. Electrocardiol. 38: 55–59, 2005.
Cole, W.C., J.B. Picone, and N. Sperelakis. Gap junction uncoupling and discontinuous propagation in the heart. a comparison of experimental data with computer simulations. Biophys. J. 53(5): 809–818, 1988.
Das Sarma, J., R.A. Meyer, F. Wang, V. Abraham, C.W. Lo, and M. Koval. Multimeric connexin interactions prior to the trans-golgi network. J. Cell Sci. 114: 4013–4024, 2001.
de Groot, J.R., T. Veenstra, A.O. Verkerk, R. Wilders, J.P. Smits, F.J. Wilms-Schopman, R.F Wiegerinck, J. Bourier, C.N. Belterman, R. Coronel, and E.E. Verheijck. Conduction slowing by the gap junctional uncoupler carbenoxolone. Cardiovasc. Res. 60(2): 288–297, 2003.
Dhein, S. Peptides acting at gap junctions. Peptides. 23: 1701–1709, 2002.
Dhein, S., B.D. Larsen, J.S. Petersen, and F.W. Mohr. Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization pattern. Cell Commun. Adhes. 10: 371–378, 2003.
Duffy, H.S., A.W. Ashton, P. O’Donnell, W. Coombs, S.M. Taffet, M. Delmar, and D. C. Spray. Regulation of connexin43 protein complexes by intracellular acidification. Circ. Res. 94: 215–222, 2004.
Eloff, B.C., E. Gilat, X. Wan, and D.S. Rosenbaum. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction. Circulation. 108: 3157–3163, 2003.
Ek-Vitorin, J.F. and J.M. Burt. Quantification of gap junction selectivity. Am. J. Physiol. Cell Physiol. 289(6): C1535–C1546, 2005.
Er, F., R. Larbig, A. Ludwing, M. Bie, F. Hofmann, D. J. Beuckelmann, and U.C. Hoppe. Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current if and undermines spontaneous beating of neonatal cardiomyocytes. Circulation. 107(3): 485–489, 2003.
Ferriera-Cornwall, M., L. Yang, N. Narula, J. Lenxon, M. Lieberman, and G. Radice. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J. Cell Sci. 115: 1623–1634, 2002.
Goldberg, G., Valiunas, V., and Brink, P.R.Selectivity permeability of gap junction channels. Biochem. Biophysics Acta. 662: 96–101, 2004.
Gollob, M.H., D.L. Jones, A.D. Krahn, L. Danis, X. Gong, Q. Shao, X. Liu, J.P. Veinot, A. Tang, A. Stewart, F. Tesson, G. Klein, R. Yee, A. Skanes, G. Guiraudon, L. Ebihara, and D. Bai. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. Med. 354: 25, 2006.
Gutstein, D.E., G.E. Morley, D. Vaidya, F. Liu, F.L. Chen, H. Stuhlmann, and G.I. Fishman. Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation. 104: 1194–1199, 2001.
Hattori, Y., M. Fukushima, and Y. Maitani. Non-viral delivery of connexin 43 gene with histone deacetylase inhibitor to human nasopharyngeal tumor cells enhances gene expression and inhibits in vivo tumor growth. Int. J. Oncol. 30: 1427–1439, 2007.
Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544, 1952.
Janse, M. and A. WitElectrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Phys. Rev. 69: 1049–1169 1989.
Jongen, W.M., D.J. Fitzgerald, M. Asamoto, C. Piccoli, T.J. Slaga, D. Gros, M. Takeichi, and H. Yamasaki. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E cadherin. J. Cell Biol. 114(3): 545–555, 1991.
Kanaporis, G, G. Mese, L. Valiuniene, T.W. White, P.R. Brink, and V. Valiunas. Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides. J. Gen. Physiol. 131: 293–305, 2008.
Kreuzberg, M.M., G. Sohl, J. Kim, V.K. Verselis, K. Willecke, and F.F. Bukauskas. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ. Res. 96: 1169–1177, 2005.
Li, J., V.V. Patel and G.L. Radice. Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin. Med. Res. 4(1): 42–52, 2006.
Locke, D., J. Liu, and A.L. Harris. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts. Biochemistry 44(39): 13027–13042, 2005.
Mao, A., J. Bechberger, D. Lidington, J. Galipeau, D. Larid, and C. Naus. Neuronal differentiation and growth control of Neuro-2a cells after retroviral gene delivery of Connexin43. J. Biol. Chem. 275: 34407–34417, 2000.
Morley, G.E., J.F. Ek-Vitorin, S.M. Taffet, and M. Delmar. Structure of Connexin43 and its regulation by pHi. J. Cardiovasc. Electrophysiol. 8: 939–951, 1997.
Niessen, H., Harz, H., Bedner, P., Kramer, K., and Willecke, K.Selective permeability of different connexin channels to the second messenger IP3. J. Cell Sci. 113: 1365–1372, 2000.
Noble, D. The Initiation of the Heartbeat. 2nd ed. Clarendon Press, Oxford, 1979.
Oh, S., J.B. Rubin, M.V. Bennett, V.K. Verselis, and T.A. Bargiello. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J. Gen. Physiol. 114: 339–364, 1999.
Perlmutter, D.H.Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res. 52: 832–836, 2002.
Peters, N.S., J. Coromilas, N.J. Severs, and A.L. Wit. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 95(4): 988–996, 1997.
Plotnikov, A.N., I. Shlapakova, M.J. Szabolcs, P. Danilo, Jr, B.H. Lorell, I.A. Potapova, Z. Lu, A.B. Rosen, R.T. Mathias, P.R. Brink, R.B. Robinson, I.S. Cohen, and M.R. Rosen. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 116: 706–713. 2007.
