Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T22:36:47.467Z Has data issue: false hasContentIssue false

Part II: - Palaeoclimates

Published online by Cambridge University Press:  04 May 2017

Yehouda Enzel
Affiliation:
Hebrew University of Jerusalem
Ofer Bar-Yosef
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quaternary of the Levant
Environments, Climate Change, and Humans
, pp. 75 - 178
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Almogi-Labin, A., Bar Matthews, M., Shriki, D. et al. 2009. Climatic variability during the last ∼90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28: 2882–96.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G.J. 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planetary Science Letters 166: 8595.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawksworth, C.J. 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181–99.CrossRefGoogle Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid perturbations of the East-Mediterranean climate linked to the North Atlantic Heinrich Events. Geology 31: 439–42.2.0.CO;2>CrossRefGoogle Scholar
Belmaker, R., Stein, M., Yechieli, Y. & Lazar, B. 2007. Controls on the radiocarbon reservoir ages in the modern Dead Sea drainage system and in the last Glacial Lake Lisan. Radiocarbon 49: 969–82.Google Scholar
Belmaker, R., Stein, M., Beer, J. et al. 2014. Beryllium isotopes as tracers of Dead Sea hydrology and the Laschamp geomagnetic excursion. Earth and Planetary Science Letters 400: 233–42.Google Scholar
Bookman, R., Enzel, Y., Agnon, A. & Stein, M. 2004. Late Holocene levels of the Dead Sea. Geological Society of America Bulletin 116: 555–71.Google Scholar
Bookman, R., Bartov, Y., Stein, M. & Enzel, Y. 2006. Lake level reconstruction in the late Quaternary Dead Sea basin. In New Frontiers in Dead Sea Paleoenvironmental Research, ed. Enzel, Y, Agnon, A & Stein, M, GSA Special Paper 401. Geological Society of America, pp. 155–70.Google Scholar
Edwards, R.L., Chen, J.H. & Wasserburg, G.J. 1987. 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81: 175–92.Google Scholar
Enmar, L. 1999. The travertines in the northern and central Arava: Stratigraphy, petrology and geochemistry. Geological Survey of Israel Report GSI/1/99.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H.P. 1999. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research 51: 317–27.Google Scholar
Haase-Schramm, A., Goldstein, S.L. & Stein, M. 2004. U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68: 9851005.CrossRefGoogle Scholar
Kagan, E., Stein, M., Agnon, A. & Bronks-Ramsey, C. 2010. Paleo-earthquakes as anchor points in Bayesian radiocarbon deposition models: A case study from the Dead Sea. Radiocarbon 52: 1018–26.Google Scholar
Kagan, E., Stein, M., Agnon, A. & Nuemann, F. 2011. Intrabasin paleoearthquakes and quiescence correlation of the late Holocene Dead Sea. Journal of Geophysical Research 116: B04311.Google Scholar
Kaufman, A. 1971. U-Series dating of Dead Sea Basin carbonates. Geochimica et Cosmochimica Acta 35: 1269–81.CrossRefGoogle Scholar
Kaufman, A. 1993. An evaluation of several methods for determining ages in impure carbonates. Geochimica et Cosmochimica Acta 57: 2303–17.CrossRefGoogle Scholar
Kaufman, A. & Broecker, W.S. 1965. Comparison of 230Th and 14C ages for carbonate material from lakes Lahanton and Bonneville. Journal of Geophysical Research 70: 4039–54.CrossRefGoogle Scholar
Kaufman, A., Broecker, W.S., Ku, T.L. & Thurber, D.L. 1971. The status of U-series methods of mollusk dating. Geochimica et Cosmochimica Acta 35: 1155–83.CrossRefGoogle Scholar
Kaufman, A., Yechieli, Y. & Gardosh, M. 1992. Reevaluation of the lake-sediment chronology in the Dead Sea basin, Israel, based on new 230Th/U dates. Quaternary Research 38: 292304.Google Scholar
Ken-Tor, R., Stein, M., Enzel, Y. et al. 2001 Precision of calibrated radiocarbon ages of earthquakes in the Dead Sea basin. Radiocarbon 43: 1371–82.Google Scholar
Kiro, Y., Goldstein, S.L., Lazar, B., Stein, M. 2016. Environmental implications of salt facies in the Dead Sea. Geological Society of America Bulletin. 128: 824841.Google Scholar
Kitagawa, H., Stein, M., Goldstein, S.L., Nakamura, T. & Lazar, B., DSDDP Scientific Party. 2016. Radiocarbon chronology of the DSDDP CORE at the deepest floor of the Dead Sea. Radiocarbon (2016): 112. DOI:10.1017/RDC.2016.120.Google Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea-rain–lake relation in the last Glacial East Mediterranean revealed by δ18O–δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4045–60.Google Scholar
Ku, T.-L. & Liang, Z.C. 1984. The dating of impure carbonates with decay-series isotopes. Nuclear Instruments and Methods in Physics Research 223: 563–71.Google Scholar
Lazar, B. & Stein, M. 2011. Freshwater on the route of hominids out of Africa revealed by U–Th in Red Sea corals. Geology 39: 1067–70.CrossRefGoogle Scholar
Lazar, B., Enmar, R., Schossberger, M. et al. 2004. Diagenesis in live corals from the Gulf of Aqaba: The effect on the U –Th system. Geochimica et Cosmochimica Acta 68: 4583–93.CrossRefGoogle Scholar
Lazar, B., Sivan, O., Yechieli, Y. et al. 2014. Long-term freshening of the Dead Sea brine revealed by porewater Cl- and δ18O in ICDP Dead Sea deep-drill. Earth and Planetary Science Letters 400: 94101.Google Scholar
Lev, L., Almogi-Labin, A., Mischke, S. et al. 2014. Paleohydrology of Lake Kinneret during the Heinrich event H2. Palaeogeography, Palaeo-climatology, Palaeoecology, 396: 183–93.CrossRefGoogle Scholar
Lin, J.C., Broecker, W.S., Anderson, R.F. et al. 1996. New 230Th/U and 14C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium. Geochimica et Cosmochimica Acta 60: 2817–32.Google Scholar
Livnat, A. & Kronfeld, J. 1985, Paleoclimatic implications of U-series dates for lake sediments and travertines in the Arava Rift Valley, Israel. Quaternary Research 24: 164–72.CrossRefGoogle Scholar
Luo, S. & Ku, T.-L. 1991. U-series isochron dating: A generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta 55: 555–64.Google Scholar
Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S. & Stein, M. 2000. Reconstruction of low-levels of Lake Lisan between 55 and 35 kyr. Quaternary International 73/74: 137–44.Google Scholar
Marco, S., Stein, M., Agnon, A. & Ron, H. 1996. Long-term earthquake clustering: 50,000- year paleoseismic record in the Dead Sea graben. Journal of Geophysical Research 101 B3: 6179–91.Google Scholar
Migowski, C., Agnon, A., Bookman, R., Negendank, J. & Stein, M. 2004. Recurrence pattern of Holocene earthquakes along the Dead Sea rift revealed by varve counting and radiocarbon dating of lacustrine sedi-ments. Earth Planetary Science Letters 222: 301–14.CrossRefGoogle Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W. & Agnon, A. 2006. Dead Sea levels, climate variability and human culture evolution in the Holocene Near East. Quaternary Research 66: 421–31.Google Scholar
Neev, D. & Emery, K.O. 1995. The Destruction of Sodom, Gomorrah, and Jericho. Geological, Climatological, and Archaeological Background. New York: Oxford University Press.Google Scholar
Neugebauer, I., Brauer, A., Waldmann, N. et al. & DSDDP Scientific Party. 2014. Lithologies and depositional environments of the last two climatic cycles in the deep hypersaline Dead Sea: New observations from the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102: 149–65.Google Scholar
Prasad, S., Vos, H., Negendank, J.F.W. et al. 2004. Evidence from Lake Lisan of solar influence on decadal to centennial climate variability during the late glacial. Geology 32: 581–4.CrossRefGoogle Scholar
Schramm, A., Stein, M. & Goldstein, S.L. 2000. Calibration of the 14C time scale to >40 ka by 234U–230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175: 2740.CrossRefGoogle Scholar
Scholz, D., Mangini, A. & Felis, T. 2004. U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters 218: 163–78.CrossRefGoogle Scholar
Schwarcz, H.P. 1982. Applications of U-series to archaeometry. In Uranium Series disequilibrium: Applications to Environmental Problems, ed. Ivanovich, M. & Harmon, R.S.. Oxford: Clarendon Press.Google Scholar
Shaked, Y., Lazar, B., Marco, S., Stein, M. & Agnon, A. 2009. Late Holocene events that shaped the shoreline at the northern Gulf of Aqaba recorded by a buried fossil reef. Israel Journal of Earth Sciences 58: 355–68.Google Scholar
Stein, M. 2014. The evolution of Neogene–Quaternary water-bodies in the Dead Sea Rift Valley. In Dead Sea Transform Fault System: Reviews, ed. Garfunkel, Z., Ben-Avraham, Z. & Kagan, E.. Dordrecht: Elsevier Science, pp. 279316.CrossRefGoogle Scholar
Stein, M., Wasserburg, G.J., Aharon, P. et al. 1993. TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochimica et Cosmochimica Acta 57: 2541–54.Google Scholar
Stein, M., Starinsky, A., Katz, A. et al. 1997. Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 61: 3975–92.CrossRefGoogle Scholar
Stein, M., Migowski, C., Bookman, R. & Lazar, B. 2004. Temporal changes in the radiocarbon reservoir age in the Dead Sea. Radiocarbon 46: 649–55.Google Scholar
Stein, M., Lazar, B. & Goldstein, S.L. 2013. Radiocarbon reservoir ages as freshwater-brine monitors in Lake Lisan–Dead Sea system. In Proceedings of the 21st International Radiocarbon Conference, ed. Jull, A.J.T. & Hatté, C.. Radiocarbon 55: 1050–7.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmochimica Acta 73: 2603–30.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Kagan, E. & Stein, M. 2013a. Multi-site integrated U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104: 210–34.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Enzel, Y. & Stein, M. 2013b. Impacts of abrupt climate changes in the Levant from last glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
van der Borg, K., Stein, M., de Jong, A.F.M., Waldmann, N. & Goldstein, S.L. 2004. Close to zero Δ14C-values at 32 kyr cal BP observed in the high-resolution 14C record from U–Th dated sediment of Lake Lisan. Radiocarbon 46: 785–96.Google Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Ca-chloride brines as paleo-hydrological monitors of the Dead Sea basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Waldmann, N., Stein, M., Artiztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin. Quaternary Research 72: 115.Google Scholar
Weil, N. 2010. Holocene Coral Reefs Evolution in the Gulf of Elat: Terraces, Sea-Levels and Growth Patterns. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Winograd, I.J., Szabo, B.J., Coplen, T.B. & Riggs, A.C. 1988. A 250,000 year climatic record from Great Basin vein calcite: Implications for Milankovitch theory. Science 242: 1275–80.Google Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M. et al. 1992. Continuous 500,000 year climate record from vein calcite in Devils Hole, Nevada. Science 258: 25560.Google Scholar
Yehudai, M., Lazar Bar, N., Agnon, A., Shaked, Y. & Stein, M. 2017. U–Th dating of calcitic corals from the Gulf of Aqaba. Geochimica et Cosmochimica Acta 198: 28598.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar

