Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T20:19:07.082Z Has data issue: false hasContentIssue false

7 - Holes in quantum dot molecules: structure, symmetry, and spin

from Part II - Manipulation of individual quantum states in quantum dots using optical techniques

Published online by Cambridge University Press:  05 August 2012

M. F. Doty
Affiliation:
University of Delaware, USA
J. I. Climente
Affiliation:
Universitat Jaume I, Spain
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Introduction

The spin projections of single electrons and holes confined in quantum dots (QDs) provide a natural two-level system that can serve as the logical basis for both classical and quantum information processing devices. When two layers of self-assembled InGaAs QDs are grown sequentially, strain propagation causes QDs in the two layers to align along the growth direction. Coherent tunneling of either electrons or holes between the two QDs leads to a variety of Coulomb and spin interactions with possible applications in optoelectronic and logic devices [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Because coherent tunneling leads to the formation of delocalized molecular states, these vertically stacked pairs of QDs have come to be known as quantum dot molecules (QDMs). One of the surprising discoveries about QDMs was that the delocalized molecular states have their own unique and tunable properties [16]. In this chapter we review the formation of delocalized molecular states of holes in QDMs and consider how the structure and symmetry of the QDM influence spin properties. Results have been obtained for molecular states charged with one, two, and three holes [9, 13, 17]. We focus here on molecular states occupied by a single hole whose spin projections could serve as the basis for optoelectronic logic devices.

Hole spins were initially discounted for spin-based devices because the complex valence-band interactions were anticipated to degrade spin storage or decoherence times.

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 118 - 134
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bracker, A. S., Scheibner, M., Doty, M. F. et al. Applied Physics Letters 89, 233110 (2006).
[2] Doty, M. F., Climente, J. I., Korkusinski, M. et al. Physical Review Letters 102, 47401 (2009).
[3] Doty, M. F., Climente, J. I., Greilich, A. et al. Physical ReviewB 81, 035308 (2010).
[4] Lyanda-Geller, Y. B., Reinecke, T. L. and Bayer, M.Physical ReviewB 69, 161308 (2004).
[5] Villas-Bôas, J. M., Govorov, A. O. and Ulloa, S. E.Physical ReviewB 69, 125342 (2004).
[6] Bester, G., Shumway, J. and Zunger, A.Physical Review Letters 93, 47401 (2004).
[7] Krenner, H. J., Sabathil, M., Clark, E. C. et al. Physical Review Letters 94, 57402 (2005).
[8] Ortner, G., Bayer, M., Geller, Y. L. et al. Physical Review Letters 94, 157401 (2005).
[9] Stinaff, E. A., Scheibner, M., Bracker, A. S. et al. Science 311, 636–639 (2006).
[10] Krenner, H. J., Clark, E. C., Nakaoka, T. et al. Physical Review Letters 97, 76403 (2006).
[11] Jaskolski, W., Zielinski, M., Bryant, G. W. and Aizpurua, J. Physical ReviewB 74, 195339 (2006).
[12] Ponomarev, I. V., Scheibner, M., Stinaff, E. A. et al. Physica Status Solidi B-Basic Solid State Physics 243, 3869–3873 (2006).
[13] Scheibner, M., Doty, M., Ponomarev, I. et al. Phys. Rev.B 75(24) (2007).
[14] Maialle, M. Z. and Degani, M. H.Physical ReviewB 76, 115302 (2007).
[15] Szafran, B., Peeters, F. and Bednarek, S.Physical ReviewB 75, 115303 (2007).
[16] Doty, M. F., Scheibner, M., Ponomarev, I. V. et al. Physical Review Letters 97, 197202 (2006).
[17] Doty, M. F., Scheibner, M., Bracker, A. S. and Gammon, D.Physical ReviewB 78, 115316 (2008).
[18] Gerardot, B. D., Brunner, D., Dalgarno, P. A. et al. Nature 451, 441–444 (2008).
[19] Heiss, D., Schaeck, S., Huebl, H. et al. Physical ReviewB 76, 241306 (2007).
[20] Brunner, D., Gerardot, B. D., Dalgarno, P. A. et al. Science 325, 70–72 (2009).
[21] Eble, B., Krebs, O., Lemaitre, A. et al. Physical ReviewB 74, 81306 (2006).
[22] Testelin, C., Bernardot, F., Eble, B. and Chamarro, M.Physical ReviewB 79(19), 195440 (2009).
[23] Xu, X., Yao, W., Sun, B. et al. Nature 459(7250), 1105–1109 (2009).
[24] Bulaev, D. V. and Loss, D.Physical Review Letters 95, 76805 (2005).
[25] Burkard, G., Seelig, G. and Loss, D.Physical ReviewB 62, 2581 (2000).
[26] Khaetskii, A. V., Loss, D. and Glazman, L.Physical Review Letters 88, 186802 (2002).
[27] Chekhovich, E., Krysa, A., Skolnick, M. and Tartakovskii, A.Physical Review Letters 106, 027402 (2011).
[28] Michler, P., editor. Single Semiconductor Quantum Dots. Springer, Berlin, (2009).
[29] Wasilewski, Z. R., Fafard, S. and McCaffrey, J. P.Journal of Crystal Growth 201, 1131–1135 (1999).
[30] Gong, Q., Offermans, P., Notzel, R., Koenraad, P. M. and Wolter, J. H.Applied Physics Letters 85, 5697–5699 (2004).
[31] Costantini, G., Rastelli, A., Manzano, C. et al. Physical Review Letters 96, 226106 (2006).
[32] Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. and Leroux, G.Applied Physics Letters 47, 1099–1101 (1985).
[33] Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P.Physical Review Letters 75, 2542 (1995).
[34] Solomon, G. S., Trezza, J. A., Marshall, A. F. and Harris, J. S.Physical Review Letters 76, 952–955 (1996).
[35] Ledentsov, N. N., Shchukin, V. A., Grundmann, M. et al. Physical ReviewB 54, 8743–8750 (1996).
[36] Fazekas, P.Lecture Notes on Electron Correlation and Magnetism. World Scientific (1999).
[37] Luttinger, J. M. and Kohn, W.Physical Review 97, 869–883 (1955).
[38] Bayer, M., Stern, O., Kuther, A. and Forchel, A.Physical ReviewB 61, 7273–7276 (2000).
[39] Salis, G., Kato, Y., Ensslin, K. et al. Nature 414, 619 (2001).
[40] Poggio, M., Steeves, G. M., Myers, R. C. et al. Physical ReviewB 70, 121305 (R) (2004).
[41] Snelling, M. J., Blackwood, E., McDonagh, C. J., Harley, R. T. and Foxon, C. T. B.Physical ReviewB 45, 3922–3925 (R) (1992).
[42] Climente, J. I., Korkusinski, M., Goldoni, G. and Hawrylak, P.Physical ReviewB 78, 115323 (2008).
[43] Chwiej, T. and Szafran, B.Physical ReviewB 81, 75302 (2010).
[44] Planelles, J., Climente, J., Rajadell, F. et al. Physical ReviewB 82, 155307 (2010).
[45] Rego, L. G. C., Hawrylak, P., Brum, J. A. and Wojs, A.Physical ReviewB 55, 15 694–15 700 (1997).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×