PlumA., G. Hallas, T. Magin, F. Dombrowski, A. Hagendorff, B. Schumacher, C. Wolpert, J. Kim, W.H. Lamers, M. Evert, P. Meda, O. Traub, and K. Willecke. Unique and shared functions of different connexins in mice. Curr. Biol. 10(18): 1083–1091, 2000.
Poelzing, S. and D.S. Rosenbaum. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am. J. Physio. Heart Circ. Physiol., 287: H1762–H1770, 2004.
Potapova, I., A. Plotnikov, Z. Lu, P. Danilo, Jr., W. Valiunas, J. Qu, S. Doronin, J. Zuckerman, I.N. Shlapakova, J. Gao, Z. Pan, A.J. Herron, R.B. Robinson, P.R. Brink, M.R. Rosen, and I.S. Cohen. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res. 94: 952–959, 2004.
Prowse, D.M., G.P. Cadwallader, and J.D. Pitts. E-cadherin expression can alter the specificity of gap junction formation. Cell Biol. Int. 21(12): 833–843, 1997.
Rosen, A.B., D.J. Kelly, A.J. Schuldt, J. Lu, I.A. Potapova, S.V. Doronin, K.J. Robichaud, R.B. Robinson, M.R. Rosen, P.R. Brink, G.R. Gaudette, and I.S. Cohen. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells. 25(8):2128–2138, 2007.
Schroeder, M., P. Swietach, H. Atherton, F. Callagher, P. Lee, G. Radd, K. Clarke, and D. Tyler. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a C13 and P31 magnetic resonance spectroscopy study Cardiovasc. Res 86: 82–91, 2010.
Schulze-Bahr, E., A. Neu, P. Friederich, B. Kaupp, G. Breithardt, O. Pongs, and D. Isbrandt. Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Invest. 111: 1537–1545, 2003.
Schwarzmann, G., H. Wiegarndt, B. Rose, A. Zimmerman, D. Ben-Haim, and W. Loewenstein. Diameter of the cell to cell junctional membrane channels as probed with neutral molecules. Science. 213: 551–553, 1981.
Severs, N.J., E. Dupont, N. Thomas, R. Kaba, S. Rothery, R. Jain, K. Sharpey, and C.H. Fry. Alterations in cardiac connexin expression in cardiomyopathies. Adv. Cardiol. 42: 228–242, 2006.
Shi, W., R. Wymore, H. Yu, J. Wu, R.T. Wymore, Z. Pan, R.B. Robinson, J.E. Dixon, , D. McKinnon, and I.S. Cohen. Distribution and prevalence of hyperpolarization-activated cation channel HCN0 mRNA expression in cardiac tissues. Circ. Res. 85: E1–E6, 1999.
Simpson, I., B. Rose, and W.R. Loewenstein. Size limit of molecules permeating the junctional membrane channels. Science. 195: 294–296, 1977.
Singh, O.V., N. Vij, P.J., Mogayzel, Jr., C. Jozwik, H.B. Pollard, and P.L. Zeitlin. Pharmacoproteomics of 4-phenylbutyrate-treated IB3–1 cystic fibrosis bronchial. J. Proteome Res. 5(3): 562–571, 2006.
Valiunas, V., E.C. Beyer, and P.R. Brink. Gap junction channels show a quantitative difference in selectivity. Circ. Res. 91(2):104–111, 2002.
Valiunas, R., S. Doronin, L. Valiuniene, I. Potapova, J. Zuckerman, B. Walcott, R.B. Robinson, M.R. Rosen, P.R. Brink, and I.S. Cohen. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol: 555: 617–626, 2004.
Valiunas, V., G. Kanaporis, L. Valiuniene, C. Gordon, H. Wang, L. Li, R.B. Robinson, M.R. Rosen, I.S. Cohen, and P.R. Brink. Coupling an HCN2 expressing cell to a myocyte creates a two cell pacing unit. J. Physiol. 587: 5211–5226, 2009.
Valiunas, V., Y. Polosina, H. Miller, I. Potapova, L. Valiuniene, S. Doronin, R.T. Mathias, R.B. Robinson, M.R. Rosen, I.S. Cohen, and P.R. Brink. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568: 459–468, 2005.
VanSlyke, J.K. and L.S. Musil. Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol. Biol. Cell. 16: 5247–5257, 2005.
Van Veen, T.A.B., H.W.M. van Rijen, and T. Opthof. Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc. Res. 51: 217–229, 2001.
Wei, C.J., R. Francis, X. Xu, and C.W. Lo. Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J. Biol. Chem. 280(20): 19925–19936, 2005.
Weidman, S.Electrical constants of trabecular muscle from mammalian heart. J. Physiol. 210: 1041–1054, 1970.
Wilders, R., E.E. Verheijck, R. Kumar, W.N. Goolsby, A.C. van Ginneken, R.W. Joyner, and H.J. Jongsma. Model clamp and its application to synchronization of rabbit sinoatrial node cells. Am. J. Physiol. 271: H2168–H2182, 1996.
White, T.W., M. Srinivas, H. Ripps, A. Trovato-Salinaro, D.F. Condorelli, and R. Bruzzone. Virtual cloning, functional expression, and gating analysis of human Connexin31.9. Am. J. Physiol. Cell Physiol. 283(3): C960–C967, 2002.
Wirth, B., L. Brichta, and E. Hahnen. Spinal muscular atrophy: from gene to therapy. Semin. Pediatr. Neurol. 13(2): 121–131, 2006.
Yu, H., F., Chang, and I.S. Cohen. Pacemaker current exists in ventricular myocytes. Circ. Res. 72: 323–336, 1993.