References

Abu Ghazleh, S. & Kempe, S. 2009. Geomorphology of Lake Lisan terraces along the eastern coast of the Dead Sea, Jordan. Geomorphology 108: 246–63.Google Scholar
Agnon, A., Migowski, C. & Marco, S. 2006. Intraclast breccias in lamin-ated sequences reviewed: Recorders of paleo-earthquakes. Geol-ogical Society of America Special Papers 401: 195214.Google Scholar
Avrahamov, N., Antler, G., Yechieli, Y. et al. 2014. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology 12: 511–28.Google Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A. & Reches, Z. 2002. Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea. Quaternary Research 57: 921.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.2.0.CO;2>CrossRefGoogle Scholar
Bartov, Y., Enzel, Y., Porat, N. & Stein, M. 2007. Evolution of the Late Pleistocene–Holocene Dead Sea basin from sequence stratigraphy of fan deltas and lake-level reconstruction. Journal of Sedimentary Research 77: 680–92.Google Scholar
Begin, Z.B., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63: 130.Google Scholar
Bookman (Ken-Tor), R., Enzel, Y., Agnon, A. & Stein, M. 2004. Late Holocene lake levels of the Dead Sea. Geological Society of America Bulletin 116: 5/6.CrossRefGoogle Scholar
Buchbinder, B. & Zilberman, E. 1997. Sequence stratigraphy of Miocene–Pliocene carbonate-siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): Effects of eustasy and tectonics. Sedimentary Geology 112: 732.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Haase-Schramm, A., Goldstein, S.L. & Stein, M. 2004. U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68: 9851005.Google Scholar
Hadzhiivanova, E. 2014. Sedimentological Insights into Depositional Events in the Dead Sea Basin. Unpublished M.Sc. thesis, University of Haifa.Google Scholar
Haliva-Cohen, A., Stein, M., Goldstein, S.L., Sandler, A. & Starinsky, A. 2012. Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea basin. Quaternary Science Reviews 50: 5570.Google Scholar
Kagan, E., Stein, M., Agnon, A. & Neumann, F. 2011. Intrabasin paleo-earthquake and quiescence correlation of the late Holocene Dead Sea. Journal of Geophysical Research 116: B04311.Google Scholar
Katz, A., Kolodny, Y. & Nissenbaum, A. 1977. The geochemical evolution of the Pleistocene Lake Lisan–Dead Sea system. Geochimica et Cosmochimica Acta 41: 1609–29.Google Scholar
Kaufman, A., Yechieli, Y. & Gardosh, M. 1992. Reevaluation of the lake-sediment chronology in the Dead Sea Basin, Israel, based on new 230Th/U dates. Quaternary Research 38: 292304.Google Scholar
Landmann, G., Abu Qudaira, G.M., Shawabkeh, K., Wrede, V. & Kempe, S. 2002. Geochemistry of the Lisan and Damya Formations in Jordan, and implications for paleoclimate. Quaternary International 89: 4557.Google Scholar
Lazar, B., Sivan, O., Yechieli, Y. et al. 2014. Long-term freshening of the Dead Sea brine revealed by porewater Cl and δO18 in ICDP Dead Sea deep-drill. Earth and Planetary Science Letters 400: 94101.Google Scholar
Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S. & Stein, M. 2000. Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International 73/74: 137–44.Google Scholar
Marco, S. & Agnon, A. 1995. Prehistoric earthquake deformations near Masada, Dead-Sea graben. Geology 23: 695–98.Google Scholar
Marco, S. & Agnon, A. 2005. High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform. Tectonophysics 408: 101–12.Google Scholar
Matmon, A., Fink, D., Davis, M. et al. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82: 281–95.Google Scholar
Migowski, C., Agnon, A., Bookman (Ken-Tor), R., Negendank, J.F.W. & Stein, M. 2004, Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222: 301–14.Google Scholar
Neev, D. & Emery, K.O. 1967. The Dead Sea, depositional processes and environments of evaporites. Geological Survey of Israel Bulletin 41: 1147.Google Scholar
Neugebauer, I., Brauer, A., Schwab, M.J. et al. 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102: 149–65.CrossRefGoogle Scholar
Neugebauer, I., Brauer, A., Schwab, M.J. et al. 2015a. Evidences for centennial dry periods at ∼3300 and ∼2800 cal. yr BP from microfacies analyses of the Dead Sea sediments. The Holocene. doi: 10.1177/0959683615584208.Google Scholar
Neugebauer, I., Schwab, M.J., Waldmann, N. et al. 2015b. Hydroclimatic variability in the Levant during the early last glacial (∼117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments. Climate of the Past Discussions, 11: 36253663.Google Scholar
Palchan, D., Enzel, Y., Erel, Y. et al. 2014. Annual cycles of detritus in halite and presence of highly-soluble salts during extremely low stage of the last interglacial Dead Sea. In Proceedings Israel Geological Society Annual Meeting, En Bokek, Israel.Google Scholar
Palchan, D., Neugebauer, I., Waldmann, N. et al. submitted. North Atlantic control over cyclic deposition of halite and clastic laminas during the Last Interglacial Dead Sea. Quaternary Research.Google Scholar
Prasad, S., Vos, H., Negendank, J.F.W. et al. 2004. Evidence from Lake Lisan of solar influence on decadal- to centennial-scale climate variability during marine oxygen isotope stage 2. Geology 32: 581–4.Google Scholar
Starinsky, A. 1974. Relationship between Ca-Chloride Brines and Sedimentary Rocks in Israel. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Stein, M. 2001. The sedimentary and geochemical record of Neogene–Quaternary water bodies in the Dead Sea Basin – inferences for the regional paleoclimatic history. Journal of Paleolimnology 26: 274–82.Google Scholar
Stein, M., Starinsky, A., Katz, A. et al. 1997. Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmoquimica Acta 61: 3975–92.Google Scholar
Stein, M., Torfstein, A., Gavrieli, I. & Yechieli, Y. 2010. Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews 29: 567–75.Google Scholar
Stein, M., Ben-Avraham, Z. & Goldstein, S.L. 2011. Dead Sea deep cores. A window into past climate and seismicity. Eos, Transactions American Geophysical Union 92: 453–4.Google Scholar
Thomas, C., Ionescu, D., Ariztegui, D. & DSDDP Scientific Team. 2014. Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea. Marine Genomics 17: 5362.CrossRefGoogle ScholarPubMed
Torfstein, A., Gavrieli, I., Katz, A., Kolodny, Y. & Stein, M. 2008. Gypsum as a monitor of the paleo-limnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochimica et Cosmo-chimica Acta 72: 2491–509.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmo-chimica Acta 73: 2603–30.Google Scholar
Torfstein, A., Goldstein, S.L., Stein, M. & Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin. Quaternary Research 72: 115.Google Scholar
Waldmann, N., Torfstein, A. & Stein, M. 2010. Northward intrusions of low-and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38: 567–70.Google Scholar
Yechieli, Y., Magaritz, M., Levy, Y. et al. 1993. Late Quaternary geological history of the Dead Sea area, Israel. Quaternary Research 39: 5967.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar

References

Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Bartov, Y., Enzel, Y., Porat, N. & Stein, M. 2007. Evolution of the Late Pleistocene Holocene Dead Sea Basin from sequence statigraphy of fan deltas and lake-level reconstruction. Journal of Sedimentary Research 77: 680–92.Google Scholar
Begin, Z., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63: 130.Google Scholar
Belmaker, R., Lazar, B., Beer, J. et al. 2013. 10Be dating of Neogene halite. Geochimica et Cosmochimica Acta 122: 418–29.Google Scholar
Gardosh, M., Kashai, E., Salhov, S., Shulman, H. & Tannenbaum, E. 1997. Hydrocarbon exploration in the southern Dead Sea area. In The Dead Sea; The Lake and its Setting, ed. Niemi, T.M., Ben-Avraham, Z. & Gat, J.R., Oxford Monographs on Geology and Geophysics. Oxford University Press, pp. 5772.Google Scholar
Horowitz, A. 1987. Palynological evidence for the age and rate of sedimentation along the Dead Sea rift, and structural implications. Tectonophysics 141: 107–15.Google Scholar
Horowitz, A. 2001a. Review of the northern Arava late Cenozoic stratig-raphy. Israel Journal of Earth Sciences 50: 137–58.Google Scholar
Horowitz, A. 2001b. The Jordan Rift Valley. Taylor & Francis.Google Scholar
Kaufman, A. 1971. U-series dating of Dead Sea Basin carbonates. Geochimica et Cosmochimica Acta 35: 1269–81.CrossRefGoogle Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea-rain–lake relation in the Last Glacial East Mediterranean revealed by δ18O–δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4045–60.Google Scholar
Kroon, D., Alexander, I., Little, M. et al. 1998. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. Proceedings of the Ocean Drilling Program, Scientific Results 160: 181–9.Google Scholar
Langozky, Y. 1960. The Petrography and Geochemistry of the Lisan Formation. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Lisiecki, L.E. & Raymo, M.E. 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003.Google Scholar
Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S. & Stein, M. 2000. Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International 7374: 137–44.Google Scholar
Marco, S., Stein, M. & Agnon, A. 1996. Long-term earthquake clustering: A 50,000-year record in the Dead Sea graben. Geochimica et Cosmochimica Acta 101: 6179–91.Google Scholar
Matmon, A., Fink, D., Davis, M. et al. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82: 281–95.Google Scholar
Miller, K.G., Kominz, M.A., Browning, J.V. et al. 2005. The Phanerozoic record of global sea-level change. Science 310: 1293–8.Google Scholar
Mudelsee, M. & Schulz, M. 1997. The mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 1: 117–23.Google Scholar
Neev, D. & Emery, K. 1967. The Dead Sea: Depositional processes and environments of evaporites. Geological Survey of Israel Bulletin 41: 1147.Google Scholar
Neugebauer, I., Brauer, A., Schwab, M.J. et al. 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102: 149–65.Google Scholar
Salhov, S., Teleman, E., Shulman, H., Gardosh, M. & Baker, S. 1994. Sedom Deep # 1, Geological Completion Report, ed. Baker, S.. The Israel National Oil Co. Ltd, Jerusalem: Geological Survey of Israel.Google Scholar
Stein, M. & Agnon, A. 2007. So, what is the age of the Sedom Lagoon? Israel Geological Society Annual Meeting 119.Google Scholar
Stein, M., Starinsky, A., Katz, A. et al. 1997. Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 61: 3875–992.Google Scholar
Steinitz, G. & Bartov, Y. 1991. The Miocene–Pleistocene history of the Dead Sea segment of the Rift in light of K–Ar ages of basalts. Israel Journal of Earth Sciences 40: 199208.Google Scholar
Torfstein, A. 2008. Brine–freshwater interplay and effects on the evolution of saline lakes: The Dead Sea Rift terminal lakes. Geological Survey of Israel Report GSI/20.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea Basin). Geochimica et Cosmochimica Acta 73: 2603–30.Google Scholar
Torfstein, A., Goldstein, S., Kagan, E.J. & Stein, M. 2013. Integrated multi-site U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104: 210–31.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.CrossRefGoogle Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea Basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea Basin. Quaternary Research 72: 115.Google Scholar
Weinberger, R., Begin, Z., Waldmann, N. et al. 2006. Quaternary rise of the Sedom diapir, Dead Sea Basin. Geological Society of America Special Papers 401: 3351.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar

References

Agnon, A. 1983. An attempted revision of the Neogene stratigraphy in the Dead Sea Valley. In Proceedings Israel Geological Society Annual Meeting, Nazerat.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Begin, Z.B. 1975. The geology of the Jericho Sheet: Geological map series 1:50,000. Geological Survey of Israel Bulletin 67.Google Scholar
Begin, Z.B., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63: 130.Google Scholar
Bentor, Y.K. & Vroman, A.J. 1960. The Geological Map of Israel (1: 100,000). Series A: The Negev, Sheet 16: Mount Sdom, with Explan-atory Text. Jerusalem: Geological Survey of Israel.Google Scholar
Coianiz, L., Ben-Avraham, Z. & Lazar, M. 2013. Structural and stratig-raphy evolution of the Dead Sea Lake: Insights in an active strike-slip basin. In Proceedings Israel Geological Society Annual Meeting, Akko.Google Scholar
EPICA community members. 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444: 195–8.Google Scholar
Gardosh, M., Kashai, E., Salhov, S., Shulman, H. & Tannenbaum, E. 1997. Hydrocarbon exploration in the southern Dead Sea area. Oxford Monographs on Geology and Geophysics 36: 5772.Google Scholar
Hazan, N., Stein, M., Agnon, A. et al. 2005. The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63: 6077.Google Scholar
Kashai, E. 1976. The 'Ami'az Oil Prospect. Tel Aviv: Oil Exploration (Investments) Ltd, p. 22.Google Scholar
Kaufman, A., Yechieli, Y. & Gardosh, M. 1992. Reevaluation of the lake-sediment chronology in the Dead Sea Basin, Israel, based on new 230Th/U dates. Quaternary Research 38: 292304.Google Scholar
Langozky, Y. 1961. Remarks on the Petrography and Geochemistry of the Lisan Marl Formation. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Langozky, Y. 1963. High-level lacustrine sediments in the rift valley near Sdom. Israel Journal of Earth Sciences 12: 1725.Google Scholar
Manspeizer, W. 1985. The Dead Sea rift: Impact of climate and tectonism on Pleistocene and Holocene sedimentation. In Strike Slip Deformation and Sedimentation, ed. Briddle-Kevin, T. & Christie-Blick, N., SEPM Special Publication 37: 143–58.Google Scholar
Neugebauer, I., Brauer, A., Schwab, M.J. et al. 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102: 149–65.CrossRefGoogle Scholar
Neugebauer, I., Schwab, M.J., Waldmann, N. et al. 2015. Hydroclimatic variability in the Levant during the early last glacial (∼117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments. Climate of the Past Discussions 11: 362563.Google Scholar
Palchan, D., Enzel, Y., Erel, Y. et al. 2014. Annual cycles of detritus in halite and presence of highly-soluble salts during extremely low stage of the last interglacial Dead Sea. In Proceedings Israel Geological Society Annual Meeting, En Bokek, Israel.Google Scholar
Palchan, D., Neugebauer, I., Waldmann, N. et al. submitted. North Atlantic control over cyclic deposition of halite and clastic laminas during the last interglacial Dead Sea. Quaternary Research.Google Scholar
Picard, L. 1943. Structure and evolution of Palestine (with comparative notes on neighboring countries). Geological Department Bulletin, The Hebrew University of Jerusalem 4: 34.Google Scholar
Rot, I. 1969. The Geology of Wadi-el-Qelt Area. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Sneh, A. 1982. Quaternary of the Northwestern ‘Arava, Israel. Israel Journal of Earth Sciences 31: 916.Google Scholar
Sneh, A. 1996. The Dead Sea Rift: Lateral displacement and downfaulting phases. Tectonophysics 263: 277–92.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmochimica Acta 73: 2603–30.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Waldmann, N. 2002. The Geology of the Samra Formation in the Dead Sea Basin. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea Basin. Quaternary Research 72: 115.Google Scholar
Waldmann, N., Torfstein, A. & Stein, M. 2010. Northward intrusions of low-and mid-latitude storms across the Saharo-Arabian belt during past interglacials: Geology 38: 567–70.Google Scholar
Weinberger, R., Begin, Z. B., Waldmann, N. et al. 2006. Quaternary rise of the Sedom Diapir, Dead Sea Basin. In New Frontiers in Dead Sea Paleoenvironmental Research, ed. Enzel, Y., Agnon, A. & Stein, M.. Geological Society of America, pp. 3352.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar

