Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T11:40:39.964Z Has data issue: false hasContentIssue false

Part II - Habitat Alteration in the Anthropocene

Published online by Cambridge University Press:  25 January 2019

Alison M. Behie
Affiliation:
Australian National University, Canberra
Julie A. Teichroeb
Affiliation:
University of Toronto, Scarborough
Nicholas Malone
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, J., Cowlishaw, G. & Rowcliffe, J. M. (2007). Effects of forest fragmentation on the abundance of Colobus angolensis palliatus in Kenya’s coastal forests. International Journal of Primatology, 28(3), 637–55.Google Scholar
Appanah, S. & Manaf, M. R. A. (1994). Fruiting and seedling survival of dipterocarps in a logged forest. Journal of Tropical Forest Science, 6(3), 215–22.Google Scholar
Bain, R. H. & Hurley, M. M. (2005). A biogeographic synthesis of the amphibians and reptiles of Indochina. Bulletin of the American Museum of Natural History, 360, 1138.Google Scholar
Borgerson, C. (2015). The effects of illegal hunting and habitat on two sympatric endangered primates. International Journal of Primatology, 36(1), 7493.Google Scholar
Cannon, C. H., Peart, D. R. & Leighton, M. (1998). Tree species diversity in commercially logged Bornean rainforest. Science, 281(5381), 1367–8Google Scholar
Chapman, C. A., Balcomb, S. R., Gillespie, T. R., Skorupa, J. P. & Struhsaker, T. T. (2000). Long-term effects of logging on African primate communities: a 28-year comparison from Kibale National Park, Uganda. Conservation Biology, 14(1), 207–17.Google Scholar
Chapman, C. A., Wasserman, M. D. & Gillespie, T. R. (2006). Behavioral patterns of colobus in logged and unlogged forests: the conservation value of harvested forests. In Newton-Fisher, N. E., Notman, H., Patterson, J. D. & Reynolds, V. (eds) Primates of Western Uganda. New York: Springer, pp. 373–90.Google Scholar
Chapman, C. A., Naughton-Treves, L., Lawes, M. J., Wasserman, M. D. & Gillespie, T. R. (2007). Population declines of colobus in Western Uganda and conservation value of forest fragments. International Journal of Primatology, 28(3), 513–28.Google Scholar
Chivers, D. J. (1977). The lesser apes. In Prince Rainier, H. S. H. & Bourne, G. H. (eds) Primate Conservation. New York: Academic Press, pp. 539–98.Google Scholar
Chivers, D. J. (1985). Southeast Asian primates. In Benirschke, K. (ed) Primates: The Road to Self-Sustaining Populations. New York: Springer, pp. 5770.Google Scholar
Critical Ecosystem Partnership Fund (2012). Ecosystem Profile: Indo-Burma Biodiversity Hotspot. Available at: www.cepf.net/Documents/final.indoburma_indochina.ep.pdf (accessed 13 July 2015).Google Scholar
de Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. (2017). Primate responses to anthropogenic habitat disturbance: a pantropic meta-analysis. Biological Conservation, 215, 30–8.Google Scholar
de Lopez, T. T. (2002). Natural resource exploitation in Cambodia: an examination of use, appropriation and exclusion. Journal of Environment and Development, 11(4), 355–79.Google Scholar
Decker, B. S. (1994). Effects of habitat disturbance on the behavioral ecology and demographics of the Tana River Red colobus (Colobus badius rufomitratus). International Journal of Primatology, 15(5), 703–37.Google Scholar
Di Fiore, A. (2003). Ranging behavior and foraging ecology of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in Yasuni National Park, Ecuador. American Journal of Primatology, 59(2), 4766.Google Scholar
Environmental Investigation Agency (2016). Analysis of the demand-driven trade in hongmu timber species: impacts of unsustainability and illegality in source regions. Paper presented at the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Johannesburg, South Africa. Available at: https://cites.org/sites/default/files/eng/cop/17/InfDocs/E-CoP17-Inf-79.pdf.Google Scholar
Estrada, A. & Coates-Estrada, R. (1984). Some observations on the present distribution and conservation of Alouatta and Ateles in southern Mexico. American Journal of Primatology, 7(2), 133–7.CrossRefGoogle ScholarPubMed
Estrada, A. & Coates-Estrada, R. (1996). Tropical rain forest fragmentation and wild populations of primates at Los Tuxtlas, Mexico. International Journal of Primatology, 17(5), 759–83.Google Scholar
Estrada, A., Garber, P. A. & Rylands, A. B., et al. (2017). Impending extinction crisis of the world’s primates: why primates matter. Science Advances, 3(1), 117.Google Scholar
Fan, P. F. & Jiang, X. L. (2008). Effects of food and topography on ranging behavior of black crested gibbon (Nomascus concolor jingdongensis) in Wuliang Mountain, Yunnan, China. American Journal of Primatology, 70(9), 871–8.Google Scholar
Felton, A. M., Engström, L. M., Felton, A. & Knott, C. D. (2003). Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan, Indonesia. Biological Conservation, 114(1), 91101.CrossRefGoogle Scholar
Ferrari, S. F. & Diego, V. H. (1995). Habitat fragmentation and primate conservation in the Atlantic Forest of eastern Minas Gerais, Brazil. Oryx, 29(3), 192–6.CrossRefGoogle Scholar
Global Witness (2007). Cambodia’s family trees: illegal logging and the stripping of public assets by Cambodia’s elite. Available at: www.globalwitness.org/%85/cambodias_family_trees_low_res.pdf (accessed 13 July 2015).Google Scholar
Global Witness (2015). The cost of luxury: Cambodia’s illegal trade in precious wood with China. Available at: www.globalwitness.org/documents/17847/globalwitnessthecostofluxurypressreleaseenglish6feb15.pdf (accessed 7 September 2015).Google Scholar
Gonzalez-Monge, A. (2016). The socioecology, and the effects of human activity on it, of the Annamese silvered langur (Trachypithecus margarita) in northeastern Cambodia. PhD Thesis, Australian National University.Google Scholar
Grieser-Johns, A. & Grieser-Johns, B. (1995). Tropical forest primates and logging: long-term coexistence? Oryx, 29(3), 205–11.Google Scholar
Guo, S. T., Ji, W. H., Li, B. G. & Li, M. (2008). Response of a group of Sichuan snub-nosed monkeys to commercial logging in the Qinling Mountains, China. Conservation Biology, 22(4), 1055–64.Google Scholar
Gupta, A. K. & Kumar, A. (1994). Feeding ecology and conservation of Phayre’s leaf monkey Presbytis phayrei in Northeast India. Biological Conservation, 69(3), 301–6.Google Scholar
Hansen, M. C., Stehman, V., Potapov, P. V., et al. (2008). Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proceedings of the National Academy of Sciences, 105(27), 9439–44.Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(850), 133–9.Google Scholar
Heiduck, S. (2002). The use of disturbed and undisturbed forest by masked titi monkeys Callicebus personatus melanochir is proportional to food availability. Oryx, 36(2), 133–9.Google Scholar
Hu, G. (2011). Dietary breadth and resource use of François’ langur in a seasonal and disturbed habitat. American Journal of Primatology, 73(11), 1176–87.Google Scholar
Johns, A. D. (1983). Tropical forest primates and logging: can they coexist? Oryx, 17, 114–18.Google Scholar
Johns, A. D. (1986). Effects of selective logging on the behavioral ecology of west Malaysian primates. Ecology, 67(3), 684–94.Google Scholar
Johns, A. D. (1992). Vertebrate responses to selective logging: implications for the design of logging systems. Philosophical Transactions of the Royal Society of London B, 335(1275), 437–42.Google Scholar
Johns, A. D. & Skorupa, J. P. (1987). Responses of rain-forest primates to habitat disturbance: a review. International Journal of Primatology, 8(2), 157–91.Google Scholar
King, A., Behie, A. M., Rawson, B. M. & Hon, N. (2016). Patterns of salt lick use by mammal and bird species in Northeastern Cambodia. Cambodian Journal of Natural History, 1, 4050.Google Scholar
Knop, E., Ward, P. I. & Wich, S. A. (2004). A comparison of orang-utan density in a logged and unlogged forest on Sumatra. Biological Conservation, 120(2), 183–8.Google Scholar
Kool, K. M. (1993). The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. International Journal of Primatology, 14(5), 667700.Google Scholar
Leca, J. B., Gunst, N., Rompis, A., et al. (2013). Population density and abundance of ebony leaf monkey (Trachypithecus auratus) in West Bali National Park, Indonesia. Primate Conservation, 26(1), 133–44.CrossRefGoogle Scholar
Li, B. G., Ren, B. P. & Gao, Y. F. (1999). A change in the summer home range of Sichuan snub-nosed monkeys in Yuhuangmiao, Qinling Mountains. Folia Primatologica, 70(5), 269–73.Google Scholar
Li, D. Y., Grueter, C. C., Ren, B. P., et al. (2008). Ranging of Rhinopithecus bieti in the Samage Forest, China: II. Use of land cover types and altitudes. International Journal of Primatology, 29, 1147–73.Google Scholar
