Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:00:08.053Z Has data issue: false hasContentIssue false

11 - Rehabilitation

Published online by Cambridge University Press:  12 August 2009

David Gow
Affiliation:
Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
Chris Fraser
Affiliation:
Department of Medicine, Royal Bolton Hospital Farnworth, Bolton BL 4 OJR, UK
Shaheen Hamdy
Affiliation:
Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Introduction

Neurological rehabilitation can be defined as the institution of therapy to maximize the degree of recovery within a given individual following a neurological insult. It has been suggested that neurological rehabilitation is based around the phenomenon of neuronal plasticity which is thought to play a crucial role in recovery from neurological injury and in particular stroke. For the design and implementation of effective rehabilitative strategies it is essential to consider three components: (i) an understanding of the nature of the initial insult, (ii) an understanding of the manner in which recovery may occur and (iii) an objective measure of the result of therapeutic interventions employed.

Each of these components can be addressed in part with transcranial magnetic stimulation and the area of recovery from disability following stroke has received most attention. In particular, TMS has been used to investigate motor reorganization following stroke, which has led to a greater understanding of the potential recovery patterns that occur. TMS may also have a role in the induction of plasticity itself and has potential to become a rehabilitative tool in recovery from neurological injury.

In this chapter we will review how TMS has been utilized in the study of spontaneous recovery, explore the role of TMS in quantifying rehabilitation and examine how TMS has been applied to studies aimed at influencing the recovery process with therapeutic intervention.