References

Agnon, A. 2014. Pre-instrumental earthquakes along the Dead Sea rift. In Dead Sea Transform Fault System: Reviews ed. Garfunkel, Z., Ben-Avraham, Z. & Kagan, E.. Dordrecht: Springer, pp. 207–61.Google Scholar
Bartov, Y., Agnon, A., Enzel, Y., Reches, Z. & Stein, M. 2002. Sequence stratigraphy and reconstruction of Lake Lisan levels. Quaternary Research 57: 921.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Bartov, Y., Enzel, Y., Porat, N. & Stein, M. 2007. Evolution of sediment-ary deposition in the late Pleistocene and Holocene Dead Sea basin. Journal of Sedimentary Research 77: 680–92.Google Scholar
Begin, Z.B., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63.Google Scholar
Begin, Z.B., Broecker, W., Buchbinder, B. et al. 1985. Dead Sea and Lake Lisan levels in the last 30,000 years. Geological Survey of Israel Report GSI/29/85.Google Scholar
Belmaker, R., Lazar, B., Tepelyakov, N., Stein, M. & Beer, J. 2008. 10Be in Lake Lisan sediments – a proxy for production or climate? Earth Planetary Science Letters 269: 448–57.Google Scholar
Belmaker, R., Stein, M., Beer, J. et al. 2014. Beryllium isotopes as tracers of Dead Sea hydrology and the Laschmap geomagnetic excursion. Earth Planetary Science Letters 400: 233–42.Google Scholar
Bookman, R., Enzel, Y., Agnon, A. & Stein, M. 2004. Late Holocene levels of the Dead Sea. Geological Society America Bulletin 116: 555–71.Google Scholar
Enzel, Y., Bookman, R., Sharon, D. et al. 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60: 263–73.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Frumkin, A. & Stein, M. 2004. The Sahara–East Mediterranean dust and climate connection revealed by U and Sr isotopes in Jerusalem speleothem. Earth Planetary Science Letters 217: 451–64.Google Scholar
Haase-Schramm, A., Goldstein, S.L. & Stein, M. 2004. U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68: 9851005.Google Scholar
Haliva-Cohen, A., Stein, M., Goldstein, S.L., Sandler, A. & Starinsky, A. 2012. Sources and transport routes of fine detritus material to the late Quaternary Dead Sea basin. Quaternary Science Review 49: 5570.Google Scholar
Hazan, N., Stein, M., Agnon, A. et al. 2005. The late Pleistocene–Holocene limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63: 6077.Google Scholar
Katz, A., Kolodny, Y. & Nissenbaum, A. 1977. The geochemical evolution of the Pleistocene Lake Lisan–Dead Sea system. Geochimica et Cosmochimica Acta 41: 1609–26.Google Scholar
Kaufman, A. 1971. U-series dating of Dead Sea basin carbonates. Geochimica et Cosmochimica Acta 35: 1269–81.Google Scholar
Kaufman, A., Yechieli, Y. & Gardosh, M. 1992. Reevaluation of the lake-sediment chronology in the Dead Sea basin, Israel, based on new 230Th/U dates. Quaternary Research 38: 292304.Google Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea-rain–lake relation in the last glacial East Mediterranean revealed by δ18O – δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4045–60.Google Scholar
Kushnir, Y. & Stein, M. 2010. North Atlantic influence on 19th–20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quaternary Science Reviews 29: 118.Google Scholar
Lazar, B., Sivan, O., Yechieli, Y. et al. 2014. Long-term freshening of the Dead Sea brine revealed by porewater Cl- and d18O in ICDP Dead Sea deep-drill. Earth Planetary Science Letters 400: 94101.Google Scholar
Lev, L., Boaretto, E., Heller, J., Marco, S. & Stein, M. 2007. The feasibility of using Melanopsis shells as radiocarbon chronometers, Lake Kinneret, Israel. Radiocarbon 49: 1003–15.Google Scholar
Levy, E., Stein, M., Lazar, B. et al. 2017 (in press). Pore fluids in Dead Sea sediment core reveal linear response of lake chemistry to global climate changes. Geology doi:10.1130/G38685.1.Google Scholar
Lisiecki, L.E. & Raymo, M.E. 2005. A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003.Google Scholar
Lüthi, D., Le Floch, M., Bereiter, B. et al. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453: 379–82.Google Scholar
Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S. & Stein, M. 2000. Reconstruction of low-levels of Lake Lisan between 55 and 35 kyr. Quaternary International 73/74: 137–44.Google Scholar
Marco, S., Stein, M., Agnon, A. & Ron, H. 1996. Long-term earthquake clustering: A 50,000-year paleoseismic record in the Dead Sea graben. Journal of Geophysical Research 101: 6179–91.Google Scholar
Marco, S., Ron, H., McWilliams, M. & Stein, M. 1998. High-resolution paleomagnetic record of Lisan Formation. Earth Planetary Science Letters 161: 145–60.Google Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W. & Agnon, A. 2006. Dead Sea levels, climate variability and human culture evolution in the Holocene Near East. Quaternary Research 66: 421–31.Google Scholar
Neev, D. & Emery, K.O. 1995. The Destruction of Sodom, Gomorrah, and Jericho: Geological, Climatological, and Archaeological Background. New York: Oxford University Press.Google Scholar
Neugebauer, I., Brauer, A., Waldmann, N. et al. & DSDDP Scientific Party. 2014. Lithologies and depositional environments of the last two climatic 1 cycles in the deep hypersaline Dead Sea: New observations from the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Review 102: 149–65.Google Scholar
Neugebauer, I., Schwab, M.J., Waldmann, N.D. et al. 2016, Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments. Climate of the Past 12: 7590.Google Scholar
Prasad, S., Vos, H., Negendank, J.F.W. et al. 2004. Evidence from Lake Lisan of solar influence on decadal to centennial climate variability during the late glacial. Geology 32: 581–4.Google Scholar
Schramm, A., Stein, M., Goldstein, S.L. 2000. Calibration of the 14C timescale to 50 kyr by 234U–230Th dating of sediments from Lake Lisan (the paleo-Dead Sea). Earth Planetary Science Letters 175: 2740.Google Scholar
Starinsky, A. 1974. Relationship between Ca-Chloride Brines and Sedimentary Rocks in Israel. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Stein, M. 2001. The history of Neogene–Quaternary water bodies in the Dead Sea Basin. Journal Paleolimnology 26: 271–82.Google Scholar
Stein, M. 2011. Paleo-earthquakes chronometry in the late Quaternary Dead Sea basin. Israel Journal of Earth Sciences 58: 237–55.Google Scholar
Stein, M. 2014a. The evolution of Neogene–Quaternary water-bodies in the Dead Sea Rift Valley. In Dead Sea Transform Fault System: Reviews, ed. Garfunkel, Z., Ben-Avraham, Z. & Kagan, E.. Netherlands: Springer, pp. 279316.Google Scholar
Stein, M. 2014b. Late Quaternary limnological history of Lake Kinneret. In Lake Kinneret: Environments, Biology and Ecology, ed. Zohary, T., Sukenik, A., Berman, J. & Nishri, A., Lake Kinneret Ecology and Management Series, Vol. 6. Netherlands: Springer, pp. 3958.Google Scholar
Stein, M., Starinsky, A., Katz, A. et al. 1997. Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 61: 3975–92.Google Scholar
Stein, M., Starinsky, A., Agnon, A. et al. 2000. The impact of brine–rock reaction during marine evaporite formation on Sr isotopic record in the oceans: Evidence from Mt. Sedom, Israel. Geochimica et Cosmochimica Acta 64: 2039–53.Google Scholar
Stein, M., Torfstein, A., Gavrieli, I. & Yechieli, Y. 2010. Abrupt aridities and salt deposition in the post-glacial Dead Sea and its north Atlantic connection. Quaternary Science Reviews 29: 567–75.Google Scholar
Stein, M., Goldstein, S.L. & Ben-Avraham, Z. 2011. Dead Sea cores: A window into past climate and seismicity. EOS 92: 453–4.Google Scholar
Stein, M., Lazar, B. & Goldstein, S.L. 2013. Radiocarbon reservoir ages as freshwater-brine monitors in Lake Lisan, Dead Sea system. Radiocarbon 55: 1050–7.Google Scholar
Torfstein, A., Gavrielli, I. & Stein, M. 2005. The sources and evolution of sulfur in the saline Lake Lisan (paleo-Dead Sea). Earth Planet Science Letters 236: 6177.Google Scholar
Torfstein, A., Gavrieli, I., Katz, A., Kolodny, Y. & Stein, M. 2008. Gypsum as a monitor of the paleolimnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 70: 2491–579.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of Lake Amora, Dead Sea basin. Geochimica et Cosmochimica Acta 73: 2603–30.Google Scholar
Torfstein, A., Goldstein, S.L., Kagan, E. & Stein, M. 2013a. Multi-site integrated U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104: 210–34.Google Scholar
Torfstein, A., Goldstein, S.L., Enzel, Y. & Stein, M. 2013b. Impacts of abrupt climate changes in the Levant from last glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet Science Letters 412: 235–44.Google Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English summary].Google Scholar
Ziv, B., Dayan, U., Kushnir, Y., Roth, C. & Enzel, Y. 2006. Regional and global atmospheric patterns governing rainfall in the southern Le-vant. International Journal of Climatology 26: 5573.Google Scholar

References

Ayalon, A., Bar-Matthews, M., Frumkin, A. & Matthews, A. 2013. Last Glacial warm events on Mount Hermon: The southern extension of the Alpine karst range of the east Mediterranean. Quaternary Science Reviews 59: 4356.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawksworth, C.J. 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for paleorainfall during. Geochimica et Cosmochimica Acta 67: 3181–99.Google Scholar
Bartov, Y. 2004. Sedimentary Fill Analysis of a Continental Basin – The Late Pleistocene Dead Sea. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A. & Reches, Z. 2002. Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea. Quaternary Research 57: 921.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Bartov, Y., Agnon, A., Enzel, Y. & Stein, M. 2006. Late Quaternary faulting and subsidence in the central Dead Sea Basin. Israel Journal of Earth Sciences 55: 1731.Google Scholar
Bartov, Y., Enzel, Y., Porat, N. & Stein, M. 2007. Evolution of the Late Pleistocene Holocene Dead Sea Basin from sequence statigraphy of fan deltas and lake-level reconstruction. Journal of Sedimentary Research 77: 680–92.Google Scholar
Battisti, D.S., Ding, Q. & Roe, G.H. 2014. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. Journal of Geophysical Research 119: 124.Google Scholar
Begin, Z., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63: 130.Google Scholar
Begin, Z.B., Broecker, W.S., Buchbinder, B. et al. 1985. Dead Sea and Lake Lisan levels in the last 30,000 years. Geological Survey of Israel Report GSI/29/85.Google Scholar
Benson, L., Kashgarian, M. & Rubin, M. 1995. Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream pos-itions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan Basin. Paleogeography, Paleo-climatology, Paleoecology 117: 130.Google Scholar
Bookman (Ken-Tor), R., Enzel, Y., Agnon, A. & Stein, M. 2004. Late Holocene lake levels of the Dead Sea. Geological Society of America Bulletin 116: 555.Google Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past 3: 279–96.Google Scholar
Braconnot, P., Marzin, C., Gregoire, L., Mosquet, E. & Marti, O. 2008. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Climate of the Past 4: 281–94.Google Scholar
Broecker, W.S. & Orr, P.C. 1958. Radiocarbon chronology of lake lahontan and Lake Bonneville. Geological Society of America Bulletin 69: 1009–32.Google Scholar
Cacho, I., Grimalt, J.O., Pelejero, C. et al. 1999. Dansgaard–Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14: 698705.Google Scholar
Enzel, Y., Bookman (Ken Tor), R., Sharon, D. et al. 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60: 263–73.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Kushnir, Y. & Quade, J. 2015. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons. Global and Planetary Change 129: 6991.Google Scholar
Frumkin, A., Kadan, G., Enzel, Y. & Eyal, Y. 2001. Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. Radiocarbon 43: 1179–89.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M. et al. 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491: 744–7.Google Scholar
Haase-Schramm, A., Goldstein, S.L. & Stein, M. 2004. U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68: 9851005.Google Scholar
Hemming, S. 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global imprint. Reviews of Geophysics 42: RG1005.Google Scholar
Herold, M. & Lohmann, G. 2009. Eemian tropical and subtropical African moisture transport: an isotope modelling study. Climate Dynamics 33: 1075–88.Google Scholar
Huntington, E. 1911. Palestine and its Transformation. Boston: Houghton Mifflin.Google Scholar
Kadan, G. 1997. Evidence of Dead-Sea Level Fluctuations and Neotectonic Events in the Holocene Fan-Delta of Nahal Darga. Unpublished Ph.D. thesis, Ben-Gurion University of the Negev.Google Scholar
Katz, A. & Starinsky, A. 2015. No drawdown and no hyperaridity in the ancient Dead Sea (Comments to Torfstein's et al. (2015) paper, EPSL 412, 235–244). Earth and Planetary Science Letters 427: 303–5.Google Scholar
Kaufman, A. 1971. U-series dating of Dead Sea Basin carbonates. Geochimica et Cosmochimica Acta 35: 1269–81.Google Scholar
Kaufman, A., Yechieli, Y. & Gardosh, M. 1992. Reevaluation of the lake-sediment chronology in the Dead Sea Basin, Israel, based on new 230Th/U dates. Quaternary Research 304: 292304.Google Scholar
Kitagawa, H., Stein, M., Goldstein, S.L., Nakamura, T. & Lazar, B., DSDDP Scientific Party. 2016. Radiocarbon chronology of the DSDDP core at the deepest floor of the Dead Sea. Radiocarbon 2016: 112. DOI:10.1017/RDC.2016.120.Google Scholar
Kushnir, Y. & Stein, M. 2010. North Atlantic influence on 19th–20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quaternary Science Reviews 29: 3843–60.Google Scholar
Kutzbach, J.E., Chen, G., Cheng, H., Edwards, R.L. & Liu, Z. 2014. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Climate Dynamics 42: 1079–95.Google Scholar
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. 2009. Stromatolites in caves of the Dead Sea Fault escarpment: Implications to latest Pleistocene lake levels and tectonic subsidence. Quaternary Science Reviews 28: 8092.Google Scholar
Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S., Stein, M. 2000. Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International 7374: 137–44.Google Scholar
Migowski, C., Agnon, A., Bookman, R., Negendank, J.F. & Stein, M. 2004. Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222: 301–14.Google Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W. & Agnon, A. 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66: 421–31.Google Scholar
Neev, D. & Emery, K. 1967. The Dead Sea: Depositional processes and environments of evaporites. Geological Survey of Israel Bulletin 41: 1147.Google Scholar
Nehme, C., Verheyden, S., Noble, S.R. et al. 2015. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon. Climate of the Past Discussions 11: 3241–75.Google Scholar
Neugebauer, I., Brauer, A., Schwab, M.J. et al. 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102: 149–65.Google Scholar
Oviatt, C.G. 1997. Lake Bonneville fluctuations and global climate change. Geology 25: 155.Google Scholar
Peltier, W.R. & Fairbanks, R.G. 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25: 3322–37.Google Scholar
Picard, L. 1943. Structure and evolution of Palestine. Bulletin of the Geology Department, Hebrew University 4: 1134.Google Scholar
Rodwell, M.J. & Hoskins, B.J. 1996. Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society 122: 1385–404.Google Scholar
Rohling, E. 2013. Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift. Quaternary Science Reviews 70: 6372.Google Scholar
Rohling, E.J., Grant, K., Bolshaw, M. et al. 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2: 500–4.Google Scholar
Schramm, A., Stein, M. & Goldstein, S. 2000. Calibration of the 14C time scale to >40 ka by 234U–230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175: 2740.Google Scholar
Stein, M., Torfstein, A., Gavrieli, I. & Yechieli, Y. 2010. Abrupt arid-ities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews 29: 567–75.Google Scholar
Street-Perrott, F.A. & Harrison, S. 1985. Lake levels and climate reconstruction. In Paleoclimate Analysis and Modeling, ed. Hecht, A.D.. New York: John Wiley and Sons, pp. 291340.Google Scholar
Torfstein, A., Gavrieli, I., Katz, A., Kolodny, Y. & Stein, M. 2008. Gypsum as a monitor of the paleo-limnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 72: 2491–509.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea Basin). Geochimica et Cosmochimica Acta 73: 2603–30.Google Scholar
Torfstein, A., Goldstein, S., Kagan, E.J. & Stein, M. 2013a. Integrated multi-site U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104: 210–31.Google Scholar
Torfstein, A., Goldstein, S., Stein, M. & Enzel, Y. 2013b. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015a. Response to comment on: ‘Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial’ [EPSL, 412, 235–244, 2015]. Earth and Planetary Science Letters 427: 306–8.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015b. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Waldmann, N., Starinsky, A. & Stein, M. 2007. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quaternary Science Reviews 26: 2219–28.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea Basin. Quaternary Research 72: 115.Google Scholar
Waldmann, N., Torfstein, A. & Stein, M. 2010. Northward intrusions of low- and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38: 567–70.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L. et al. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294: 2345–8.Google Scholar
Weinberger, R., Bar-Matthews, M., Levi, T. & Begin, Z.B. 2007. Late-Pleistocene rise of the Sedom diapir on the backdrop of water-level fluctuations of Lake Lisan, Dead Sea Basin. Quaternary Inter-national 175: 5361.Google Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O. & Svensson, A. 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29: 2828–38.Google Scholar
Zak, I. 1967. The Geology of Mount Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Ziv, B., Dayan, U. & Sharon, D. 2004. A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis. Meteor-ology and Atmospheric Physics 88: 5363.Google Scholar
Ziv, B., Dayan, U., Kushnir, Y., Roth, C. & Enzel, Y. 2006. Regional and global atmospheric patterns governing rainfall in the southern Le-vant. International Journal of Climatology 26: 5573.Google Scholar