Li, Y. M. (2004). The effect of forest clear-cutting on habitat use in Sichuan snub-nosed monkey (Rhinopithecus roxellana) in Shennongja Nature Reserve, China. Primates, 45(1), 6972.Google Scholar
Marshall, A. J., Nardiyono, , Engström, L. M., et al. (2006). The blowgun is mightier than the chainsaw in determining population density of Bornean Orangutans (Pongo pygmaeus morio) in the forests of East Kalimantan. Biological Conservation, 129(4), 566–78.Google Scholar
Menon, S. & Poirier, F. E. (1996). Lion-tailed macaques (Macaca silenus) in a disturbed forest fragment: activity patterns and time budget. International Journal of Primatology, 17(6), 969–85.CrossRefGoogle Scholar
Nijman, V. (2004). Effects of habitat disturbance and hunting on the density and biomass of the endemic Hose’s leaf monkey Presbytis hosei (Thomas, 1889) (Mammalia: Primates: Cercopithecidae) in East Borneo. Contributions to Zoology, 73(4), 283–91.Google Scholar
Nijman, V. (2005). Decline of the endemic Hose’s langur Presbytis hosei in Kayan Mentarang National Park, East Borneo. Oryx, 39(2), 14.Google Scholar
Nijman, V. (2010). Ecology and conservation of the Hose’s langur group (Colobinae: Presbytis hosei, P. canicrus, P. sabana): a review. In Gursky-Doyen, S. & Supriatna, J. (eds) Indonesian Primates. New York: Springer, pp. 269–84.Google Scholar
Onderdonk, D. A. & Chapman, C. A. (2000). Coping with forest fragmentation: the primates of Kibale National Park. International Journal of Primatology, 21(4), 587611.Google Scholar
Peres, C. A. (1997). Effects of habitat quality and hunting pressure on arboreal folivore densities in neotropical forests: a case study of howler monkeys (Alouatta spp.). Folia Primatologica, 68(3–5), 199222.Google Scholar
Peter, Z. & Pheap, A. (2015). (Un)protected areas. The Cambodia Daily, 1 August. Available at: www.cambodiadaily.com (accessed 7 September 2015).Google Scholar
Petersen, R., Sizer, N., Hansen, M., Potapov, P. & Thau, D. (2015). Satellites uncover 5 surprising hotspots for tree cover loss. World Resource Institute blog, 2 September. Available at: www.wri.org/blog/2015/09/satellites-uncover-5-surprising-hotspots-tree-cover-loss (accessed 4 September 2015).Google Scholar
Plumptre, A. J. & Reynolds, V. (1994). The effect of selective logging on the primate populations in the Budongo Forest Reserve, Uganda. Journal of Applied Ecology, 31(4), 631–41.Google Scholar
Poirier, F. E. (1968). Analysis of a Nilgiri langur (Presbytis johnii) home range change. Primates, 9(1), 2943.Google Scholar
Potts, K. B. (2011). The long-term effect of timber harvesting on the resource base of chimpanzees in Kibale National Park, Uganda. Biotropica, 43(2), 256–64.Google Scholar
Pye, D. (2013). Chainsaws stayed busy in last year. Phnom Penh Post, 26 December. Available at: www.phnompenhpost.com/national/chainsaws-stayed-busy-past-year (accessed 7 September 2015).Google Scholar
Pye, D. (2015a). Timber by the numbers. Phnom Penh Post, 7 April. Available at: www.phnompenhpost.com/national/timber-numbers (accessed 7 September 2015).Google Scholar
Pye, D. (2015b). Logging’s roots deep. Phnom Penh Post, 23 June. Available at: www.phnompenhpost.com/national/loggings-roots-deep (accessed 7 September 2015).Google Scholar
Pye, D. & Titthara, M. (2014). The calculus of logging. Phnom Penh Post, 10 October. Available at: www.phnompenhpost.com/national/calculus-logging (accessed 7 September 2015).Google Scholar
Pye, D. & Titthara, M. (2015). The ‘timber gangsters’. Phnom Penh Post, 6 February. Available at: www.phnompenhpost.com/national/timber-gangsters (accessed 7 September 2015).Google Scholar
Raemaekers, J. J. & Chivers, D. J. (1980). Socio-ecology of Malayan forest primates. In Chivers, D. J. (ed.) Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest. New York: Springer, pp. 279316.Google Scholar
Rawson, B. M. (2010). The status of Cambodian primates. In Nadler, T., Rawson, B. M. & Thinh, V. N., (eds) Conservation of Primates in Indochina. Hanoi: Frankfurt Zoological Society and Conservation International, pp. 17329.Google Scholar
Remis, M. J. & Jost Robinson, C. A. (2012). Reductions in primate abundance and diversity in a multiuse protected area: synergistic impacts of hunting and logging in a Congo basin forest. American Journal of Primatology, 74(7), 602–12.CrossRefGoogle Scholar
Rijksen, H. D. (1978). A field study on Sumatran orang utans (Pongo pygmaeus abelii Lesson 1827): ecology, behaviour and conservation. PhD Thesis, Agricultural University, Wageningen.Google Scholar
Riley, E. P. (2008). Ranging patterns and habitat use of Sulawesi Tonkean macaques (Macaca tonkeana) in a human-modified habitat. American Journal of Primatology, 70(7), 670–9.Google Scholar
Rosenbaum, B., O’Brien, T. G., Kinnaird, M. & Supriatna, J. (1998). Population densities of Sulawesi crested black macaques (Macaca nigra) on Bacan and Sulawesi, Indonesia: effects of habitat disturbance and hunting. American Journal of Primatology, 77, 7685.Google Scholar
Ruhiyat, Y. (1983). Socio-ecological study of Presbytis aygula in west Java. Primates, 24(3), 344–59.Google Scholar
Salter, R. E., MacKenzie, N. A., Nightingale, N., Aken, K. M. & Chai, P. K. (1985). Habitat use, ranging behaviour, and food habits of the proboscis monkey, Nasalis larvatus (van Wurmb), in Sarawak. Primates, 26(4), 436–51.Google Scholar
Singh, M., Kumara, H. N., Kumar, M. A. & Sharma, A. K. (2001). Behavioural responses of lion-tailed macaques (Macaca silenus) to a changing habitat in a tropical rain forest fragment in the Western Ghats, India. Folia Primatologica, 72(5), 278–91.Google Scholar
Skorupa, J. P. (1985). Responses of rainforest primates to selective logging in Kibale Forest, Uganda: a summary report. In Benirschke, K. (ed.) Primates: The Road to Self-Sustaining Populations. New York: Springer, pp. 5770.Google Scholar
Tan, C. L., Guo, S. T. & Li, B. G. (2007). Population structure and ranging patterns of Rhinopithecus roxellana in Zhouzhi National Nature Reserve, Shaanxi, China. International Journal of Primatology, 28(3), 577–91.CrossRefGoogle Scholar
Titthara, M. (2014). A logging free-for-all. Phnom Penh Post, 10 April. Available at: www.phnompenhpost.com (accessed 7 September 2015).Google Scholar
TRAFFIC (2008). What’s Driving the Wildlife Trade? A Review of Expert Opinion on Economic and Social Drivers of the Wildlife Trade and Trade Control Efforts in Cambodia, Indonesia, Lao PDR and Vietnam. Washington, DC: East Asia and Pacific Region Sustainable Development Department, World Bank.Google Scholar
Umapathy, G. & Kumar, A. (2003). Impacts of forest fragmentation on lion-tailed macaque and Nilgiri langur in Western Ghats, South India. In Marsh, L. K. (ed.) Primates in Fragments: Ecology and Conservation. New York: Springer, pp. 163–89.Google Scholar
Umapathy, G., Hussain, S. & Shivaji, S. (2011). Impact of habitat fragmentation on the demography of lion-tailed macaque (Macaca silenus) populations in the rainforests of Anamalai Hills, Western Ghats, India. International Journal of Primatology, 32(4), 889900.CrossRefGoogle Scholar
Vrieze, P. (2014). Extinction looms as notorious rosewood loggers set sights on Burma species, group warns. The Irrawaddy, 24 June. Available at: www.irrawaddy.com (accessed 30 November 2016).Google Scholar
Wallace, R. B. (2006). Seasonal variations in black-faced black spider monkey (Ateles chamek) habitat use and ranging behavior in a southern Amazonian tropical forest. American Journal of Primatology, 68(4), 313–32.Google Scholar
Waltert, M., Faber, K. & Mühlenger, M. (2002). Further declines of threatened primates in the Korup Project Area, south-west Cameroon. Oryx, 36(3), 257–65.Google Scholar
White, E. C., Dikangadissi, J. T. & Dimoto, E., et al. (2010). Home-range use by a large horde of wild Mandrillus sphinx. International Journal of Primatology, 31(4), 627–45.Google Scholar
Wich, S. A. & Sterck, E. H. M. (2010). Thomas langurs: ecology, sexual conflict and social dynamics. In Gursky-Doyen, S. & Supriatna, J. (eds) Indonesian Primates. New York: Springer, pp. 285308.Google Scholar
Winfield, K., Schott, M. & Grayson, C. (2016). Global status of Dalbergia and Pterocarpus rosewood producing species in trade. Paper presented at the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Johannesburg, South Africa. Available at: www.global-eye.co/ge/wp-content/uploads/2016/09/CoP17-Inf-Doc-XXX-English-Exec-Summ-Global-Overview.pdf.Google Scholar
Wolf, H. A. (1996). Deforestation in Cambodia and Malaysia: the case for an international legal solution. Pacific Rim Law and Policy Journal, 5(2), 429–55.Google Scholar