Mechanisms of recovery from unilateral hemispheric stroke

Unilateral hemispheric stroke (UHS) has many advantages as a model for investigating recovery from neurological injury.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 264 - 287
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barer, D. H. (1989). The natural history and functional consequences of dysphagia after hemispheric stroke. J. Neurol. Neurosurg. Psychiatry, 52: 236–241CrossRefGoogle ScholarPubMed
Ben-Shachar, D., Belmaker, R. H., Grisaru, N. & Klein, E. (1997). Transcranial magnetic stimulation induces alterations in brain monoamines. J. Neural. Transm., 104: 191–197CrossRefGoogle ScholarPubMed
Ben-Shachar, D., Gazawi, H., Riboyad-Levin, J. & Klein, E. (1999). Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT 2 receptor characteristics in rat brain. Brain Res., 816: 78–83CrossRefGoogle Scholar
Berardelli, A., Inghilleri, M., Rothwell, J. C.. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res., 122: 79–84CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Gilio, F.. (1999). Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Exp. Brain Res., 125: 82–86CrossRefGoogle ScholarPubMed
Bobath, B. (1970). Adult Hemiplegia: Evaluation and Treatment. London: William Heinemann Medical Books Ltd.
Brasil-Neto, J. P., Valls-Sole, J., Pascual-Leone, A.. (1993). Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 116: 511–525CrossRefGoogle ScholarPubMed
Buckner, R. L., Corbetta, M., Schatz, J., Raichle, M. E. & Petersen, S. E. (1996). Preserved speech abilities and compensation following prefrontal damage. Proc. Natl Acad. Sci., USA, 93: 1249–1253CrossRefGoogle ScholarPubMed
Cao, Y., D'Olhaberriague, L., Vikingstad, E. M., Levine, S. R. & Welch, K. M. (1998). Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke, 29: 112–122CrossRefGoogle ScholarPubMed
Caramia, M. D., Palmieri, M. G., Giacomini, P., Iani, C., Dally, L. & Silvestrini, M. (2000). Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic stroke. Clin. Neurophysiol., 111: 1990–1996CrossRefGoogle ScholarPubMed
Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain, 116: 1223–1247CrossRefGoogle ScholarPubMed
Carr, L. J., Harrison, L. M. & Stephens, J. A. (1994). Evidence for bilateral innervation of certain homologous motoneurone pools in man. J. Physiol., 475: 217–227CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Chollet, F., DiPiero, V., Wise, R. J., Brooks, D. J., Dolan, R. J. & Frackowiak, R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol., 29: 63–71CrossRefGoogle ScholarPubMed
Cohen, L. G., Brasil-Neto, J. P., Pascual-Leone, A. & Hallett, M. (1993). Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. Adv. Neurol., 63: 187–200Google ScholarPubMed
Cote, R., Hachinski, V. C., Shurvell, B. L., Norris, J. W. & Wolfson, C. (1986). The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke, 17: 731–737CrossRefGoogle ScholarPubMed
Cramer, S. C., Nelles, G., Benson, R. R.. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28: 2518–2527CrossRefGoogle ScholarPubMed
D'Olhaberriague, L., Gamissans, Espadaler J. M., Marrugat, J.Valls, A., Ley, Oliveras C. & Seoane, J. L. (1997). Transcranial magnetic stimulation as a prognostic tool in stroke. J. Neurol. Sci., 147: 73–80CrossRefGoogle ScholarPubMed
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res., 79: 492–503CrossRefGoogle ScholarPubMed
Fisher, C. M. (1992). Concerning the mechanism of recovery in stroke hemiplegia. Can. J. Neurol. Sci., 19: 57–63Google ScholarPubMed
Fraser, C., Hamdy, S., Rothwell, J. C. & Thompson, D. G. (1999). Sensory-induced reorganisation of human swallowing motor cortex displays differential frequency dependent patterms. NeuroImage, 9: A507Google Scholar
Fraser, C., Hobday, D., Power, M.. (2001a). A functional study of sensory dependent brain reorganisation during swallowing. Gastroenterology, 120: A713CrossRefGoogle Scholar
Fraser, C., Power, M., Hamdy, S.. (2001b). Driving plasticity in adult human motor cortex improves functional performance after cerebral injury. Clin. Neurophysiol., 112: S86Google Scholar
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1996). The cortical topography of human swallowing musculature in health and disease. Nat. Med., 2: 1217–1224CrossRefGoogle ScholarPubMed
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1997). Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet, 350: 686–692CrossRefGoogle ScholarPubMed
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1998a). Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology, 115: 1104–1112CrossRefGoogle Scholar
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. (1998b). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci., 1: 64–68CrossRefGoogle Scholar
Hausmann, A., Weis, C., Marksteiner, J., Hinterhuber, H. & Humpel, C. (2000). Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res. Mol. Brain Res., 76: 355–362CrossRefGoogle ScholarPubMed
Heald, A., Bates, D., Cartlidge, N. E., French, J. M. & Miller, S. (1993). Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain, 116: 1371–1385CrossRefGoogle ScholarPubMed
Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M. & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann. Neurol., 45: 430–4383.0.CO;2-P>CrossRefGoogle ScholarPubMed
Keck, M. E., Sillaber, I., Ebner, K.. (2000). Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur. J. Neurosci., 12: 3713–3720CrossRefGoogle ScholarPubMed
Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E. & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31: 1210–1216CrossRefGoogle ScholarPubMed
Mahoney, F. & Barthel, D. (1965). Functional evaluation: the Barthel index. MD State Med. J., 14: 61–85Google ScholarPubMed
Muellbacher, W., Artner, C. & Mamoli, B. (1998). Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia. J. Neurol. Neurosurg. Psychiatry, 65: 755–761CrossRefGoogle ScholarPubMed
Muellbacher, W., Artner, C. & Mamoli, B. (1999). The role of the intact hemisphere in recovery of midline muscles after recent monohemispheric stroke. J. Neurol., 246: 250–256CrossRefGoogle ScholarPubMed
Muller, K., Iliyya, Kass F. & Reitz, M. (1997). Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann. Neurol., 42: 705–711CrossRefGoogle ScholarPubMed