References

Abed, A.M., Yasin, S., Sadaqa, R. & Al-Hawari, Z. 2008. The paleoclimate of the eastern desert of Jordan during marine isotope stage 9. Quaternary Research 69: 458–68.Google Scholar
Armitage, S.J., Jasim, S.A., Marks, A.E. et al. 2011. The southern route ‘out of Africa’: Evidence for an early expansion of modern humans into Arabia. Science 331: 453–6.Google Scholar
Bender, F. 1968. Geologie von Jordanien. Beiträge zur Regionalen Geologie der Erde Vol. 7. Stuttgart: Gebrüder Borntraeger.Google Scholar
Bender, F. 1974. Geology of Jordan. Berlin: Gebrueder Borntraeger.Google Scholar
Clark, G.A. 1984. The Negev model for paleoclimatic change and human adaptation in the Levant and its relevance for the paleolithic of the Wadi el Hasa (West-Central Jordan). Annual of the Department of Antiquities of Jordan 28: 225–48.Google Scholar
Clark, G.A., Neeley, M.P., MacDonald, B., Schuldenrein, J. & Amr, K. 1992. Wadi al-Hasa Paleolithic Project – 1992 Preliminary Report. Annual of the Department of Antiquities of Jordan 36: 1323.Google Scholar
Coinman, N.R. 2003. The Upper Paleolithic of Jordan: New data from the Wadi al-Hasa. In More than Meets the Eye: Studies on Upper Paleo-lithic Diversity in the Near East, ed. Goring-Morris, N. & Belfer-Cohen, A.. Oxford: Oxbow, pp. 151–70.Google Scholar
Copeland, L. & Vita-Finzi, C. 1978. Archaeological dating of geological deposits in Jordan. Levant 10: 1025.Google Scholar
Davies, C.P. 2005. Quaternary paleoenvironments and potential for human exploitation of the Jordan Plateau desert interior. Geoarchaeology: An International Journal 20: 381400.Google Scholar
Edwards, R.L., Gallup, C.D. & Cheng, H. 2003. Uranium-series dating of marine and lacustrine carbonates. Reviews in Mineralogy and Geochemistry 52: 363405.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Ginat, H., Zilberman, E. & Saragusti, I. 2003. Early Pleistocene lake deposits and Lower Paleolithic finds in Nahal (wadi) Zihor, southern Negev desert, Israel. Quaternary Research 59: 445–58.Google Scholar
Groucutt, H.S. & Petraglia, M.D. 2012. The prehistory of the Arabian Peninsula: Deserts, dispersals, and demography. Evolutionary Anthropology 21: 113–25.Google Scholar
Huckriede, R. & Wiesemann, G. 1968. Der jungpleistozäne Pluvial-See von El-Jafr und weitere Daten zum Quartär Jordaniens. Geologica et Paleontologica 2: 7395.Google Scholar
Kaufman, A., Broecker, W.S., Ku, T.L. & Thurber, D.L. 1971. The status of U-series methods of mollusk dating. Geochimica et Cosmochimica Acta 35: 1155–83.Google Scholar
Masri, A. 1988. The Geology of Halat Ammar and Al Mudawwara Map Sheet Nos. 3248 III, 3248 IV. Amman: Geological Mapping Division, Natural Resources Authority, Geology Directorate, The Hashemite Kingdom of Jordan.Google Scholar
Miller, D.M. 2012. Surficial Geologic Map of the Ivanpah 30′ × 60′ Quadrangle (1:100,000), San Bernardino County, California, and Clark County, Nevada. US Geological Survey Scientific Investigations Map 3206.Google Scholar
Mischke, S., Ginat, H., Al-Saqarat, B. & Almogi-Labin, A. 2012. Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators. Ecological Indicators 14: 8799.Google Scholar
Mischke, S., Opitz, S., Kalbe, J., Ginat, H. & Al-Saqarat, B. 2015. Palaeo-environmental inferences from late Quaternary sediments of the Al Jafr Basin, Jordan. Quaternary International 382: 154–67.Google Scholar
Moumani, K. 2005. Geological Map of Al Jafr. Sheet 325. Amman: Geological Mapping Division, Natural Resources Authority, Geology Directorate, The Hashemite Kingdom of Jordan.Google Scholar
Moumani, K., Alexander, J. & Bateman, M.D. 2003. Sedimentology of the late Quaternary Wadi Hasa Marl Formation of central Jordan: A record of climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 221–42.Google Scholar
Parton, A., White, T.S., Parker, A.G. et al. 2015. Orbital-scale climate variability in Arabia as a potential motor for human dispersals. Quaternary International 382: 8297.Google Scholar
Petit-Maire, N., Carbonel, P., Reyss, J.L. et al. 2010. A vast Eemian palaeo-lake in southern Jordan (29° N). Global and Planetary Change 72: 368–73.Google Scholar
Pigati, J.S., Bright, J.E., Shanahan, T.M. & Mahan, S.A. 2009. Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA. Quaternary Science Reviews 28: 286300.Google Scholar
Pigati, J.S., Miller, D.M., Bright, J. et al. 2011. Chronology, sedimentology, and microfauna of ground-water discharge deposits in the central Mojave Desert, Valley Wells, California. Geological Society of America Bulletin 123: 2224–39.Google Scholar
Pigati, J.S., Rech, J.A., Quade, J. & Bright, J. 2014. Desert wetlands in the geologic record. Earth-Science Reviews 132, 6781.Google Scholar
Quade, J. 1986. Late Quaternary environmental changes in the upper Las Vegas Valley, Nevada. Quaternary Research 26: 340–57.Google Scholar
Quade, J., Mifflin, M.D., Pratt, W.L., McCoy, W.D. & Burckle, L. 1995. Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during Quaternary time. Geological Society of America Bulletin 107: 213–30.Google Scholar
Quade, J., Forester, R.M., Pratt, W.L. & Carter, C. 1998. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49: 129–48.Google Scholar
Quade, J., Rech, J.A., Betancourt, J.L. & Latorre, C.H. 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69: 343–60.Google Scholar
Rech, J.A., Quade, J. & Betancourt, J.L. 2002. Late Quaternary paleohydrology of the central Atacama Desert, Chile (22°–24° S), Geological Society of America Bulletin 114: 334–48.Google Scholar
Rech, J.A., Pigati, J.S., Quade, J. & Betancourt, J.L. 2003. Re-evaluation of Holocene deposits at Quebrada Puripica, northern Chile, Palaeogeography, Palaeoclimatology, Palaeoecology 194: 207–22.Google Scholar
Rech, J.A., Quintero, L.A., Wilke, P.J. & Winer, E.R. 2007. The Lower Paleolithic landscape of `Ayoun Qedim, Jordan. Geoarchaeology: An International Journal 22: 261–75.Google Scholar
Schuldenrein, J. & Clark, G.A. 1994. Landscape and prehistoric chronology of west-central Jordan. Geoarchaeology: An International Journal 9: 3155.Google Scholar
Schuldenrein, J. & Clark, G.A. 2001. Prehistoric landscapes and settlement geography along the Wadi Hasa, west-central Jordan. Part I: Geo-archaeology, human palaeoecology and ethnographic modeling. Environmental Archaeology 6: 2540.Google Scholar
Schuldenrein, J. & Clark, G.A. 2003. Prehistoric landscapes and settlement geography along the Wadi Hasa, west-central Jordan. Part II: Towards a model of palaeoecological settlement for the Wadi Hasa. Environmental Archaeology 8: 116.Google Scholar
Vita-Finzi, C. 1964. Observations on the late Quaternary of Jordan. Palestine Exploration Quarterly 96: 1933.Google Scholar
Winer, E.R. 2010. Interpretation and Climatic Significance of Late Quaternary Valley-Fill Deposits in Wadi Hasa, West-Central Jordan. Unpublished M.Sc. thesis, Miami University.Google Scholar
Yasin, S. 2001. Quaternary Palaeolimnology of the Mudawwara Area (Southern Jordan, 29° N), Paleoclimatic Implications. Unpublished Ph.D. thesis, University of Jordan.Google Scholar
Zierholz, C., Prosser, I.P., Fogarty, P.J. & Rustomji, P. 2001. In-stream wetlands and their significance for channel fillings and the catchment sediment budget, Jugiong Creek, New South Wales. Geomorphology 38: 221–35.Google Scholar