Workman, C. & Le, V. D. (2010). Seasonal effects on feeding selection by Delacour’s langur (Trachypithecus delacouri) in Van Long Nature Reserve, Vietnam. In Nadler, T., Rawson, B. M. & Thinh, V. N. (eds) Conservation of Primates in Indochina. Hanoi: Frankfurt Zoological Society and Conservation International, pp. 143–56.Google Scholar
Xiang, Z. F., Huo, S. & Xiao, W. (2011). Habitat selection of black-and-white snub-nosed monkey (Rhinopithecus bieti) in Tibet: implications for species conservation. American Journal of Primatology, 73(4), 347–55.Google Scholar
Zhang, D., Fei, H. L. & Yuan, S. D., et al. (2014). Ranging behavior of eastern hoolock gibbon (Hoolock leuconedys) in a northern montane forest in Gaoligongshan, Yunnan, China. Primates, 55(2), 239–47.Google Scholar
Zunino, G. E., Kowalewski, M. M., Oklander, L. L. & Gonzalez, V. (2007). Habitat fragmentation and population size of the black and gold howler monkey (Alouatta caraya) in a semideciduous forest in Northern Argentina. American Journal of Primatology, 69(9), 110.Google Scholar

References

Altmann, J. (1974). Observational study of behaviour: sampling methods. Behaviour, 49, 227–67.Google Scholar
Anderson, J., Rowcliffe, J. M. & Cowlishaw, G. (2007a). The Angola black-and-white colobus (Colobus angolensis palliatus) in Kenya: historical range contractions and current conservation status. American Journal of Primatology, 69, 664–80.Google Scholar
Anderson, J., Cowlishaw, G. & Rowcliffe, J. M. (2007b). Effects of forest fragmentation on the abundance of Colobus angolensis palliatus in Kenya’s coastal forests. International Journal of Primatology, 28, 637–55.CrossRefGoogle Scholar
Arnhem, E., Dupain, J., Vercauteren Drubbel, R., Devos, C. & Vercauteren, M. (2008). Selective logging, habitat quality and home range use by sympatric gorillas and chimpanzees: a case study from an active logging concession in southeast Cameroon. Folia Primatologica, 79, 114.Google Scholar
Asner, G. P., Rudel, T. K., Aide, T. M., DeFries, R. & Emerson, R. (2009). A contemporary assessment of change in humid tropical forests. Conservation Biology, 23, 1386–95.CrossRefGoogle ScholarPubMed
Barbier, E. B., Burgess, J. C., Bishop, J. & Aylward, B. (1994). The Economics of the Tropical Timber Trade. London: Earthscan.Google Scholar
Behie, A. M. & Pavelka, M. S. M. (2005). The short-term effects of a hurricane on the diet and activity of black howlers (Alouatta pigra) in Monkey River, Belize. Folia Primatologica, 76, 19.Google Scholar
Behie, A. M. & Pavelka, M. S. M. (2012). Food selection in the black howler following habitat disturbance: implications for the importance of mature leaves. Journal of Tropical Ecology, 28, 153–60.Google Scholar
Bennett, E. L. & Dahaban, Z. (1995). Wildlife responses to disturbances in Sarawak and their implications for forest management. In Primack, R. & Lovejoy, T. E. (eds) Ecology, Conservation, and Management of Southeast Asian Rainforests. New Haven, CT: Yale University Press, pp. 6686.Google Scholar
Brodie, J. F., Girodano, A. J., Zipkin, E. F., et al. (2014). Correlation and persistence of hunting and logging impacts on tropical rainforest mammals. Conservation Biology, 29, 110–21.Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23, 453–60.Google Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P., et al. (2001). Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford: Oxford University Press.Google Scholar
Cannon, C. H., Peart, D. R., Leighton, M. & Kartawinata, K. (1994). The structure of lowland rainforest after selective logging in West Kalimantan, Indonesia. Forest Ecology and Management, 68, 4968.Google Scholar
Chapman, C. A. & Chapman, L. J. (1997). Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. Biotropica, 29, 396412.Google Scholar
Chapman, C. A. & Chapman, L. J. (2004). Unfavorable successional pathways and the conservation value of logged tropical forest. Biodiversity and Conservation, 13, 2089–105.Google Scholar
Chapman, C. A. & Peres, C. A. (2001). Primate conservation in the new millennium: the role of scientists. Evolutionary Anthropology, 10, 1633.Google Scholar
Chapman, C. A., White, F. J. & Wrangham, R. W. (1993). Defining subgroup size in fission–fusion societies. Folia Primatologica, 61, 31–4.Google Scholar
Chapman, C. A., Balcomb, S. R., Gillespie, T. R., Skorupa, J. & Struhsaker, T. T. (2000). Long-term effects of logging on African primate communities: a 28 year comparison from Kibale National Park, Uganda. Conservation Biology, 14, 207–17.Google Scholar
Chapman, C. A., Twinomugisha, D., Teichroeb, J. A., et al. (2016). How do primates survive among humans? Mechanisms employed by vervet monkeys at Lake Nabugabo, Uganda. In Waller, M. T. (ed.) Ethnoprimatology, Primate Conservation in the 21st Century. New York: Springer, pp. 7794.Google Scholar
Cheyne, S. M., Thompson, C. J. H. & Chivers, D. J. (2013). Travel adaptations of Bornean agile gibbons Hylobates albibarbis (Primates: Hylobatidae) in a degraded secondary forest, Indonesia. Journal of Threatened Taxa, 5, 3963–8.Google Scholar
Cowlishaw, G. (1999). Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Conservation Biology, 13, 1183–93.Google Scholar
Cowlishaw, G. & Dunbar, R. I. M. (2000). Primate Conservation Biology. Chicago, IL: University of Chicago Press.Google Scholar
Dasilva, G. L. (1992). The western black-and-white colobus as a low-energy strategist: activity budgets, energy expenditure and energy intake. Journal of Animal Ecology, 61, 7991.Google Scholar
Douglas, I., Spencer, T., Greer, T., et al. (1992). The impact of selective commercial logging on stream hydrology, chemistry and sediment loads in Ulu Segama rain forest, Sabah, Malaysia. Philosophical Transactions of the Royal Society London: Biological Sciences, 335, 397406.Google Scholar
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology and Evolution, 29, 511–20.Google Scholar
Estrada, A., Garber, P. A., Rylands, A. B., et al. (2017). Impending extinction crisis of the world’s primates: why primates matter. Science Advances, 3, e600946.Google Scholar
Fashing, P. J. & Cords, M. (2000). Diurnal primate densities and biomass in the Kakamega Forest: an evaluation of census methods and a comparison with other forests. American Journal of Primatology, 50, 139–52.Google Scholar
Fashing, P. J., Mulindahabi, F., Gakima, J. B., et al. (2007). Activity and ranging patterns of Colobus angolensis ruwenzorii in Nyungwe Forest, Rwanda: possible costs of large group size. International Journal of Primatology, 28 , 529–50.Google Scholar
Felton, A. M., Engström, L. M., Felton, A. & Knott, C. D. (2003). Orangutan population density, forest structure and fruit availability in hand-logged peat swamp forests in West Kalimantan, Indonesia. Biological Conservation, 114, 91101.Google Scholar
Felton, A. M., Felton, A., Wood, J. T., et al. (2009). Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. International Journal of Primatology, 30, 675–96.Google Scholar
Fimbel, C. C. (1994). Ecological correlates of species success in modified habitats may be disturbance- and site-specific: the primates of Tiwai Island. Conservation Biology, 8, 106–13.Google Scholar
Fimbel, C., Vedder, A., Dierenfeld, E. & Mulindahabi, F. (2001). An ecological basis for large group size in Colobus angolensis in the Nyungwe Forest, Rwanda. African Journal of Ecology, 39, 8392.Google Scholar
Ganzhorn, J. U. (1995). Low-level forest disturbance effects on primary production, leaf chemistry, and lemur populations. Ecology, 76, 2084–96.Google Scholar
Ganzhorn, J. U. & Wright, P. C. (1994). Temporal patterns in primate leaf eating: the possible role of leaf chemistry. Folia Primatologica, 63, 203–8.Google Scholar
Gullison, R. E. & Hardner, J. J. (1993). The effects of road design and harvest intensity on forest damage caused by selective logging: empirical results and a simulation model. Forest Ecology and Management, 59, 114.Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–3.Google Scholar
Isbell, L. A. (1991). Contest and scramble competition: patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143–55.Google Scholar
Johns, A. D. (1983). Ecological effects of selective logging in a West Malaysian rainforest. PhD Thesis, University of Cambridge.Google Scholar
Johns, A. D. (1986). Effects of selective logging on the behavioral ecology of West Malaysian primates. Ecology, 67, 684–94.Google Scholar
Johns, A. D. (1992). Vertebrate responses to selective logging: implications for the design of logging systems. Philosophical Transactions of the Royal Society London: Biological Sciences, 335, 437–42.Google Scholar