Muller, M. B., Toschi, N., Kresse, A. E., Post, A. & Keck, M. E. (2000). Long-term repetitive transcranial magnetic stimulation increases expression of brain derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology, 23: 205–215CrossRefGoogle Scholar
Nelles, G., Spiekermann, G., Jueptner, M.. (1999). Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke, 30: 1510–1516CrossRefGoogle ScholarPubMed
Netz, J., Lammers, T. & Homberg, V. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120: 1579–1586CrossRefGoogle ScholarPubMed
Nudo, R. J. (1997). Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Mol. Psychiatry, 2: 188–191CrossRefGoogle ScholarPubMed
Nudo, R. J. & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol., 75: 2144–2149CrossRefGoogle ScholarPubMed
Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272: 1791–1794CrossRefGoogle ScholarPubMed
Nudo, R. J., Plautz, E. J. & Frost, S. B. (2001). Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve, 24: 1000–1019CrossRefGoogle ScholarPubMed
Leone, Pascual A., Houser, C. M., Reese, K.. (1993). Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol., 89: 120–130CrossRefGoogle Scholar
Leone, Pascual A., Sole, Valls J., Wassermann, E. M. & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858CrossRefGoogle Scholar
Penfield, W. B. E. (1937). Somatic motor and sensory representation in the cerebral cortex in man as studied by electrical stimulation. Brain, 60: 389–443CrossRefGoogle Scholar
Rapisarda, G., Bastings, E., Noordhout, A. M., Pennisi, G. & Delwaide, P. J. (1996). Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation?Stroke, 27: 2191–2196CrossRefGoogle ScholarPubMed
Ridding, M. C. & Rothwell, J. C. (1997). Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr. Clin. Neurophysiol., 105: 340–344CrossRefGoogle ScholarPubMed
Ridding, M. C., McKay, D. R., Thompson, P. D. & Miles, T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol., 112: 1461–1469CrossRefGoogle ScholarPubMed
Rosen, H. J., Petersen, S. E., Linenweber, M. R.. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55: 1883–1894CrossRefGoogle ScholarPubMed
Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb. Cortex, 2: 141–152CrossRefGoogle ScholarPubMed
Seitz, R. J., Hoflich, P., Binkofski, F., Tellmann, L., Herzog, H. & Freund, H. J. (1998). Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol., 55: 1081–1088CrossRefGoogle ScholarPubMed
Taub, E., Uswatte, G. & Pidikiti, R. (1999). Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J. Rehabil. Res. Dev., 36: 237–251Google ScholarPubMed
Traversa, R., Cicinelli, P., Bassi, A., Rossini, P. M. & Bernardi, G. (1997). Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke, 28: 110–117CrossRefGoogle ScholarPubMed
Trompetto, C., Assini, A., Buccolieri, A., Marchese, R. & Abbruzzese, G. (2000). Motor recovery following stroke: a transcranial magnetic stimulation study. Clin. Neurophysiol., 111: 1860–1867CrossRefGoogle ScholarPubMed
Turton, A., Wroe, S., Trepte, N., Fraser, C. & Lemon, R. N. (1996). Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr. Clin. Neurophysiol., 101: 316–328CrossRefGoogle ScholarPubMed
Urban, P. P., Hopf, H. C., Fleischer, S., Zorowka, P. G. & Forell, Muller W. (1997). Impaired cortico-bulbar tract function in dysarthria due to hemispheric stroke. Functional testing using transcranial magnetic stimulation. Brain, 120: 1077–1084CrossRefGoogle ScholarPubMed
Wassermann, E. M. & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol., 112: 1367–1377CrossRefGoogle ScholarPubMed
Wassermann, E. M., Fuhr, P., Cohen, L. G. & Hallett, M. (1991). Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology, 41: 1795–1799CrossRefGoogle ScholarPubMed
Wassermann, E. M., Leone, Pascual A. & Hallett, M. (1994). Cortical motor representation of the ipsilateral hand and arm. Exp. Brain Res., 100: 121–132CrossRefGoogle Scholar
Wassermann, E. M., Grafman, J., Berry, C.. (1996). Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol., 101: 412–417CrossRefGoogle ScholarPubMed
Weiller, C., Chollet, F., Friston, K. J., Wise, R. J. & Frackowiak, R. S. (1992). Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol., 31: 463–472CrossRefGoogle ScholarPubMed
Weiller, C., Ramsay, S. C., Wise, R. J., Friston, K. J. & Frackowiak, R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann. Neurol., 33: 181–189CrossRefGoogle ScholarPubMed
Weiller, C., Isensee, C., Rijntjes, M.. (1995). Recovery from Wernicke's aphasia: a positron emission tomographic study. Ann. Neurol., 37: 723–732CrossRefGoogle ScholarPubMed
Woolsey, C. N., Erickson, T. C. & Gilson, W. E. (1979). Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg., 51: 476–506CrossRefGoogle ScholarPubMed
Wu, T., Sommer, M., Tergau, F. & Paulus, W. (2000). Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci. Lett., 287: 37–40CrossRefGoogle ScholarPubMed
Ziemann, U., Corwell, B. & Cohen, L. G. (1998a). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci., 18: 1115–1123CrossRefGoogle Scholar
Ziemann, U., Hallett, M. & Cohen, L. G. (1998b). Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci., 18: 7000–7007CrossRefGoogle Scholar
Ziemann, U., Ishii, K., Borgheresi, A.. (1999). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J. Physiol., 518: 895–906CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Rehabilitation
    • By David Gow, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK, Chris Fraser, Department of Medicine, Royal Bolton Hospital Farnworth, Bolton BL 4 OJR, UK, Shaheen Hamdy, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Rehabilitation
    • By David Gow, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK, Chris Fraser, Department of Medicine, Royal Bolton Hospital Farnworth, Bolton BL 4 OJR, UK, Shaheen Hamdy, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Rehabilitation
    • By David Gow, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK, Chris Fraser, Department of Medicine, Royal Bolton Hospital Farnworth, Bolton BL 4 OJR, UK, Shaheen Hamdy, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Book: Plasticity in the Human Nervous System
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544903.012
Available formats
×