References

Bar-Matthews, M. & Ayalon, A. 2005. Evidence from speleothem for abrupt climatic changes during the Holocene and their impact on human settlements in the eastern Mediterranean region: Dating methods and stable isotope systematics. Zeitschrift fur Geomorphologie, Supplementband 137: 4559.Google Scholar
Bar-Yosef, O. & Kra, R. (eds.) 1994. Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean. Tucson: University of Arizona.Google Scholar
Barkai, R., Gopher, A., Lauritzen, S.E. & Frumkin, A. 2003. Uranium series dates from Qesem Cave, Israel, and the end of the Lower Palaeolithic. Nature 423: 977–79.Google Scholar
Chabert, C. 1974. Liban, soleil des cavernes. Grottes et Gouffres 52: 1318.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Fischhendler, I. & Frumkin, A. 2008. Distribution, evolution and morphology of caves in southwestern Samaria, Israel. Israel Journal of Earth Sciences 57: 311–22.Google Scholar
Ford, D.C. & Williams, P.W. 2007. Karst Hydrogeology and Geomorph-ology. Chichester: Wiley.Google Scholar
Frumkin, A. 2001a. The Cave of the Letters sediments – indication of an early phase of the Dead Sea depression? Journal of Geology 109: 7990.Google Scholar
Frumkin, A. 2001b. Karst and caves of Israel. In Encyclopaedia Biospeleo-logica, Vol. 3, ed. Juberthie, C. & Decu, V.. Moulis: Sociétéde Biospéologie, pp. 1840–2.Google Scholar
Frumkin, A. 2013. Salt karst. In Treatise on Geomorphology, Vol. 6, Karst Geomorphology, ed. Frumkin, A., ed. in chief Shroder, J.F.. San Diego: Academic Press, pp. 208424.Google Scholar
Frumkin, A. (ed.) 2015. Atlas of the Holy Land: Judean Desert Caves. Jerusalem: The Hebrew University Magnes Press.Google Scholar
Frumkin, A. 2016. The longest lava tube in the Levant: The 20.5 km long Shihan-Haran system, Syria. Proceedings of the 17th International Vulcanspeleology Symposium, Ocean View, Hawaii, 14. www.cavepics.com/IVS17/FUMKIN.pdfGoogle Scholar
Frumkin, A. & Fischhendler, I. 2005. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions. Geomorphology 67: 457–71.Google Scholar
Frumkin, A. & Ford, D.C. 1995. Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel: Earth Surface Processes and Landforms 20: 139–52.Google Scholar
Frumkin, A. & Gvirtzman, H. 2006. Cross-formational rising groundwater at an artesian karstic basin: The Ayalon Saline Anomaly, Israel. Journal of Hydrology 318: 316–33.Google Scholar
Frumkin, A., Magaritz, M., Carmi, I. & Zak, I. 1991. The Holocene climatic record of the salt caves of Mount Sedom, Israel. Holocene 1: 191200.Google Scholar
Frumkin, A., Shimron, A.E. & Miron, Y. 1998. Karst morphology across a steep climatic gradient, southern Mount Hermon, Israel. Zeitschrift für Geomorphologie Supplementband 109: 2340.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H.P. 2000. Paleoclimate and vegetation of the last glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14: 863–70.Google Scholar
Frumkin, A., Bar-Matthews, M. & Vaks, A. 2008. Paleoenvironment of Jawa basalt plateau, Jordan, inferred from calcite speleothems from a lava tube, Quaternary Research 70: 358–67.Google Scholar
Frumkin, A., Karkanas, P., Bar-Matthews, M. et al. 2009. Gravitational deformations and fillings of aging caves: The example of Qesem karst system, Israel. Geomorphology 106: 154–64.Google Scholar
Frumkin, A., Ezersky, M., Al-Zoubi, A. & Abueladas, A.-R. 2011. The Dead Sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse. Geomorphology 134: 102–17.Google Scholar
Frumkin, A. (ed.) & Shroder, J.F. (ed. in chief) 2013. Treatise on Geo-morphology, Vol. 6, Karst Geomorphology, San Diego: Academic Press.Google Scholar
Frumkin, A., Zaidner, Y., Na'aman, I. et al. 2014. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain. Geomorphology 229: 4557.Google Scholar
Frumkin, A., Langford, B., Marder, O. et al. 2016. Paleolithic caves and hillslope processes in south-western Samaria, Israel: environmental and archaeological implications. Quaternary International 398: 246–58.Google Scholar
Goder-Goldberger, M., Cheng, H., Edwards, R.L. et al. 2012. Emanuel Cave: The site and its bearing on early Middle Paleolithic technological variability. Paléorient 38: 203–25.Google Scholar
Gopher, A., Ayalon, A., Bar-Matthews, M. et al. 2010. The chronology of the late Lower Paleolithic in the Levant: U-series dates of speleothems from Middle Pleistocene Qesem Cave, Israel. Quaternary Geochronology 5: 644–56.Google Scholar
Hakim, B. & Karkabi, S. 1988. Colorations du gouffre de Faouar Dara et de la grotte des Kessarat. Al-Ouat-Ouate, Spéléo Club du Liban 3: 1831.Google Scholar
Hooijer, D.A. 1958. An Early Pleistocene mammalian fauna from Bethlehem. The Bulletin of the British Museum (Natural History) 3: 1831.Google Scholar
Hovers, E., Rak, Y., Lavi, R. & Kimbel, W.H. 1995. Hominid remains from Amud Cave in the context of the Levantine Middle Paleolithic. Paléorient 21: 4761.Google Scholar
Ibrahim, K.M. & Al-Malabeh, A. 2006. Geochemistry and volcanic features of Harrat El Fahda: A young volcanic field in northwest Arabia, Jordan. Journal of Asian Earth Sciences 27: 147–54.Google Scholar
Ilani, S., Harlavan, Y., Tarawneh, K. et al. 2001. New K–Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: Implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29: 171–4.Google Scholar
Karkabi, S. 1990. Cinquantenaire de la spéléologie libanaise. Al-Ouat-Ouate, Spéléo Club du Liban 5: 136.Google Scholar
Karkanas, P. & Goldberg, P. 2013. Micromorphology of cave sediments. In Treatise on Geomorphology, Vol. 6, Karst Geomorphology, ed. Frumkin, A.. San Diego: Academic Press, pp. 286–97.Google Scholar
Kempe, S. 2013. Morphology of speleothems in primary (lava-) and secondary caves. In Treatise on Geomorphology, Vol. 6, Karst Geomorphology, ed. Frumkin, A.. San Diego: Academic Press, pp. 267285.Google Scholar
Kempe, S., Al-Malabeh, A., Frehat, M. & Henschel, H.-V. 2006. State of Lava Cave research in Jordan. Association for Mexican Cave Studies Bulletin 19.Google Scholar
Klimchouk, A. 2013. Hypogene speleogenesis. In Treatise on Geomorphology, Vol. 6, Karst Geomorphology, ed. Frumkin, A.. San Diego: Academic Press, pp. 220–40.Google Scholar
Langford, B. 2015. Bir el-Qa'ir Cave. In Atlas of the Holy Land: Judean Desert Caves, ed. Frumkin, A.. Jerusalem: Hebrew University Magnes Press, pp. 62–3.Google Scholar
Langford, B. & Frumkin, A. 2013. The longest limestone caves of Israel. In Proceedings of the 16th International Congress of Speleology, Brno, Vol. 2. ed. Filippi, M. & Bosak, P., Praha: Czech Speleological Society, pp. 105–9.Google Scholar
Laskow, M., Gendler, M., Goldberg, I., Gvirtzman, H. & Frumkin, A. 2011. Deep confined karst detection, analysis and paleo-hydrology reconstruction at a basin-wide scale using new geophysical interpretation of borehole logs. Journal of Hydrology 406: 158–69.Google Scholar
Lisker, S., Porat, R.,Davidovich, U. et al. 2007. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel). Quaternary Research 68: 203–12.Google Scholar
Lisker, S., Porat, R. & Frumkin, A. 2010. Late Neogene rift valley fill sediments preserved in caves of the Dead Sea Fault escarpment (Israel): Palaeogeographic and morphotectonic implications. Sedimentology 57: 429–45.Google Scholar
Marder, O., Yeshurun, R., Lupu, R. et al. 2011. Mammal remains at Rantis Cave, Israel, and middle–late Pleistocene human subsistence and ecology in the southern Levant. Journal of Quaternary Science 26: 769–80.Google Scholar
Matmon, A., Fink, D., Davis, M. et al. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82: 281–95.Google Scholar
Palmer, A.N. 2009. Cave Geology. Dayton: Cave Books.Google Scholar
Porat, R. & Frumkin, A. 2015. Hitchcock Cave. In Atlas of the Holy Land: Judean Desert Caves, ed. Frumkin, A.. Jerusalem: Hebrew University Magnes Press, pp. 262–3.Google Scholar
Porat, R., Eshel, H. & Frumkin, A. 2009. The ‘Caves of the Spear’: Refuge caves from the Bar-Kokhba revolt north of ‘En-Gedi. Israel Explor-ation Journal 59: 2146.Google Scholar
Porat, R., Davidovich, U. & Frumkin, A. 2015. Hamitboded Cave. In Atlas of the Holy Land: Judean Desert Caves, ed. Frumkin, A.. Jerusalem: Hebrew University Magnes Press, pp. 302–3.Google Scholar
Razvalyaev, A.V. 1966. The Geological Map of Syria, 1:200,000, Sheets1–37-VII, 1–36-XII, explanatory notes. Damascus: Ministry of Industry, Syrian Arab Republic.Google Scholar
Ronen, A., Neber, A., Mienis, H.K. et al. 2008. Mousterian occupation on an OIS 5e shore near the Mount Carmel caves, Israel. In Men – Millennia – Environment, ed. Sulgostowska, Z. & Tomaszewski, A.J.. Warsaw: Institute of Archaeology and Ethnology, Polish Academy of Sciences, pp. 197205.Google Scholar
Ryb, U., Matmon, A., Erel, Y. et al. & ASTER Team. 2014. Controls on denudation rates in tectonically stable Mediterranean carbonate terrain. Geological Society of America Bulletin 126: 553–68. doi:10.1130/B30886.1.Google Scholar
Shaw, S.H. 1961. Geological report on the Elephant Pit, Bethlehem. The Bulletin of the British Museum (Natural History) 5: 87–9.Google Scholar
Shtober-Zisu, N., Amasha, H. & Frumkin, A. 2015. Inland notches: Implications for subaerial formation of karstic landforms – an example from the carbonate slopes of Mt. Carmel, Israel. Geomorphology 229: 8599. doi: 10.1016/j.geomorph.2014.09.004.Google Scholar
Tarawneh, K., Ilani, S., Rabba, I. et al. 2000. Dating of the Harrat Ash-Shaam Basalts, Northeast Jordan, Report GSI/2/2000. Amman and Jerusalem: Jordan Natural Resources Authority and Geological Survey of Israel.Google Scholar
Tawk, J.W., Nader, F.H., Karkabi, S. & Jad, W. 2009. As-Suwayda lava caves (southern Syria): Speleological study combining geology and history. In 15th International Congress of Speleology, ed. White, W.B.. Kerrville, Texas, International Union of Speleology, pp. 724–9.Google Scholar
Tchernov, E. & Tsoukala, E. 1997. Middle Pleistocene (Early Toringian) carnivore remains from northern Israel. Quaternary Research 48:122–36.Google Scholar
Ullman, M., 2013. Abu Zif complex. In Atlas of the Holy Land: Judean Desert Caves, ed. Frumkin, A.. Jerusalem: Hebrew University Magnes Press, pp. 74–5.Google Scholar
Ullman, M. & Frumkin, A. 2015. Um-Qatafa Cave. In Atlas of the Holy Land: Judean Desert Caves, ed. Frumkin, A.. Jerusalem: Hebrew University Magnes Press, pp. 302–3.Google Scholar
Ullman, M., Hovers, E., Goren-Inbar, N. & Frumkin, A. 2013. Levantine cave dwellers: Geographic and environmental aspects of early humans use of caves, case study from Wadi Amud, northern Israel. In: Proceedings of the 16th International Congress of Speleology, Brno, ed. Filippi, M. & Bosak, P., Vol. 1. Prague: Czech Speleological Society, pp. 169–75.Google Scholar
Vaks, A., Woodhead, J., Bar-Matthews, M. et al. 2013. Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters 368: 88100.Google Scholar
Weinstein-Evron, M., Tsatskin, A., Weiner, S. et al. 2012. A window into Early Middle Paleolithic human occupational layers: Misliya Cave, Mount Carmel, Israel. PaleoAnthropology 2012: 202–28.Google Scholar
Zaidner, Y., Frumkin, A., Porat, N. et al. 2013. A series of Mousterian occupations in a new type of site: The Nesher Ramla karst depression, Israel. Journal of Human Evolution 66: 117.Google Scholar