Johns, A. D. & Skorupa, J. P. (1987). Responses of rain-forest primates to habitat disturbance: a review. International Journal of Primatology, 8, 157–91.Google Scholar
Johns, A. G. & Johns, B. G. (1995). Tropical forest primates and logging: long-term coexistence? Oryx, 29, 205–11.CrossRefGoogle Scholar
Kingdon, J., Struhsaker, T., Oates, J. F., Hart, J. & Groves, C. P. (2008). Colobus angolensis ssp. ruwenzorii. The IUCN Red List of Threatened Species. Available at: http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T5147A11117676.en (accessed 20 June 2017).Google Scholar
Lewis, S. L., Edwards, D. P. & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349, 827–32.Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 1659–62.Google Scholar
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. (2014). Tropical forests in the Anthropocene. Annual Review of Environment and Resources, 39, 125–59.Google Scholar
Mayor, P., Pérez-Peña, P., Bowler, M., et al. (2015). Effects of selective logging on large mammal populations in a remote indigenous territory in the northern Peruvian Amazon. Ecology and Society, 20, 36.Google Scholar
McKey, D. (1978). Soils, vegetation, and seed-eating by black colobus monkeys. In Montgomery, G. G. (ed.) Arboreal Folivores. Washington, DC: Smithsonian Institution Press, pp. 423–37.Google Scholar
Milton, K. (1980). The Foraging Strategy of Howler Monkeys: A Study in Primate Economics. New York: Columbia University Press.Google Scholar
Mittermeier, R. A. & Cheney, D. L. (1987). Conservation of primate and their habitats. In Smuts, B. B., Cheney., D. L., Seyfarth, R., Wrangham, R. W. & Struhsaker, T. T. (eds) Primate Societies. Chicago, IL: University of Chicago Press, pp. 477–90.Google Scholar
Nature Conservation Practice (2006). Measurement of diameter at breast height (DBH). Technical note. Agriculture, Fisheries and Conservation Department, Conservation Branch.Google Scholar
Oates, J. F. (1974). The ecology and behaviour of the black-and-white colobus monkey (Colobus guereza Ruppell) in East Africa. PhD Thesis, University of London.Google Scholar
Oates, J. F., Abedi-Lartey, M., McGraw, W. S., Struhsaker, T. T. & Whitesides, G. H. (2000). Extinction of a West Africa red colobus monkey. Conservation Biology, 14, 1526–32.Google Scholar
Plumptre, A. J. & Reynolds, V. (1994). The effect of selective logging on the primate populations in the Budongo Forest Reserve, Uganda. Journal of Applied Ecology, 31, 631–41.Google Scholar
Putz, F. E., Sirot, L. K. & Pinard, M. A. (2001). Tropical forest management and wildlife: silvicultural effects on forest structure, fruit production, and locomotion of arboreal animals. In Fimbel, R. A., Grajal, A. & Robinson, J. G. (eds) The Cutting Edge: Conserving Wildlife in Logged Tropical Forest. New York: Columbia University Press, pp. 1134.Google Scholar
R Core Team (2015). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Raemaekers, J. J. (1978). Changes through the day in the food choice of wild gibbons. Folia Primatologica, 30, 194205.Google Scholar
Remis, M. J. & Jost Robinson, C. A. (2012). Reductions in primate abundance and diversity in a multiuse protected area: synergistic impacts of hunting and logging in a Congo Basin forest. American Journal of Primatology, 74, 602–12.Google Scholar
Rothman, J. M., Dierenfeld, E. S., Molina, D. O., et al. (2006). Nutritional chemistry of foods eaten by gorillas in Bwindi Impenetrable National Park, Uganda. American Journal of Primatology, 68, 675–91.Google Scholar
Skorupa, J. P. (1986). Responses of rainforest primates to selective logging in Kibale Forest, Uganda: a summary report. In Benirschke, K. (ed.) Primates: The Road to Self-Sustaining Populations. New York: Springer Verlag, pp. 5770.Google Scholar
Strier, K. B. & Boubli, J. P. (2006). A history of long-term research and conservation of northern muriquis (Brachyteles hypoxanthus) at the Esatção Biológica de Caratinga/RPPN-FMA. Primate Conservation, 20, 5363.Google Scholar
Struhsaker, T. T. (1972). Rainforest conservation in Africa. Primates, 13, 103–9.Google Scholar
Struhsaker, T. T. (1975). The Red Colobus Monkey. Chicago, IL: University of Chicago Press.Google Scholar
Struhsaker, T. T. (1981). Census methods for estimating densities. In Assembly of Life Sciences (U.S.), Committee on Nonhuman Primates, Subcommittee on Conservation of Natural Populations (ed.) Techniques for the Study of Primate Population Ecology. Washington, DC: National Academy Press, pp. 3680.Google Scholar
Struhsaker, T. T. (1997). Ecology of an African Rainforest. Gainesville, FL: University of Florida Press.Google Scholar
Taylor, S. E., Cousino Klein, L., Lewis, B. P., et al. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411–29.Google Scholar
Uhl, C. & Vieira, I. C. G. (1989). Ecological impacts of selective logging in the Brazilian Amazon: a case study from the Paragominas region in the state of Para. Biotropica, 21, 98106.Google Scholar
Waser, P. M. (1975). Monthly variations in feeding and activity patterns of the mangabey, Cercocebus albigena (Lydekker). East African Wildlife Journal, 13, 249–63.Google Scholar
Waterman, P. G. & Choo, G. M. (1981). The effects of digestibility-reducing compounds in leaves on food selection by some colobines. Malaysian Applied Biology, 10, 147–62.Google Scholar
White, L. J. T. & Tutin, C. E. G. (2001). Why chimpanzees and gorillas respond differently to logging: a cautionary tale from Gabon. In Weber, B., White, L. J. T., Vedder, A. & Simons Morland, H. (eds) African Rain Forest Ecology and Conservation. New Haven, CT: Yale University Press, pp. 449–62.Google Scholar
Whitesides, G. H., Oates, J. F., Green, S. M. & Kluberdanz, R. P. (1988). Estimating primate densities from transects in a West African rain forest: a comparison of techniques. Journal of Animal Ecology, 57, 345–67.Google Scholar
Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262300.Google Scholar

References

Albon, S., Stien, A., Irvine, R., et al. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London Series B: Biological Sciences, 269(1500), 16251632.Google Scholar
Almeida, M. A. B. d., Dos Santos, E., da Cruz Cardoso, J., et al. (2012). Yellow fever outbreak affecting Alouatta populations in southern Brazil (Rio Grande Do Sul State), 2008–2009. American Journal of Primatology, 74(1), 6876.Google Scholar
Altizer, S., Nunn, C. L. & Lindenfors, P. (2007). Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology, 76(2), 304–14.Google Scholar
Anderson, R. C. & Prestwood, A. K. (1981). Lungworms. In: Davidson, W. R., Hayes, F. A., Nettles, V. F. & Kellogg, F. E. (eds) Diseases and Parasites of the White-Tailed Deer. Tallahasse, FL: Tall Timbers Research Station, pp. 266317.Google Scholar
Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 1283–9.Google Scholar
Arnold, C., Matthews, L. J. & Nunn, C. L. (2010). The 10k Trees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19(3), 114–18.Google Scholar
Barber, B. E., Rajahram, G. S., Grigg, M. J., William, T. & Anstey, N. M. (2017). World malaria report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal, 16(1), 135.Google Scholar
Barger, M. A. & Esch, G. W. (2002). Host specificity and the distribution–abundance relationship in a community of parasites infecting fishes in streams of North Carolina. Journal of Parasitology, 88(3), 446–53.Google Scholar
Behie, A. & Pavelka, M. M. (2013). Interacting roles of diet, cortisol levels, and parasites in determining population density of Belizean howler monkeys in a hurricane damaged forest fragment. In: Marsh, L. K. & Chapman, C. A. (eds) Primates in Fragments. New York: Springer, pp. 447456.Google Scholar
Bermejo, M., Rodríguez-Teijeiro, J. D., Illera, G., et al. (2006). Ebola outbreak killed 5000 gorillas. Science, 314(5805), 1564.Google Scholar
Bublitz, D. C., Wright, P. C., Rasambainarivo, F. T., et al. (2014). Pathogenic enterobacteria in lemurs associated with anthropogenic disturbance. American Journal of Primatology, 77(3), 330–7.Google Scholar
Castro, F. D. & Bolker, B. (2005). Mechanisms of disease‐induced extinction. Ecology Letters, 8(1), 117–26.Google Scholar
Chapman, C. A., Gillespie, T. R. & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: how will anthropogenic change affect host–parasite interactions? Evolutionary Anthropology, 14(4), 134–44.Google Scholar
Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T. & Austad, K. M. (2006). Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. American Journal of Primatology, 68(4), 397409.Google Scholar
Chapman, C. A., Saj, T. L. & Snaith, T. V. (2007). Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: implications for population regulation and conservation. American Journal of Physical Anthropology, 134(2), 240–50.Google Scholar
Civitello, D. J., Cohen, J., Fatima, H., et al. (2015). Biodiversity inhibits parasites: broad evidence for the dilution effect. Proceedings of the National Academy of Sciences, 112(28), 86678671.Google Scholar
Cooper, N. & Nunn, C. L. (2013). Identifying future zoonotic disease threats: where are the gaps in our understanding of primate infectious diseases? Evolution, Medicine, and Public Health, 2013(1), 2736.Google Scholar
Cox-Singh, J. (2012). Zoonotic malaria: Plasmodium knowlesi, an emerging pathogen. Current Opinion in Infectious Diseases, 25(5), 530–6.Google Scholar
Cox-Singh, J. & Singh, B. (2008). Knowlesi malaria: newly emergent and of public health importance? Trends in Parasitology, 24(9), 406–10.Google Scholar
Dobson, A. & Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 1001–12.Google Scholar
Dobson, A. P. & Hudson, P. J. (1986). Parasites, disease and the structure of ecological communities. Trends in Ecology & Evolution, 1(1), 1115.Google Scholar
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America, 105, 11482–9.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3037–45.Google Scholar
Estrada, A., Garber, P. A., Rylands, A. B., et al. (2017). Impending extinction crisis of the world’s primates: why primates matter. Science Advances, 3(1), e1600946.Google Scholar
Ezenwa, V. O. & Jolles, A. E. (2015). Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science, 347(6218), 175–7.Google Scholar
Frias, L., Stark, D. J., Salgado-Lynn, M., et al. (2018). Lurking in the dark: cryptic Strongyloides in a Bornean slow loris. International Journal for Parasitology: Parasites and Wildlife, 7(2), 141–6.Google Scholar
Ghai, R. R., Simons, N. D., Chapman, C. A., et al. (2014). Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Neglected Tropical Diseases, 8(10), e3256.Google Scholar
Gillespie, T. R., Chapman, C. A. & Greiner, E. C. (2005). Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology, 42(4), 699707.Google Scholar
Gillespie, T. R., Nunn, C. L. & Leendertz, F. H. (2008). Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health. American Journal of Physical Anthropology, 137(S47), 5369.Google Scholar
Gog, J., Woodroffe, R. & Swinton, J. (2002). Disease in endangered metapopulations: the importance of alternative hosts. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1492), 671–6.Google Scholar
Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L. & Chapman, C. A. (2008). Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerging Infectious Diseases, 14(9), 1375–82.Google Scholar
Gregory, R. D. (1990). Parasites and host geographic range as illustrated by waterfowl. Functional Ecology, 4(5), 645–54.Google Scholar
Grenfell, B. T. & Gulland, F. M. D. (1995). Introduction: ecological impact of parasitism on wildlife populations. Parasitology, 111(51), S3S14.Google Scholar
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33(2). DOI: 10.18637/jss.v003.102.Google Scholar
Hasegawa, H., Modrý, D., Kitagawa, M., et al. (2014). Humans and great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Neglected Tropical Diseases, 8(3), e2715.Google Scholar
Hechinger, R. F. & Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 1059–66.Google Scholar
Hoffmann, C., Zimmermann, F., Biek, R., et al. (2017). Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature, 548(7665), 82–6.CrossRefGoogle Scholar
Holzmann, I., Agostini, I., Areta, J. I., et al. (2010). Impact of yellow fever outbreaks on two howler monkey species (Alouatta guariba clamitans and A. caraya) in Misiones, Argentina. American Journal of Primatology, 72(6), 475–80.Google Scholar
Hopkins, M. E. & Nunn, C. L. (2007). A global gap analysis of infectious agents in wild primates. Diversity and Distributions, 13(5), 561–72.Google Scholar
Hopkins, M. E. & Nunn, C. L. (2010). Gap analysis and the geographical distribution of parasites. In: Morand, S. & Krasnov, B. (eds) The Biogeography of Host–Parasite Interactions. Oxford: Oxford University Press, pp. 129–42.Google Scholar
Hosseini, P. R., Mills, J. N., Prieur-Richard, A.-H., et al. (2017). Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1722), 20160129.Google Scholar
Hudson, P. J. & Dobson, A. P. (1995). Macroparasites: observed patterns. In: Grenfell, B. T. & Dobson, A. P. (eds) Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press, pp. 144–76.Google Scholar
Hudson, P. & Greenman, J. (1998). Competition mediated by parasites: biological and theoretical progress. Trends in Ecology & Evolution, 13(10), 387–90.Google Scholar
Hudson, P. J., Dobson, A. P. & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution, 21(7), 381–5.Google Scholar
Isaac, N. J. B. & Cowlishaw, G. (2004). How species respond to multiple extinction threats. Proceedings of the Royal Society B: Biological Sciences, 271(1544), 1135–41.Google Scholar
IUCN (2017). IUCN Red List of Threatened Species. Version 2017.3. Available at: www.iucnredlist.org (accessed 26 September 2017).Google Scholar
Jones, K. E., Bielby, J., Cardillo, M., et al. (2009). PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648.Google Scholar
Kalousová, B., Hasegawa, H., Petrželková, K. J., et al. (2016). Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas. Parasites & Vectors, 9(1), 75.Google Scholar
Kaur, T., Singh, J., Tong, S. X., et al. (2008). Descriptive epidemiology of fatal respiratory outbreaks and detection of a human-related metapneumovirus in wild chimpanzees (Pan troglodytes) at Mahale Mountains National Park, western Tanzania. American Journal of Primatology, 70(8), 755–65.Google Scholar
Keesing, F., Holt, R. D. & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9(4), 485–98.Google Scholar
Keesing, F., Belden, L. K., Daszak, P., et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647.Google Scholar
Knauf, S., Liu, H. & Harper, K. N. (2013). Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerging Infectious Diseases, 19(12), 2058–60.Google Scholar
Knauf, S., Gogarten, J., Schuenemann, V. J., et al. (2017). African nonhuman primates are infected with the yaws bacterium Treponema pallidum subsp. pertenue. bioRxiv.Google Scholar
Koh, L. P., Dunn, R. R., Sodhi, N. S., et al. (2004). Species coextinctions and the biodiversity crisis. Science, 305(5690), 1632–4.Google Scholar
Köndgen, S., Kühl, H., N’Goran, P. K., et al. (2008). Pandemic human viruses cause decline of endangered great apes. Current Biology, 18(4), 260–4.Google Scholar
Kowalewski, M. M., Salzer, J. S., Deutsch, J. C., et al. (2011). Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human–primate contact. American Journal of Primatology, 73(1), 7583.Google Scholar
Lauck, M., Sibley, S. D., Hyeroba, D., et al. (2013). Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. Journal of Virology, 87(1), 688–91.Google Scholar
Leendertz, F. H., Ellerbrok, H., Boesch, C., et al. (2004). Anthrax kills wild chimpanzees in a tropical rainforest. Nature, 430(6998), 451–2.Google Scholar
Leendertz, F. H., Pauli, G., Maetz-Rensing, K., et al. (2006). Pathogens as drivers of population declines: the importance of systematic monitoring in great apes and other threatened mammals. Biological Conservation, 131(2), 325–37.Google Scholar
Leroy, E. M., Rouquet, P., Formenty, P., et al. (2004). Multiple ebola virus transmission events and rapid decline of central African wildlife. Science, 303(5656), 387–90.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution and Inheritance. Cambridge, MA: Belknap Press.Google Scholar
McCallum, H. & Dobson, A. (2002). Disease, habitat fragmentation and conservation. Proceedings of the Royal Society B: Biological Sciences, 269(1504), 2041–9.Google Scholar
Milton, K. (1996). Effects of bot fly (Alouattamyia baeri) parasitism on a free-ranging howler monkey (Alouatta palliata) population in Panama. Journal of Zoology, 239, 3963.Google Scholar
Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. (eds) (2013). Handbook of Mammals of the World. Vol. 3. Primates. Barcelona: Lynx Edicions.Google Scholar
Morand, S. & Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialisation, phylogenetic constraint or simply epidemiology? Oikos, 88(3), 563–73.Google Scholar
Nguyen, N., Fashing, P. J., Boyd, D. A., et al. (2015). Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. American Journal of Primatology, 77(5), 579–94.Google Scholar
Nunn, C. L. & Altizer, S. M. (2005). The global mammal parasite database: an online resource for infectious disease records in wild primates. Evolutionary Anthropology, 14(1), 12.Google Scholar
Nunn, C. L. & Dokey, A. T. W. (2006). Ranging patterns and parasitism in primates. Biology Letters, 2(3), 351–4.Google Scholar