References

Barkai, R., Gopher, A., Lauritzen, S. & Frumkin, A. 2003. Uranium series dates from Qesem Cave, Israel, and the end of the Lower Palaeolithic. Nature 423: 977–9.Google Scholar
Berna, F. 2010. Bone alteration and diagenesis. In Scientific Methods and Cultural Heritage. An Introduction to the Application of Materials Science to Archaeometry and Conservation Science, ed. Artioli, G.. Oxford: Oxford University Press, pp. 364–7.Google Scholar
Berna, F. & Goldberg, P. 2008. Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Sciences 56: 107–21.Google Scholar
Berna, F., Matthews, A. & Weiner, S. 2004. Solubilities of bone mineral from archaeological sites: The recrystallization window. Journal of Archaeological Science 31: 867–82.Google Scholar
Farrand, W.R. 1979. Chronology and palaeoenvironment of Levantine prehistoric sites as seen from sediment studies. Journal of Archaeo-logical Science 6: 369–92.Google Scholar
Frumkin, A. 1996. Structure of northern Mount Sedom salt diapir (Israel) from cave evidence and surface morphology. Israel Journal of Earth Sciences 45: 7380.Google Scholar
Frumkin, A. 2001. The Cave of the Letters sediments; indication of an early phase of the Dead Sea depression? Journal of Geology 109: 7990.Google Scholar
Gillieson, D. 1996. Caves: Processes, Development, Management. Oxford: Blackwell.Google Scholar
Goldberg, P. 1973. Sedimentology, Stratigraphy and Paleoclimatology of et-Tabun Cave, Mount Carmel, Israel. Ann Arbor: University of Mich-igan Press.Google Scholar
Goldberg, P. 1978. Granulométrie de sédiment de la Grotte de Taboun, Mont-Carmel, Israël. Geologie Mediterraneenne 4: 371–83.Google Scholar
Goldberg, P. & Bar-Yosef, O. 1998. Site formation processes in Kebara and Hayonim Caves and their significance in Levantine prehistoric caves. In Neandertals and Modern Humans in Western Asia, ed. Akazawa, T., Aoki, K. & Bar-Yosef, O.. New York: Plenum, pp. 107–25.Google Scholar
Goldberg, P. & Laville, H. 1988. Le contexte stratigraphique des occupations paléolithiques de la grotte de Kebara (Israël). Paléorient 14: 117–23.Google Scholar
Goldberg, P. & Macphail, R. 2006. Practical and Theoretical Geoarchaeology. Oxford: Blackwell.Google Scholar
Goldberg, P. & Sherwood, S.C. 2006. Deciphering human prehistory through the geoarchaeological study of cave sediments. Evolutionary Anthropology 15: 2036.Google Scholar
Goldberg, P., Laville, H. & Meignen, L. 2007. Stratigraphy and geoarchaeological history of Kebara Cave, Mount Carmel. In Kebara Cave, Mt. Carmel, Israel, Part I: The Middle and Upper Paleolithic Archaeology, ed. Bar-Yosef, O. & Meignen, L., American School of Prehistoric Research Bulletin 49. Cambridge: Peabody Museum Press, pp. 4989.Google Scholar
Gopher, A., Barkai, R., Shimelmitz, R. et al. 2005. Qesem Cave: An Amudian site in Central Israel. Journal of the Israel Prehistoric Society – Mitekufat Haeven 35: 6992.Google Scholar
Grün, R., Stringer, C., McDermott, F. et al. 2005. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. Journal of Human Evolution 49: 316–34.Google Scholar
Jelinek, A.J., Farrand, W.R., Haas, G., Horowitz, A. & Goldberg, P. 1973. New excavations at the Tabun Cave, Mount Carmel, Israel, 1967–1972: A preliminary report. Paléorient 1/2: 151–83.Google Scholar
Karkanas, P. & Goldberg, P. 2010. Phosphatic features. In Interpretation of Micromorphological Features of Soils and Regoliths, ed. Stoops, V.M.G. & Mees, F.. Amsterdam: Elsevier, pp. 521–41.Google Scholar
Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. 2000. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeo-logical Science 27: 915–29.Google Scholar
Karkanas, P., Shahack-Gross, R., Ayalon, A. et al. 2007. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. Journal of Human Evolution 53: 197212.Google Scholar
Kuhn, S.L., Stiner, M.C., Güleç, E. et al. 2009. The early Upper Paleolithic occupations at Üçagizli Cave (Hatay, Turkey. Journal of Human Evolution 56: 87113.Google Scholar
Madella, M., Jones, M.K., Goldberg, P., Goren, Y. & Hovers, E. 2002. Exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. Journal of Archaeological Science 29: 703–19.Google Scholar
Meignen, L., Goldberg, P. & Bar-Yosef, O. 2007. The hearths at Kebara Cave and their role in site formation processes. In Kebara Cave, Mt. Carmel, Israel, Part I: The Middle and Upper Paleolithic Archaeology, ed. Bar-Yosef, O. & Meignen, L., American School of Prehistoric Research Bulletin 49. Cambridge: Peabody Museum Press, pp. 91122.Google Scholar
Mercier, N., Valladas, H., Bar-Yosef, O. et al. 1993. Thermoluminescence date for the Mousterian burial site of Es-Skhul, Mt. Carmel. Journal of Archaeological Science 20: 169–74.Google Scholar
Mercier, N., Valladas, H., Froget, L. et al. 2007. Hayonim Cave: A TL-based chronology for this Levantine Mousterian sequence. Journal of Archaeological Science 34: 1064–77.Google Scholar
Schiegl, S., Goldberg, P., Bar-Yosef, O. & Weiner, S. 1996. Ash deposits in Hayonim and Kebara Caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications. Journal of Archaeological Science 23: 763–81.Google Scholar
Schwarcz, H.P., Goldberg, P. & Blackwell, B. 1980. Uranium series dating of archaeological sites in Israel. Israel Journal of Earth-Sciences 29: 157–65.Google Scholar
Shahack-Gross, R., Berna, F., Karkanas, P. et al. 2014. Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. Journal of Archaeological Science 44(0): 1221.Google Scholar
Speth, J.D. & Tchernov, E. 2007. The Middle Paleolithic occupations at Kebara Cave: A faunal perspective. In Kebara Cave, Mt. Carmel, Israel, Part I: The Middle and Upper Paleolithic Archaeology, ed. Bar-Yosef, O. & Meignen, L., American School of Prehistoric Research Bulletin 49. Cambridge: Peabody Museum Press, pp. 159254.Google Scholar
Speth, J.D., Meignen, L., Bar-Yosef, O. & Goldberg, P. 2012. Spatial organ-ization of Middle Paleolithic occupation X in Kebara Cave (Israel): concentrations of animal bones. Quaternary International 247(1): 85102.Google Scholar
Stiner, M. 2005. Middle Paleolithic subsistence ecology in the Mediterranean region. In Transitions before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age, ed. Hovers, E. & Kuhn, S.. New York: Springer, pp. 213–32.Google Scholar
Stringer, C.B., Grun, R., Schwarcz, H.P. & Goldberg, P. 1989. ESR dates for the hominid burial site of Es Skhul in Israel. Nature 338: 756–8.Google Scholar
Valladas, H., Mercier, N., Joron, J.L. & Reyss, J.L. 1998. GIF laboratory dates for Middle Paleolithic Levant. In Neandertals and Modern Humans in Western Asia, ed. Akazawa, T., Aoki, K. & Bar-Yosef, O.. New York: Plenum, pp. 6976.Google Scholar
Vandermeersch, B. 1981. Les hommes fossiles de Qafzeh (Israël). Paris: Editions du CNRS.Google Scholar
Weiner, S., Goldberg, P. & Bar-Yosef, O. 1993. Bone preservation in Kebara Cave, Israel using on-site Fourier transform infrared spectrometry. Journal of Archaeological Science 20: 613–27.Google Scholar
Weiner, S., Schiegl, S., Goldberg, P. & Bar-Yosef, O. 1995. Mineral assemblages in Kebara and Hayonim, Israel: excavation strategies, bone preservation and wood ash remnants. Israel Journal of Chemistry 35: 143–54.Google Scholar
Weiner, S., Goldberg, P. & Bar-Yosef, O. 2002. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Dia-genetic processes and archaeological implications. Journal of Archaeological Science 29: 1289–308.Google Scholar
Weiner, S., Berna, F., Cohen-Ofri, I. et al. 2007. Mineral distributions in Kebara Cave: Diagenesis and its affect on the archaeological record. In Kebara Cave, Mt. Carmel, Israel, Part I: The Middle and Upper Paleolithic Archaeology, ed. Bar-Yosef, O. & Meignen, L., American School of Prehistoric Research Bulletin 49. Cambridge: Peabody Museum Press, pp. 131–46.Google Scholar
Weinstein-Evron, M., Tsatskin, A., Weiner, S. et al. 2012. A window into Early Middle Paleolithic human occupational layers: Misliya Cave, Mount Carmel, Israel. PaleoAnthropology 2012: 202–28.Google Scholar
White, W.B. & Culver, D.C. (ed.) 2012. Encyclopedia of Caves, 2nd edn. San Diego: Academic Press.Google Scholar