Nunn, C. L. & Gillespie, T. R. (2016). Infectious disease and primate conservation. In: Wich, S. A. & Marshall, A. J. (eds) An Introduction to Primate Conservation. Oxford: Oxford University Press, pp. 157–73.Google Scholar
Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. (2003). Comparative tests of parasite species richness in primates. American Naturalist, 162(5), 597614.Google Scholar
Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. (2005). Latitudinal gradients of parasite species richness in primates. Diversity and Distributions, 11(3), 249–56.Google Scholar
Pedersen, A. B. & Fenton, A. (2007). Emphasizing the ecology in parasite community ecology. Trends in Ecology & Evolution, 22(3), 133–9.Google Scholar
Pedersen, A. B., Altizer, S., Poss, M., Cunningham, A. A. & Nunn, C. L. (2005). Patterns of host specificity and transmission among parasites of wild primates. International Journal for Parasitology, 35(6), 647–57.Google Scholar
Plowright, W. (1982). The effects of rinderpest and rinderpest control on wildlife in Africa. Symposium of the Zoological Society of London, 50, 128.Google Scholar
Poulin, R. (1998). Large-scale patterns of host use by parasites of freshwater fishes. Ecology Letters, 1(2), 118–28.Google Scholar
Poulin, R. (1999). The intra- and interspecific relationships between abundance and distribution in helminth parasites of birds. Journal of Animal Ecology, 68(4), 719–25.Google Scholar
Quigley, B. J. Z., Brown, S. P., Leggett, H. C., Scanlan, P. D. & Buckling, A. (2017). Within-host interference competition can prevent invasion of rare parasites. Parasitology, 145(6), 770–4.Google Scholar
R Core Team (2017). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Redding, D. W., DeWolff, C. V. & Mooers, A. Ø. (2010). Evolutionary distinctiveness, threat status, and ecological oddity in primates. Conservation Biology, 24(4), 1052–8.Google Scholar
Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R. & Goldberg, T. L. (2008). Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conservation Biology, 22(6), 1600–7.Google Scholar
Salyer, S. J., Gillespie, T. R., Rwego, I. B., Chapman, C. A. & Goldberg, T. L. (2012). Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from Western Uganda. PLoS Neglected Tropical Diseases, 6(4), e1597.Google Scholar
Salzer, J. S., Rwego, I. B., Goldberg, T. L., Kuhlenschmidt, M. S. & Gillespie, T. R. (2007). Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. Journal of Parasitology, 93(2), 439–40.Google Scholar
Schmidt, K. A. & Ostfeld, R. S. (2001). Biodiversity and the dilution effect in disease ecology. Ecology, 82(3), 609–19.Google Scholar
Sibley, S. D., Lauck, M., Bailey, A. L., et al. (2014). Discovery and characterization of distinct simian pegiviruses in three wild African Old World Monkey species. PLoS One, 9(6), e98569.Google Scholar
Snaith, T. V., Chapman, C. A., Rothman, J. M. & Wasserman, M. D. (2008). Bigger groups have fewer parasites and similar cortisol levels: a multi-group analysis in red colobus monkeys. American Journal of Primatology, 70, 19.Google Scholar
Stephens, P. R., Pappalardo, P., Huang, S., et al. (2017). Global mammal parasite database version 2.0. Ecology, 98(5), 1476.Google Scholar
Strona, G. (2015). Past, present and future of host–parasite co-extinctions. International Journal for Parasitology: Parasites and Wildlife, 4(3), 431–41.Google Scholar
Tompkins, D. M. & Begon, M. (1999). Parasites can regulate wildlife populations. Parasitology Today, 15(8), 311–13.Google Scholar
Tompkins, D. M., Dobson, A. P., Arneberg, P., et al. (2002). Parasites and host population dynamics. In: Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, J. A. P. & Dobson, A. P. (eds) The Ecology of Wildlife Diseases. Oxford: Oxford University Press, pp. 4562.Google Scholar
Vaumourin, E., Vourc’h, G., Gasqui, P. & Vayssier-Taussat, M. (2015). The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasites & Vectors, 8, 545.Google Scholar
Vázquez, D. P. & Simberloff, D. (2002). Ecological specialization and susceptibility to disturbance: conjectures and refutations. The American Naturalist, 159(6), 606–23.Google Scholar
Vitone, N. D., Altizer, S. & Nunn, C. L. (2004). Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evolutionary Ecology Research, 6(2), 183–99.Google Scholar
Wich, S. A. & Marshall, A. J. (eds) (2016). An Introduction to Primate Conservation. Oxford: Oxford University Press.Google Scholar
Wilson, D. E. & Reeder, D. M. (eds) (2005). Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wolfe, N. D., Dunavan, C. P. & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447(7142), 279.Google Scholar
Young, H., Griffin, R. H., Wood, C. L. & Nunn, C. L. (2013). Does habitat disturbance increase infectious disease risk for primates? Ecology Letters, 16(5), 656–63.Google Scholar

References

Andriaholinirina, N., Baden, A., Blanco, M., et al. (2014). Varecia variegata. The IUCN Red List of Threatened Species 2014. Available at: http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T22918A16121857.en (accessed 27 August 2018).Google Scholar
Baden, A. L., Wright, P. C., Louis, E. E. & Bradley, B. J. (2013). Communal nesting, kinship, and maternal success in a social primate. Behavioral Ecology and Sociobiology, 67, 1939–50.Google Scholar
Balko, E. A. (1998). A behaviorally plastic response to forest composition and logging disturbance by Varecia variegata variegata in Ranomafana National Park, Madagascar. PhD dissertation, State University of New York College of Environmental Science and Forestry.Google Scholar
Balmford, A. & Whitten, T. (2003). Who should pay for tropical conservation, and how could the costs be met? Oryx, 37, 238–50.Google Scholar
Berkes, F. (2007). Community-based conservation in a globalized world. PNAS, 104, 15188–93.Google Scholar
Born, J., Boreaux, V. & Lawes, M. J. (2009). Synthesis: sharing ecological knowledge – the way forward. Biotropica, 41, 586–8.Google Scholar
Braunisch, V., Home, R., Pellet, J. & Arlettaz, R. (2012). Conservation science relevant to action: a research agenda identified and prioritized by practitioners. Biological Conservation, 153, 201–10.Google Scholar
Brown, K. A., Johnson, S. E., Parks, K., et al. (2013). Use of provisioning ecosystem services drives loss of functional traits across land use intensification gradients in tropical forests in Madagascar. Biological Conservation, 161, 118–27.Google Scholar
Cardoso, I. M., Guijt, I., Franco, F. S., Carvalho, A. F. & Neto, P. S. F. (2001). Continual learning for agroforestry system design: university, NGO and farmer partnership in Minas Gerais, Brazil. Agricultural Systems, 69, 235–57.Google Scholar
da Fonseca, G. A. B. (2003). Conservation science and NGOs. Conservation Biology, 17, 345–7.Google Scholar
Duchelle, A. E., Biedenweg, K., Lucas, C., et al. (2009). Graduate students and knowledge exchange with local stakeholders: possibilities and preparation. Biotropica, 41, 578–85.Google Scholar
Duffy, R. (2006). Non-governmental organisations and governance states: the impact of transnational environmental management networks in Madagascar. Environmental Politics, 15, 731–49.Google Scholar
Eshun, G. & Tonto, J. N. P. (2014). Community-based ecotourism: its socio-economic impacts at Boabeng-Fiema Monkey Sanctuary, Ghana. Bulletin of Geography: Socio-Economic Series, 26, 6781.Google Scholar
ESRI (2016). ArcGIS Desktop. Redlands, CA: Environmental Systems Research Institute.Google Scholar
Frasier, C. L., Rakotonarina, J.-N., Razanajatovo, L. G., et al. (2015). Expanding knowledge on life history traits and infant development in greater bamboo lemurs (Prolemur simus): contributions from Kianjavato, Madagascar. Primate Conservation, 29, 7586.Google Scholar
Garnett, S. T., Crowley, G. M., Hunter-Xenie, H., et al. (2009). Transformative knowledge transfer through empowering and paying community researchers. Biotropica, 41, 571–7.Google Scholar
Gezon, L. L. (2000). The changing face of NGOs: structure and communitas in conservation and development in Madagascar. Urban Anthropology and Studies of Cultural Systems and World Economic Development, 29, 181215.Google Scholar
Githiru, M. & Lens, L. (2007). Application of fragmentation research to conservation planning for multiple stakeholders: an example from the Taita Hills, southeast Kenya. Biological Conservation, 134, 271–8.Google Scholar
Goodman, S. M. & Ganzhorn, J. U. (2004). Biogeography of lemurs in the humid forests of Madagascar: the role of elevational distribution and rivers. Journal of Biogeography, 31, 4755.Google Scholar