References

Affek, H.P., Bar-Matthews, M., Ayalon, A., Matthews, A. & Eiler, J.M. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta 72: 5351–60.Google Scholar
Affek, H.P., Matthews, A., Ayalon, A. et al. 2014. Accounting for kinetic isotope effects in Soreq 1 Cave (Israel) speleothems. Geochimica et Cosmochimica Acta 143: 303–18.Google Scholar
Akazawa, T. & Muhesen, S. (eds.) 2002. Neanderthal Burials: Excavations of the Deberiyeh Cave, Efrin Syria: Studies in Honor of Hisashi Suzuki. Kyoto: International Research Center for Japanese Studies.Google Scholar
Almogi-Labin, A., Bar-Matthews, M. & Ayalon, A. 2004. Climate variability in the Levant and northeast Africa during the Late Quaternary based on marine and land records. In Human Paleoecology in the Levantine Corridor, ed. Goren-Inbar, N. & Speth, J.D.. Oxford: Oxbow Press, pp. 117–34.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D. et al. 2009. Climatic variability during the last ∼90 ka of the southern and northern Levantine basin as evident from marine records and speleothems. Quaternary Science Reviews 28: 2882–96.Google Scholar
Amit, R., Enzel, Y. & Sharon, D. 2006. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology 34: 509–12.Google Scholar
Amit, R., Enzel, Y., Grodek, T. et al. 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research 74: 177–87.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2001. The Arava formation – A Pliocene sequence in the Arava Valley and its western margin, southern Israel. Israel Journal of Earth Sciences 50: 101–20.Google Scholar
Ayalon, A., Bar-Matthews, M. & Sass, E. 1998. Rainfall-recharge relationships within a karstic terrain in the eastern Mediterranean semi-arid region, Israel: δ18O and δD characteristics. Journal of Hydrology 207: 1831.Google Scholar
Ayalon, A., Bar-Matthews, M. & Kaufman, A. 1999. Petrography, strontium, barium, and uranium concentrations, and strontium and uran-ium isotope ratios in speleothems as paleoclimatic proxies: Soreq Cave, Israel. The Holocene 9: 715–22.Google Scholar
Ayalon, A., Bar-Matthews, M. & Kaufman, A. 2002. Climatic conditions during marine isotopic stage 6 in the eastern Mediterranean region as evident from the isotopic composition of speleothems: Soreq Cave, Israel. Geology 30: 303–6.Google Scholar
Ayalon, A., Bar-Matthews, M. & Schilman, B. 2004. Rainfall isotope characteristics at various sites in Israel and the relationships with unsaturated zone water. Geological Survey of Israel Report GSI/16/04.Google Scholar
Ayalon, A., Bar-Matthews, M., Frumkin, A. & Matthews, A. 2013. Last glacial warm events on Mount Hermon; The southern extension of the Alpine karst range of the east Mediterranean. Quaternary Science Reviews 59: 4356.Google Scholar
Bar-Matthews, M. 2014. History of water in the Middle East and North Africa. In Treatise on Geochemistry Vol. 14, ed. Holland, H.D. & Turekian, K.K., 2nd edn. Oxford: Elsevier, pp. 109–28.Google Scholar
Bar-Matthews, M. & Ayalon, A. 2011. Mid-Holocene climate variations revealed by high resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene 21: 163–71.Google Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E. & Halicz, L. 1996. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semi-arid regions. Geochimica et Cosmochimica Acta 60: 337–47.Google Scholar
Bar-Matthews, M., Ayalon, A. & Kaufman, A. 1997. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope ana-lysis of speleothems at Soreq Cave, Israel. Quaternary Research 47: 155–68.Google Scholar
Bar-Matthews, M., Ayalon, A. & Kaufman, A. 1998. Middle to late Holocene (6500 years period) paleoclimate in the eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. In Water, Environment and Society in Times of Climate Change, ed. Issar, A.S. & Brown, N.. Dordrecht: Kluwer, pp. 203–14.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G.J. 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters 166: 8595.Google Scholar
Bar-Matthews, M., Ayalon, A. & Kaufman, A. 2000. Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chemical Geology 169: 145156.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, M. & Hawkesworth, C. 2003. Sea–land isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implications for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181–199.Google Scholar
Bar-Yosef, O. & Callander, J. 1999. The woman from Tabun: Garrod's doubts in historical perspective. Journal of Human Evolution 37: 879–85.Google Scholar
Bar-Yosef, O., Vandermeersch, B., Arensburg, B. et al. 1992. The excavations in Kebara Cave, Mt. Carmel. Current Anthropology 33: 497550.Google Scholar
Belmaker, M. 2008. Analysis of ungulate diet during the last glacial (MIS 5–2) in the Levant: Evidence for long-term stability in a Mediterranean ecosystem. Journal of Vertebrate Paleontology 28: 50a.Google Scholar
Ben Israel, M., Enzel, Y., Amit, R. & Erel, Y. 2015. Provenance of the various grain-size fractions in the Negev loess and potential changes in major dust sources to the eastern Mediterranean. Quaternary Research 83: 105–15.Google Scholar
Cerling, T.E. & Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates. In Climate Change in Continental Isotopic Records, ed. Swart, P.K., Lohmann, K.C., McKenzie, J. & Savin, S., Geophysical Monograph Series 78. Washington: American Geophysical Union, pp. 217–31.Google Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F.W.R. & Edwards, L. 2012. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39: 1045–62.Google Scholar
Cheng, H., Edwards, L., Shen, C-C. et al. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371372: 8291.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates and sources: An example from the Negev desert, Israel. Journal of Geophysical Research 114: 116.Google Scholar
Danin, A. 1988. Flora and vegetation of Israel and adjacent areas. In The Zoogeography of Israel, ed. Yom-Tov, Y. & Tchernov, E.. Dordrecht: Dr W. Junk Publishers.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16: 436–68.Google Scholar
Dayan, U. 1986. Climatology of back trajectories from Israel based on synoptic analysis. Journal of Climate and Applied Meteorology 25: 591–95.Google Scholar
deMenocal, P.B. 1995. Plio-Pleistocene African climate. Science 270: 53–9.Google Scholar
deMenocal, P.B. 2004. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220: 324.Google Scholar
Derricourt, R. 2005. Getting ‘Out of Africa’: sea crossings, land crossings. Journal of World Prehistory 19: 119–32.Google Scholar
Dreybrodt, W. & Deininger, M. 2014. The impact of evaporation to the isotope composition of DIC in calcite precipitating water films in equilibrium and kinetic fractionation models. Geochimica et Cosmochimica Acta 125: 433–9.Google Scholar
Ehleringer, J.R. 1988. Carbon isotope ratios and physiological processes in aridland plants. In Applications of Stable Isotopic Ratios to Eco-logical Research, ed. Rundel, P.W., Ehleringer, J.R. & Nagy, K.A.. New York: Springer, pp. 4154.Google Scholar
Ehleringer, J.R., Sage, R.F., Flanagan, L.B. & Pearcy, R.W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6: 9599.Google Scholar
Emeis, K.C., Schulz, H.M., Struck, U. et al. 1998. Stable isotope and alkenone temperature records of sapropels from sites 964 and 967: constraining the physical environment of sapropel formation in the eastern Mediterranean Sea. In Proceedings of the Ocean Drilling Program – Scientific Results Vol. 160, ed. Robertson, A.H.F., Emeis, K.C., Richter, C. & Camerlengi, A.. College Station: Ocean Drilling Program, pp. 309–31.Google Scholar
Emeis, K.C., Struck, U., Schulz, H.M. et al. 2000. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 158: 259–80.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Even, H., Carmi, I., Magaritz, M. & Gersson, R. 1986. Timing the transport of waters through the upper vadose zone in a karstic system above a cave in Israel. Earth Surface. Processes and Landforms 11: 181–91.Google Scholar
Feng, X. 1999. Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: A response to atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 63: 1891–903.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M. et al. 2003a. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300: 1737–9.Google Scholar
Fleitmann, D., Burns, S.J., Neff, U., Mangini, A. & Matter, A. 2003b. Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quaternary Research 60: 223–32.Google Scholar
Fleitmann, D., Burns, S.J., Pekala, M. et al. 2011. Holocene and Pleistocene pluvial periods in Yemen, southern Arabia. Quaternary Science Reviews 30: 783–7.Google Scholar
Frumkin, A. & Stein, M. 2004. The Sahara–East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth and Planetary Science Letters 217: 451–64.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H.P. 1999. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research 51: 317–27.Google Scholar
Frumkin, A., Ford, D. & Schwarcz, H.P. 2000. Paleoclimate and vegetation of the Last Glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14: 863–70.Google Scholar
Frumkin, A., Bar-Matthews, M. & Vaks, A. 2008. Paleoenvironment of Jawa basalt plateau, Jordan, inferred from calcite speleothems from a lava tube. Quaternary Research 70: 358–67.Google Scholar
Frumkin, A., Bar-Yosef, O. & Schwarcz, H.P. 2011. Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolithic. Journal of Human Evolution 60: 437–51.Google Scholar
Garcea, E.A.A. 2004. Crossing deserts and avoiding seas: Aterian North African–European relations. Journal of Anthropological Research 60: 2753.Google Scholar
Gasse, F., Vidal, L., Van Campo, E. et al. 2015. Hydroclimatic changes in northern Levant over the past 400,000 years. Quaternary Science Reviews 111: 18.Google Scholar
Gat, J.R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Science 24: 225–62.Google Scholar
Gat, J.R. & Carmi, I. 1987. Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: Case of the eastern Mediterranean Sea area. In: The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, Proceedings of the Vancouver Symposium, August 1987, IAHS Publication No. 168, pp. 513–23.Google Scholar
Genty, D., Baker, A., Massault, M. et al. 2001. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implication for 13C variation in speleothems. Geochimica et Cosmochimica Acta 65: 3443–57.Google Scholar
Gopher, A., Ayalon, A., Bar-Matthews, M. et al. 2010. The chronology of the late Lower Paleolithic in the Levant based on U–Th ages of speleothems from Qesem Cave, Israel. Quaternary Geochronology 5: 644–56.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M. et al. 2012. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491: 744–7.Google Scholar
Greenbaum, N., Porat, N., Rhodes, E. & Enzel, Y. 2006. Large floods during late Oxygen Isotope Stage 3, southern Negev desert, Israel. Quaternary Science Reviews 25: 704–19.Google Scholar
Grün, R. & Stringer, C. 2000. Tabun revisited: Revised ESR chronology and new ESR and U-series analyses of dental material from Tabun C1. Journal of Human Evolution 39: 601–12.Google Scholar
Grün, R., Stringer, C., McDermott, F. et al. 2005. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. Journal of Human Evolution 49: 316–34.Google Scholar
Hall, J. 1997. Digital Shaded-Relief Map of Israel and Environs,1:500000. Israel Geological Survey.Google Scholar
Hershkovitz, I., Marder, O., Ayalon, A. et al. 2015. Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans. Nature 520: 216–19.Google Scholar
Kahana, R., Ziv, B., Enzel, Y. & Dayan, U. 2002. Synoptic climatology of major floods in the Negev Desert, Israel. International Journal of Climatology 22: 867–82.Google Scholar
Kallel, N., Paterne, M., Duplessy, J.-C. et al. 1997. Enhanced rainfall in the Mediterranean region during the last sapropel event. Oceanologica Acta 20: 697712.Google Scholar
Kaufman, A., Wasserburg, G.J., Porcelli, D. et al. 1998. U–Th isotope systematics from the Soreq Cave Israel and climatic correlations. Earth and Planetary Science Letters 156: 141–55.Google Scholar
Kolodny, Y., Bar-Matthews, M., Ayalon, A. & McKeegan, K.D. 2003. A high spatial resolution δ18O profile of a speleothem using an ion-microprobe. Chemical Geology 197: 21–8.Google Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea–rain–lake relation in the Last Glacial East Mediterranean revealed by δ18O–δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 16: 4045–60.Google Scholar
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. 2009. Stromatolites in caves of the Dead Sea Fault escarpment: Implications to latest Pleistocene lake levels and tectonic subsidence. Quaternary Science Reviews 28: 8092.Google Scholar
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. 2010. A Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quaternary Science Reviews 29: 1201–211.Google Scholar
Livnat, A. & Kronfeld, J. 1985. Paleoclimatic implications of U-series dates for lake sediments and travertines in the Arava Rift Valley, Israel. Quaternary Research 24: 164–72.Google Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C. et al. 2004. Abrupt temperature changes in the western Mediterranean over the past 250,000 years. Science 306: 1762–5.Google Scholar
Matthews, A., Ayalon, A. & Bar-Matthews, M. 2000. D/H ratios of fluid inclusions of Soreq Cave (Israel) speleothems as a guide to the eastern Mediterranean meteoric line relationships in the last 120 ky. Chemical Geology 166: 183–91.Google Scholar
McBrearty, S. & Brooks, A.S. 2000. The revolution that wasn't: A new interpretation of the origin of modern human behavior. Journal of Human Evolution 39: 453563.Google Scholar
McDermott, F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quaternary Science Reviews 23: 901–18.Google Scholar
McDougall, I., Brown, F.H. & Fleagle, J.G. 2005. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433: 733–6.Google Scholar
McGarry, S., Bar-Matthews, M., Matthews, A. et al. 2004. Constraints on hydrological and paleotemperature variations in the eastern Mediterranean region in the last 140 ka given by the dD values of speleothem fluid inclusions. Quaternary Science Reviews 23: 919–34.Google Scholar
Mercier, N., Valladas, H., Bar-Yosef, O et al. 1993. Thermoluminescence date for the Mousterian burial site of Es-Skhul, Mt. Carmel. Journal of Archaeological Science 20: 169–74.Google Scholar
Mercier, N., Valladas, H., Valladas, G. et al. 1995. TL dates of burnt flints from Jelinek's excavations at Tabun and their implications. Journal of Archaeological Science 22: 495509.Google Scholar
Merlivat, L. & Jouzel, J. 1979. Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. Journal of Geophysical Research 84: 5029–33.Google Scholar
Nadel, D., Tsatskin, A., Belmaker, M. et al. 2004. On the shore of a fluctuating lake: Environmental evidence from Ohalo II (19,500 B.P.). Israel Journal of Earth Sciences 53: 207–23.Google Scholar
Orland, I.J., Bar-Matthews, M., Kita, N.T. et al. 2009. Climate deterioration in the eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel Quaternary Research 71: 2735.Google Scholar
Orland, I.J., Bar-Matthews, M., Ayalon, A. et al. 2012. Seasonal resolution of eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochimica et Cosmochimica Acta 89: 240–55.Google Scholar
Orland, I.J., Burstyn, Y., Bar-Matthews, M. et al. 2014. Seasonal climate signals (1998–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chemical Geology 363: 322–33.Google Scholar
Petraglia, M.D. & Alsharekh, A. 2003. The Middle Palaeolithic of Arabia: Implications for modern human origins, behaviour and dispersals. Antiquity 77: 671–84.Google Scholar
Rabinovich, R. 2003. The Levantine Upper Paleolithic faunal record. In More than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, ed. Goring-Morris, A.N. & Belfer-Cohen, A.. Oxford: Oxbow Books, pp. 3348.Google Scholar
Rindsberger, M., Magaritz, M., Carmi, I. & Gilad, D. 1983. The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area. Geophysical Research Letters 10: 43–6.Google Scholar
Rink, W.J., Schwarcz, H.P., Lee, H.K. et al. 2001. Electron spin reson-ance (ESR) and thermal ionization mass spectrometric (TIMS) 230Th/234U dating of teeth in Middle Paleolithic layers at Amud Cave, Israel. Geoarchaeology 16: 701–17.Google Scholar
Rossignol-Strick, M. 1983. African monsoon, an immediate response to orbital insolation. Nature 304: 46–9.Google Scholar
Rossignol-Strick, M. 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology 49: 237–63.Google Scholar
Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Record, ed. Swart, P.K., Lohman, K.L., McKenzie, J.A. & Savin, S.. Geophysical Monograph Series 78. Washington: American Geophysical Union, pp. 137.Google Scholar
Schwarcz, H.P. 1980. Absolute age determination of archeological sites by uranium series dating of travertines. Archaeometry 22: 324.Google Scholar
Schwarcz, H.P., Blackwell, B., Goldberg, P. & Marks, A.E. 1979. Uran-ium series dating of travertine from archaeological sites, Nahal Zin, Israel. Nature 277: 558–60.Google Scholar
Schwarcz, H.P., Grün, R.V.B., Bar-Yosef, O., Valladas, H. & Tchernov, E. 1988. ESR dates from the hominid burial site of Kafzeh in Israel. Journal of Human Evolution 17: 733–7.Google Scholar
Schwarcz, H.P., Buhay, W.M., Grün, R. et al. 1989. ESR dating of the Neanderthal site of Kebara Cave, Israel. Journal of Archaeological Science 16: 653–9.Google Scholar
Sharon, D. & Kutiel, H. 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Climatology 6: 277–91.Google Scholar
Shay-El, Y. & Alpert, P. 1991. A diagnostic study of winter diabatic heating in the Mediterranean in relation with cyclones. Quarterly Journal of the Royal Meteorological Society 117: 715–47.Google Scholar
Shea, J.J. 2008. Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the East Mediterranean Levant. Quaternary Science Reviews 27: 2253–70.Google Scholar
Smith, J.R., Giegengack, R. & Schwarcz, H.P. 2004. Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 157–75.Google Scholar
Smith, J.R., Hawkins, A.L., Asmerom, Y., Polyak, V. & Giegengack, R. 2007. New age constraints on MSA occupation, Western Desert, Egypt. Journal of Human Evolution 52: 690701.Google Scholar
Solecki, R.S. & Solecki, R.L. 1993. The pointed tools from the Mouster-ian occupations of Shanidar Cave, Northern Iraq. In The Paleolithic Prehistory of the Zagros-Taurus, ed. Olszewski, D.I. & Dibble, H.L.. Philadelphia: The University Museum, University of Pennsylvania, pp. 119–46.Google Scholar
Stringer, C.B. & Barton, R.N.E. 2008. Putting North Africa on the map of modern human origins. Evolutionary Anthropology 17: 57.Google Scholar
Stringer, C.B., Grün, R., Schwarcz, H.P. & Goldberg, P. 1989. ESR dates for the hominid burial site of Es Skhul in Israel. Nature 338: 756–58.Google Scholar
Tchernov, E. 1988. The age of Ubeidiya Formation (Jordan Valley, Israel) and the earliest hominids in the Levant. Paleorient 14: 63–5.Google Scholar
Torfstein, A., Goldstein, S., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2003. Paleoclimate reconstruction based on the timing of speleothem growth, oxygen and carbon isotope composition from a cave located in the ‘rain shadow’, Israel. Quaternary Rresearch 59: 182–93.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249: 384–99.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2007. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35: 831–4.Google Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. 2010. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29: 2647–662.Google Scholar
Vaks, A., Gutareva, O.S., Breitenbach, S.F.M. et al. 2013a. Speleothems reveal 500,000-year history of Siberian permafrost, Science 340: 183–6.Google Scholar
Vaks, A., Woodhead, J., Bar-Matthews, M. et al. 2013b. Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters 368: 88100.Google Scholar
Valladas, H., Joron, J.L., Valladas, G. et al. 1987. Thermoluminescence dates for the Neanderthal burial site at Kebara in Israel. Nature 330: 159–60.Google Scholar
Valladas, H., Reyss, J.L., Joron, J.L. et al. 1988. Thermoluminescence dating of Mousterian ‘proto-Cro-Magnon’ remains from Israel and the origin of the modern man. Nature 331: 614–16.Google Scholar
Valladas, H., Mercier, N., Hovers, E. et al. 1999. TL dates for the Neanderthal site of Amud Cave, Israel. Journal of Archeological Science 26: 259–68.Google Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R. & Swennen, R. 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quaternary Research 70: 368–81.Google Scholar
Vermeersch, P.M. 2001. ‘Out of Africa’ from an Egyptian point of view. Quaternary International 75: 103–12.Google Scholar
Vogel, J.C., Fuls, A. & Danin, A. 1986. Geographical and environmental distribution of C3 and C4 grasses in Sinai, Negev, and Judean deserts. Oecologia 70: 258–65.Google Scholar
Waldmann, N., Torfstein, A. & Stein, M. 2010. Northward intrusions of low- and midlatitude storms across the Saharo-Arabian belt during past interglacials. Geology 38: 567–70.Google Scholar
Walter, C., Buffler, R.T., Bruggemann, J.H. et al. 2000. Early human occupation of the Red Sea coast of Eritrea during the last interglacial. Nature 405: 65–9.Google Scholar
Weinstein-Evron, M. 1987. Palynology of Pleistocene travertines from the Arava Valley, Israel. Quaternary Research 27: 82–8.Google Scholar
Yair, A. 1990. The role of topography and surface cover upon soil formation along hillslope in arid climate. Geomorphology 3: 287–99.Google Scholar
Zangvil, A. & Druian, P. 1990. Upper air trough axis orientation and the spatial distribution of rainfall over Israel. International Journal of Climatology 10: 5762.Google Scholar

References

Almogi-Labin, A., Bar-Matthews, M., Shriki, D. et al. 2009. Climate variability during the last 90 ka on the southern and northern Levantine basin as evident from marine records and speleothems. Quaternary Science Reviews 28: 2882–96.Google Scholar
Ayalon, A., Bar-Matthews, M. & Kaufman, A. 2002. Climatic conditions during marine isotopic stage 6 in the eastern Mediterranean region as evident from the isotopic composition of speleothems: Soreq Cave, Israel. Geology 30: 303–6.Google Scholar
Ayalon, A., Bar-Matthews, M., Frumkin, A. & Matthews, A. 2013. Last Glacial warm events on Mount Hermon: The southern extension of the Alpine karst range in the east Mediterranean. Quaternary Science Reviews 59: 4356.Google Scholar
Bar-Matthews, M. 2014. History of water in the Middle East and North Africa. In Treatise on Geochemistry, ed. Holland, H.D. & Turekian, K.K.. Oxford: Elsevier, pp. 109–28.Google Scholar
Bar-Matthews, M., Ayalon, A. & Kaufman, A. 1997. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope ana-lysis of speleothems at Soreq cave, Israel. Quaternary Research 47: 155–68.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G.J. 1999. The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters 166: 8595.Google Scholar
Bar-Matthews, M., Ayalon, A. & Kaufman, A. 2000. Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chemical Geology 169: 145–56.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, M. & Hawkesworth, C. 2003. Sea–land isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implications for paleorainfall during interglacial interval, Geochimica et Cosmochimica Acta 67: 3181–99.Google Scholar
Berger, A. & Loutre, M.F. 1991. Insolation values for the climate of the last 10 million years, Quaternary Science Reviews 10: 297317.Google Scholar
Cheng, H., Sinhac, A., Verheyden, S. et al. 2015. The climate variability in northern Levant over the past 20,000 years. Geophysical Research Letters 42: 8641–50.Google Scholar
deMenocal, P.B. 2001. Cultural response to climate change during the Late Holocene. Science 292: 667–73.Google Scholar
Develle, A.L., Gasse, F., Vidal, L. et al. 2011. A 250 ka sedimentary record from a small karstic lake in the Northern Levant (Yammoûneh, Lebanon): Paleoclimatic implications. Palaeogeography, Palaeo-climatology, Palaeoecology 305: 1027.Google Scholar
Dubertret, L. 1975. Introduction à la carte géologique au 1/50 000 du Liban. Notes et Mémoires du Moyen-Orient 13: 345403.Google Scholar
Emeis, K.-C., Struck, U., Schulz, H.-M. et al. 2000. Temperature and salinity variations of the Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 158: 259–80.Google Scholar
Emeis, K.C., Schulz, H., Struck, U. et al. 2003. Eastern Mediterranean surface water temperatures and δ18O during deposition of sapropels in the late Quaternary. Paleoceanography 18: 1005.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighbouring deserts. Global Planetary Change 60: 165–92.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H.P. 1999. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research 51: 317–27.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H. 2000. Paleoclimate and vegetation of the Last Glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14: 863–70.Google Scholar
Gasse, F., Vidal, L., Develle, A.-L. & Van Campo, E. 2011. Hydrological variability in the northern Levant: A 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence. Climatic Past 7: 1261–84.Google Scholar
Gasse, F., Vidal, L., Van Campo, E. et al. 2015. Hydroclimatic changes in northern Levant over the past 400,000 years. Quaternary Science Review 111: 18.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M. et al. 2012. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491: 744–7.Google Scholar
Kallel, N., Duplessy, J-C., Labeyrie, L. et al. 2000. Mediterranean pluvial periods and sapropel formation during the last 200,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 157: 4558.Google Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea–rain–lake relation in the Last Glacial East Mediterranean revealed by d18O–d13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4055–60.Google Scholar
Lisker, S., Vaks, A. & Bar-Matthews, M. 2010. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quaternary Science Reviews 29: 1201–11.Google Scholar
Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P.C. 2014. A 600,000 years long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews 104: 3041.Google Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W. & Agnon, A. 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66: 421–31.Google Scholar
Nader, F.H. 2004. The Jiita Cave (Lebanon). In Encyclopedia of Caves and Karst Science, ed. Gunn, J.. New York – London: Fitzroy Dearborn, pp. 463–4.Google Scholar
Nehme, C., Verheyden, S., Noble, S.R. et al. 2015. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon. Climate of the Past Discussions 11: 3241–75. doi:10.5194/cpd-11–3241–2015.Google Scholar
Neugebauer, I., Schwab, M.J., Waldmann, N.D. et al. 2015. Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments. Climate of the Past Discussions 11: 3625–63.Google Scholar
NGRIP (North Greenland Ice Core Project) Members 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431: 147–51.Google Scholar
Petit-Maire, N., Carbonel, P., Reyss, J.L. et al. 2010. A vast Eemian palaeo-lake in Southern Jordan (29°N). Global and Planetary Change 72: 368–73.Google Scholar
Rohling, E.J., Cane, T.R., Cooke, S. et al. 2002. African monsoon variability during the previous interglacial maximum. Earth and Planetary Science Letters 202: 6175.Google Scholar
Rohling, E.J., Sprovieri, M., Cane, T.R. et al. 2004. Reconstructing past planktic foraminiferal habitats using stable isotope data: A case history for Mediterranean sapropel S5. Marine Micropaleontology 50: 89123.Google Scholar
Rossignol-Strick, M. 1999. The Holocene climatic optimum and pollen records of sapropel 1 in the eastern Mediterranean, 9000–6000 BP. Quaternary Science Reviews 18: 515–30.Google Scholar
Saaroni, H., Ziv, B., Bitan, A. & Alpert, P. 1998. Easterly wind storms over Israel. Theoretical and Applied Climatology 59: 6177.Google Scholar
Schmiedl, G., Mitschele, A., Beck, S. et al. 2003. Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S5 and S6 deposition. Palaeogeography Palaeoclimatology Palaeoecology 190: 139–64.Google Scholar
Scrivner, A.E., Vance, D. & Rohling, E.J. 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geology 32: 565–8.Google Scholar
Staubwasser, M. & Weiss, H. 2006. Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research 66: 372–87.Google Scholar
Stockhecke, M., Sturm, M., Brunner, I. et al. 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600,000 years. Sedimentology 61: 1830-61.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249: 384–99.Google Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. 2013. Middle–Late Quaternary paleoclimate of northern margins of the Saharan–Arabian Desert: Reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29: 2647–62.Google Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R. & Swennen, R. 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita Cave, Lebanon. Quaternary Research 70: 368–81.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin. Quaternary Research 72: 115.Google Scholar
Walley, C.D. 2001. The Lebanon passive margin and the evolution of the Levantine Neotethys. In Peri-Tethys Memoir 6: Peri Tethyan Rift/Wrench Basins and Passive Margins, ed. Ziegler, P.A., Cavazza, W., Robertson, A.H.F. & Crasquin-Soleau, S., Mémoire du Muséum national d'Histoire naturelle, Paris, 86. Paris: MNHN, pp. 407–39.Google Scholar
Ziegler, M., Tuenter, E. & Lourens, L.J. 2010. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Review 29: 1481–90.Google Scholar

References

Abi-Saleh, B. & Safi, S. 1988. Carte de la végétation du Liban. Ecologia Mediterranea 14: 123–41.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D. et al. 2009. Climatic variability during the last 90 ka on the southern and northern Levantine basin as evident from marine records and speleothems. Quaternary Science Reviews 28: 2882–96.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C.J. 2003. Sea–land oxygen isotopic relationship from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181–99.Google Scholar
Baruch, U. & Bottema, S. 1991. Palynological evidence for climatic changes in the Levant ca. 17,000–19,000 B.P. In The Natufian Culture in the Levant, ed. Bar-Yosef, O. & Valla, F.R.. Ann Arbor: International Monographs in Prehistory, pp. 1120.Google Scholar
Bottema, S. 1995. The Younger Dryas in the eastern Mediterranean. Quaternary Science Reviews 14: 865–86.Google Scholar
Cheddadi, R. & Rossignol-Strick, M. 1995. Eastern Mediterranean Quaternary paleoclimates from pollen and isotope records of marine cores in the Nile cone area. Paleoceanography 10: 883–91.Google Scholar
Develle, A.L., Herreros, J., Vidal, L., Sursock, A. & Gasse, F. 2010. Controlling factors on a paleo-lake oxygen isotope record (Yammoûneh, Lebanon) since the Last Glacial Maximum. Quaternary Science Reviews 29: 865–86.Google Scholar
Develle, A.L., Gasse, F., Vidal, L. et al. 2011. A 250 ka sedimentary record from a small karstic lake in the northern Levant (Yammoûneh, Lebanon): Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 305: 1027.Google Scholar
Djamali, M., de Beaulieu, J.L., Shah-Hosseini, M. et al. 2008. A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research 69: 413–20.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Frumkin, A., Ford, D.C. & Schwarcz, H.P. 1999. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research 51: 317–27.Google Scholar
Frumkin, A., Bar-Yosef, O. & Schwarcz, H.P. 2011. Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolithic. Journal of Human Evolution 60: 437–51.Google Scholar
Gasse, F., Vidal, L., Develle, A.L. & Van Campo, E. 2011. Hydrological variability in the northern Levant: A 250 ka multiproxy record from the Yammoûneh (Lebanon) sedimentary sequence. Climate of the Past 7: 1261–84.Google Scholar
Gasse, F., Vidal, L., Van Campo, E. et al. 2015. Hydroclimatic changes in northern Levant over the past 400,000 years. Quaternary Science Reviews 111: 18.Google Scholar
Hajar, L., Khater, C. & Cheddadi, R. 2008. Vegetation changes during the late Pleistocene and Holocene in Lebanon: A pollen record from the Bekaa Valley. The Holocene 18: 1089–99.Google Scholar
Hajar, L., Haïdar-Boustani, M., Khater, C. & Cheddadi, R. 2010. Enviromental changes in Lebanon during the Holocene: Man vs. climate impacts. Journal of Arid Environments 74: 746–55.Google Scholar
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press.Google Scholar
Kaniewski, D., Guiot, J., Van Campo, E. 2015. Drought and societal collapse 3200 years ago in the eastern Mediterranean: A review. WIRES Climate Change. doi:10.1002/wcc.345.Google Scholar
Kolodny, Y., Stein, M. & Machlus, M. 2005. Sea–rain–lake relation in the Last Glacial East Mediterranean revealed by ∂18O–∂13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4045–60.Google Scholar
Langgut, D., Almogi-Labin, A., Bar-Matthews, M. & Weinstein-Evron, M. 2011. Vegetation and climate changes in the south eastern Mediterranean during the Last Glacial–Interglacial cycle (86 ka): New marine pollen record. Quaternary Science Reviews 30: 3960–72.Google Scholar
Langgut, D., Finkelstein, I., Litt, T., Neumann, F.H. & Stein, M. 2015. Vegetation and climate changes during the Bronze and and Iron ages (3600–600 BCE) in the southern Levant based on palynological records. Radiocarbon 57: 217–35.Google Scholar
Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P.C. 2014. A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews 104: 3041.Google Scholar
Loulergue, E., Schilt, A., Spahni, R. et al. 2008. Orbital and millenial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453: 383–6.Google Scholar
Meadows, J. 2005. The Younger Dryas episode and the radiocarbon chronologies of the Lake Huleh and Ghab Valley pollen diagrams, Israel and Syria. The Holocene 15: 631–36.Google Scholar
Moulin, A. Benedetti, L., Van der Woerd, J. et al. 2011. LGM glaciers on Mount Lebanon? New insights from 36Cl exposure dating of moraine boulders. Geophysical Research Abstracts 13: EGU2011-11465.Google Scholar
Niklewski, J. & Van Zeist, W. 1970. A Late Quaternary pollen diagram from north-western Syria. Acta Botanica Neerlandica 19: 737–54.Google Scholar
Rossignol-Strick, M. 1995. Sea–land correlation of pollen records in the eastern Mediterranean for the glacial–interglacial transition: biostratigraphy versus radiometric time-scale. Quaternary Science Reviews 14: 893915.Google Scholar
Sharon, D. & Kutiel, H. 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Climatology 6: 277–91.Google Scholar
Stockhecke, M., Kwiecien, O., Vigliotti, L. et al. 2014a. Chronostratigraphy of the 600,000 year old continental record of Lake Van (Turkey). Quaternary Science Reviews 104: 817.Google Scholar
Stockhecke, M., Sturm, M., Brunner, I. et al. 2014b. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology 61: 1830–61.Google Scholar
Torfstein, A. Goldstein, S. L., Stein, M., and Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from last glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Tzedakis, P.C., Hooghiemstra, H. & Pälike, H. 2006. The last 1.35 million years at Tenaghi Philippon, revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25: 3416–30.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2003. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quaternary Research 59: 182–93.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2007. Desert speleothems reveal climatic window for African exodus of early humans. Geology 35: 831–34.Google Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. 2010. Middle–Late Quaternary paleoclimate of northern margins of the Saharan–Arabian Desert: Reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29: 2647–62.Google Scholar
Van Zeist, W. & Bottema, S. 1991. Late Quaternary Vegetation of the Near East. Wiesbaden: Dr Ludwig Reichert Verlag.Google Scholar
Van Zeist, W. & Woldring, H. 1980. Holocene vegetation and climate of northwestern Syria. Paleohistoria 22: 111–25.Google Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R. & Swennen, R. 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita Cave, Lebanon. Quaternary Research 70: 368–81.Google Scholar
Waldmann, N., Torfstein, A. & Stein, M. 2010. Northward intrusions of low- and mid-latitude storms accross the Saharo-Arabian belt during the past interglacials. Geology 38: 567–70.Google Scholar
Yasuda, Y., Kitagawa, H. & Nakagawa, T. 2000. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: A palynological study. Quaternary International 73/74: 127–36.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×