Google Inc. (2009). Google Earth. 5.1.3509.4636 edn.: Google Inc. and Digital Globe.Google Scholar
Guthrie, N. K., Holmes, S. M., Gordon, A. D., et al. (2017). A lack of cathemeral activity in Varecia variegata in Kianjavato, Madagascar. American Journal of Physical Anthropology, 162(S64), 205–6.Google Scholar
Hannah, L., Rakotosamimanana, B., Ganzhorn, J., et al. (1998). Participatory planning, scientific priorities, and landscape conservation in Madagascar. Environmental Conservation, 25, 30–6.Google Scholar
Harper, G., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34, 325–33.Google Scholar
Holmes, S. M. (2012). Habitat use and population genetics of the black-and-white ruffed lemur (Varecia variegata) in a fragmented landscape in southeastern Madagascar. MA Thesis, University of Calgary.Google Scholar
Holmes, S. M., Baden, A. L., Brenneman, R. A., et al. (2013). Patch size and isolation influence genetic patterns in black-and-white ruffed lemur (Varecia variegata) populations. Conservation Genetics, 14, 615–24.Google Scholar
Holmes, S. M., Yaney-Keller, A. M., Rafidimanana, D. V., et al. (2015). Lemur population surveys in the Kianjavato region. Lemur News, 19, 911.Google Scholar
Holmes, S. M., Gordon, A. D., Louis, E. E. J. & Johnson, S. E. (2016). Fission–fusion dynamics in black-and-white ruffed lemurs may facilitate both feeding strategies and communal care of infants in a spatially and temporally variable environment. Behavioral Ecology and Sociobiology, 70(11), 1949–60.Google Scholar
Irwin, M. T., Johnson, S. E. & Wright, P. C. (2005). The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS. Oryx, 39, 204–18.Google Scholar
Johnson, S. E., Puyravaud, J.-P., Ratelolahy, F. J., et al. (2004). Biodiversity and anthropogenic disturbance at Ranomafana National Park, Madagascar. Society for Conservation Biology (SCB) Annual Meeting, 2004.Google Scholar
Johnson, S. E., Wright, P., Keitt, T. H., et al. (2005). Predictors of local variation in lemur abundance at Ranomafana National Park, Madagascar. American Journal of Physical Anthropology, 40, 122.Google Scholar
Johnson, S. E., Gordon, A. D., Raichlen, D. A., et al. (2011). Search strategies in frugivorous lemurs in southeastern Madagascar: are lévy walks used? American Journal of Primatology, 73(s1), 57.Google Scholar
Kainer, K. A., DiGiano, M. L., Duchelle, A. E., et al. (2009). Partnering for greater success: local stakeholders and research in tropical biology and conservation. Biotropica, 41, 555–62.Google Scholar
Lovejoy, T. E. (2009). Responsibilities of 21st-century scientists. Biotropica, 41, 531.Google Scholar
Manjaribe, C., Frasier, C. L., Rakouth, B. & Louis, E. E. J. (2013). Ecological restoration and reforestation of fragmented forests in Kianjavato, Madagascar. International Journal of Ecology, 2013, 112.Google Scholar
McAlpine, C. A., Ryan, J. G., Seabrook, L., et al. (2010). More than CO2: a broader paradigm for managing climate change and variability to avoid ecosystem collapse. Current Opinion in Environmental Sustainability, 2, 334–46.Google Scholar
Meijaard, E. & Sheil, D. (2007). Is wildlife research useful for wildlife conservation in the tropics? A review for Borneo with global implications. Biodiversity and Conservation, 16, 3053–65.Google Scholar
Rudel, T. K. (2001). Sequestering carbon in tropical forests: experiments, policy implications, and climatic change. Society & Natural Resources, 14, 525–31.Google Scholar
Schindler, S., Curado, N., Nikolov, S. C., et al. (2011). From research to implementation: nature conservation in the Eastern Rhodopes mountains (Greece and Bulgaria), European Green Belt. Journal for Nature Conservation, 19, 193201.Google Scholar
Schwitzer, C., Mittermeier, R. A., Davies, N., et al. (eds) (2013). Lemurs of Madagascar: A Strategy for Their Conservation 2013–2016, Bristol: IUCN SSC Primate Specialist Group, Bristol Conservation and Science Foundation, Conservation International.Google Scholar
Seagle, C. (2012). Inverting the impacts: mining, conservation and sustainability claims near the Rio Tinto/QMM ilmenite mine in Southeast Madagascar. Journal of Peasant Studies, 39, 447–77.Google Scholar
Shanley, P. & López, C. (2009). Out of the loop: why research rarely reaches policy makers and the public and what can be done. Biotropica, 41, 535–44.Google Scholar
Smith, R. J., Verissimo, D., Leader-Williams, N., Cowling, R. M. & Knight, A. T. (2009). Let the locals lead. Nature, 462, 280–1.Google Scholar
Sterling, E. J., Betley, E., Sigouin, A., et al. (2017). Assessing the evidence for stakeholder engagement in biodiversity conservation. Biological Conservation, 209, 159–71.Google Scholar
Strier, K. B. & Boubli, J. P. (2006). A history of long-term research and conservation of northern muriquis (Brachyteles hypoxanthus) at the Estação Biológica de Caratinga/RPPN-FMA. Primate Conservation, 20, 5363.Google Scholar
Sunderland, T., Sunderland-Groves, J., Shanley, P. & Campbell, B. (2009). Bridging the gap: how can information access and exchange between conservation biologists and field practitioners be improved for better conservation outcomes? Biotropica, 41, 549–54.Google Scholar
Vasey, N. (2005). New developments in the behavioral ecology and conservation of ruffed lemurs (Varecia). American Journal of Primatology, 66, 16.Google Scholar
White, F. J., Overdorff, D. J., Balko, E. A. & Wright, P. C. (1995). Distribution of ruffed lemurs (Varecia-variegata) in Ranomafana National-Park, Madagascar. Folia Primatologica, 64, 124–31.Google Scholar
Wright, P. C. & Andriamihaja, B. A. (2002). Making a rain forest national park work in Madagascar: Ranomafana National Park and its long-term research commitment. In Terborgh, J., van Schaik, C., Rao, M. & Davenport, L. (eds) Making Parks Work: Strategies for Preserving Tropical Nature. Washington, DC: Island Press, pp. 112–36.Google Scholar

References

Agoramoorthy, G., Alagappasamy, C. & Hsu, M. J. (2004). Can proboscis monkeys be successfully maintained in captivity? A case of swings and roundabouts. Zoo Biology, 23(6), 533–44.Google Scholar
Atmoko, T. (2002). Conservation of proboscis monkey and their isolated habitat in Kuala Samboja. In East Kalimantan International Conference of Indonesia Forestry Researchers (INAFOR). Bogor: Forestry Research and Development Agency Indonesia, pp. 446–53.Google Scholar
Bennett, E. L. (1991). Diurnal primates. In Kiew, R. (ed.) The State of Nature Conservation in Malaysia. Kuala Lumpur: Malayan Nature Society, pp. 170–2.Google Scholar
Bennett, E. L. & Gombek, F. (1993). Proboscis Monkeys of Borneo. Kota Kinabalu: Natural History Publications.Google Scholar
Bennett, E. L. & Sebastian, A. C. (1988). Social organization and ecology of proboscis monkeys (Nasalis larvatus) in mixed coastal forest in Sarawak. International Journal of Primatology, 9(3), 233–55.Google Scholar
Bernard, H. & Zulhazman, H. (2006). Population size and distribution of the proboscis monkey (Nasalis larvatus) in the Klias Peninsula, Sabah, Malaysia. Malayan Nature Journal, 59(2), 1531–63.Google Scholar
Bernard, H., Matsuda, I., Hanya, G., et al. (2018). Feeding ecology of the proboscis monkey in Sabah, Malaysia, with special reference to plant species-poor forests. In Barnett, A. A., Matsuda, I. & Nowak, K. (eds) Primates in Flooded Habitats: Ecology and Conservation. Cambridge: Cambridge University Press.Google Scholar
Bismark, M. (1981). Preliminary survey of the proboscis monkey at Tanjung Putting Reserve, Kalimantan. Tigerpaper, 8, 26.Google Scholar
Bismark, M. (2010). Proboscis monkey (Nasalis larvatus): bio-ecology and conservation. In Gursky, S. & Supriatna, J. (eds) Indonesian Primates. New York: Springer, pp. 217–33.Google Scholar
Boonratana, R. (2000). Ranging behavior of proboscis monkeys (Nasalis larvatus) in the lower Kinabatangan, Northern Borneo. International Journal of Primatology, 21(3), 497518.Google Scholar
Buttler, R. (2013). Palm oil now biggest cause of deforestation in Indonesia. Mongabay, 3 September.Google Scholar
Cowlishaw, G. (1999). Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Conservation Biology, 13(5), 1183–93.Google Scholar
Feilen, K. L. & Marshall, A. J. (2014). Sleeping site selection by proboscis monkeys (Nasalis larvatus) in West Kalimantan, Indonesia. American Journal of Primatology, 76(12), 1127–39.Google Scholar
Gokkon, B. (2017). ‘Ecological disaster’: controversial bridge puts East Kalimantan’s green commitment to the test. Mongabay, 30 August.Google Scholar
Hale, V. L., Tan, C. L., Niu, K., et al. (2018). Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microbial Ecology, 75(2), 515–27.Google Scholar
Inoue, E., Ogata, M., Seino, S. & Matsuda, I. (2016). Sex identification and efficient microsatellite genotyping using fecal DNA in proboscis monkeys (Nasalis larvatus). Mammal Study, 41(3), 141–8.Google Scholar
IUCN. (2008). IUCN Red List of Threatened Species. Gland: International Union for Conservation of Nature and Natural Resources (IUCN), Species Survival Commission (SSC).Google Scholar
Jeffrey, S. M. (1979). The proboscis monkey: some preliminary observations. Tigerpaper, 6, 56.Google Scholar
Kawabe, M. & Mano, T. (1972). Ecology and behavior of the wild proboscis monkey, Nasalis larvatus (Wurmb), in Sabah, Malaysia. Primates, 13(2), 213–27.Google Scholar
Koda, H., Tuuga, A., Goossens, B., et al. (2018). Nasalization by Nasalis larvatus: larger noses audiovisually advertise conspecifics in proboscis monkeys. Science Advances, 4(2). DOI: 10.1126/sciadv.aaq0250.Google Scholar
Kren, J. A. (1964). Observations on the habits of the proboscis monkey, Nasalis larvatus (Wurmb.), made in the Brunei Bay area, Borneo. Zoologica, 49, 183–92.Google Scholar
Leasor, H. C. & Macgregor, O. J. (2014). Proboscis monkey tourism: can we make it ‘ecotourism’? In Russon, A. E. & Wallis, J. (eds) Primate Tourism: A Tool for Conservation? Cambridge: Cambridge University Press, pp. 5675.Google Scholar
Leowinata, D. (2016). Borneo conservationists and top oil palm firm work to help orangutans. Mongabay, 9 August.Google Scholar
Lhota, S., Scott, K. S. S. & Sha, J. C. M. (2018). Primates in flooded forests of Borneo: opportunities and challenges for ecotourism as a conservation strategy. In Barnett, A. A., Matsuda, I. & Nowak, K. (eds) Primates in Flooded Habitats: Ecology and Conservation. Cambridge: Cambridge University Press.Google Scholar
Macdonald, D. W. (1982). Notes on the size and composition of groups of proboscis monkey, Nasalis larvatus. Folia Primatologica, 37(1–2), 9598.Google Scholar
Manansang, J., Traylor-Holzer, K., Reed, D. & Leus, K. (2005). Indonesian proboscis monkey population and habitat viability assessment: final report.Google Scholar
Matsuda, I., Tuuga, A. & Higashi, S. (2009a). The feeding ecology and activity budget of proboscis monkeys. American Journal of Primatology, 71(6), 478–92.Google Scholar
Matsuda, I., Tuuga, A. & Higashi, S. (2009b). Ranging behavior of proboscis monkeys in a riverine forest with special reference to ranging in inland forest. International Journal of Primatology, 30(2), 313–25.Google Scholar
Matsuda, I., Kubo, T., Tuuga, A. & Higashi, S. (2010). A Bayesian analysis of the temporal change of local density of proboscis monkeys: implications for environmental effects on a multilevel society. American Journal of Physical Anthropology, 142(2), 235–45.Google Scholar
Matsuda, I., Tuuga, A. & Bernard, H. (2011a). Riverine refuging by proboscis monkeys (Nasalis larvatus) and sympatric primates: implications for adaptive benefits of the riverine habitat. Mammalian Biology, 76(2), 165–71.Google Scholar
Matsuda, I., Murai, T., Clauss, M., et al. (2011b). Regurgitation and remastication in the foregut-fermenting proboscis monkey (Nasalis larvatus). Biology Letters, 7(5), 786–9.Google Scholar
Matsuda, I., Sha, J. C., Ortmann, S., et al. (2015). Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination. Physiology & Behavior, 149, 4552.Google Scholar
Matsuda, I., Bernard, H., Tuuga, A., et al. (2018). Fecal nutrients suggest diets of higher fiber levels in free-ranging than in captive proboscis monkeys (Nasalis larvatus). Frontiers in Veterinary Science, 4. DOI: 10.3389/fvets.2017.00246.Google Scholar
Matsuda, I., Nakabayashi, M., Otani, Y., et al. (2018a). Comparison of plant diversity and phenology of riverine and mangrove forests with those of the dryland forest in Sabah, Borneo, Malaysia. In Barnett, A. A., Matsuda, I. & Nowak, K. (eds) Primates in Flooded Habitats: Ecology and Conservation. Cambridge: Cambridge University Press.Google Scholar
Matsuda, I., Abram, N. K., Stark, D. J., et al. (2018b). Population dynamics of proboscis monkeys (Nasalis larvatus) over space and time, in the Lower Kinabatangan, Sabah, Borneo, Malaysia. Oryx.Google Scholar
Meijaard, E. & Nijman, V. (2000a). Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biological Conservation, 92(1), 1524.Google Scholar
Meijaard, E. & Nijman, V. (2000b). The local extinction of the proboscis monkey Nasalis larvatus in Pulau Kaget Nature Reserve, Indonesia. Oryx, 34(1), 6670.Google Scholar
Munshi-South, J. & Bernard, H. (2011). Genetic diversity and distinctiveness of the proboscis monkeys (Nasalis larvatus) of the Klias Peninsula, Sabah, Malaysia. Journal of Heredity, 102(3), 342–6.Google Scholar
Murai, T., Mohamed, M., Bernard, H., et al. (2007). Female transfer between one-male groups of proboscis monkey (Nasalis larvatus). Primates, 48(2), 117–21.Google Scholar
Muzani, (2014). Mangrove management in Indonesia from laws on coastal and small islands. Developing Country Studies, 4(25), 7983.Google Scholar
Nowak, K. (2012). Mangrove and peat swamp forests: refuge habitats for primates and felids. Folia Primatologica, 83, 361–76.Google Scholar
Persey, S., Imanuddin, & Sadikin, L. (2011). A Practical Handbook for Conserving High Conservation Value Species and Habitats Within Oil Palm Landscapes. London: Zoological Society of London.Google Scholar
Roper, K. M., Scheumann, M., Wiechert, A. B., et al. (2014). Vocal acoustics in the endangered proboscis monkey (Nasalis larvatus). American Journal of Primatology, 76(2), 192201.Google Scholar
RSPO. (2013). Principals and criteria for the production of sustainable palm oil 2013.Google Scholar
Salgado-Lynn, M. (2010). Primate Viability in a Fragmented Landscape: Genetic Diversity and Parasite Burden of Long-Tailed Macaques and Proboscis Monkeys in the Lower Kinabatangan Floodplain, Sabah, Malaysia. Cardiff: Cardiff University.Google Scholar
Salter, R. E., MacKenzie, N. A., Nightingale, N., Aken, K. M. & Chai, P. K. P. (1985). Habitat use, ranging behaviour, and food habits of the proboscis monkey, Nasalis larvatus (van Wurmb), in Sarawak. Primates, 26(4), 436–51.Google Scholar
Sha, J. C. M. & Matsuda, I. (2016). Protecting the proboscis. Asian Geographic, 116, 34–9.Google Scholar
Sha, J. C. M., Bernard, H. & Nathan, S. (2008). Status and conservation of proboscis monkeys (Nasalis larvatus) in Sabah, east Malaysia. Primate Conservation, 23(1), 107–20.Google Scholar
Sha, J. C., Alagappasamy, S., Chandran, S., Cho, K. M. & Guha, B. (2013). Establishment of a captive all-male group of proboscis monkey (Nasalis larvatus) at the Singapore Zoo. Zoo Biology, 32(3), 281–90.Google Scholar
Soendjoto, M. A., Alikodra, H. S., Bismark, M. & Setijanto, H. (2005). Vegetasi tepi-baruh pada habitat bekantan (Nasalis larvatus) di hutan karet kabupaten Tabalong, Kalimantan Selatan. Biodiversitas, 6(1), 40–4.Google Scholar
Stark, D. J., Nijman, V., Lhota, S., Robins, J. G. & Goossens, B. (2012). Modeling population viability of local proboscis monkey Nasalis larvatus populations: conservation implications. Endangered Species Research, 16(1), 3143.Google Scholar
Stark, D. J., Vaughan, I. P., Evans, L. J., et al. (2017a). Combining drones and satellite tracking as an effective tool for informing policy change in riparian habitats: a proboscis monkey case study. Remote Sensing in Ecology and Conservation. DOI: 10.1002/rse2.51.Google Scholar
Stark, D. J., Vaughan, I. P., Ramirez Saldivar, D. A., Nathan, S. K. & Goossens, B. (2017b). Evaluating methods for estimating home ranges using GPS collars: a comparison using proboscis monkeys (Nasalis larvatus). PLoS ONE, 12(3), e0174891.Google Scholar
Stark, P. B. & Flaherty, J. (2017). The Only Negotiating Guide You’ll Ever Need, Revised and Updated: 101 Ways to Win Every Time in Any Situation. New York: Crown Business.Google Scholar
Tangah, J. (2012). The Ecology and Behaviour of Proboscis Monkey (Nasalis Larvatus) in Mangrove Habitat of Labuk Bay, Sabah. Kota Kinabalu: Universiti Malaysia Sabah.Google Scholar
Thiry, V., Stark, D. J., Goossens, B., et al. (2016). Use and selection of sleeping sites by proboscis monkeys, Nasalis larvatus, along the Kinabatangan River, Sabah, Malaysia. Folia Primatologica, 87(3), 180–96.Google Scholar
Vanar, M. (2017). Sabah scraps Sukau bridge project. The Star Online, 20 April.Google Scholar
Wilmar International (2013). No Peat. No Deforestation. No Exploitation Policy.Google Scholar
Yeager, C. P. (1989). Feeding ecology of the proboscis monkey (Nasalis larvatus). International Journal of Primatology, 10(6), 497530.Google Scholar
Yeager, C. P. (1991). Proboscis monkey (Nasalis larvatus) social organization: intergroup patterns of association. American Journal of Primatology, 23(2), 7386.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×