Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T02:30:18.952Z Has data issue: false hasContentIssue false

3 - Venus tectonics

Published online by Cambridge University Press:  30 March 2010

George E. McGill
Affiliation:
University of Massachusetts, Amherst
Ellen R. Stofan
Affiliation:
Proxemy Research, Laytonsville
Suzanne E. Smrekar
Affiliation:
Jet Propulsion Laboratory, Pasadena
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Venus has a pressure-corrected bulk density that is only 3% less than that of the Earth. In contrast, the surface environments of these two planets are very different. At the mean planetary radius the atmospheric pressure and temperature on Venus are 95 bars and 737 K, respectively. Liquid water cannot exist on the surface, which implies the absence of the processes most effective for erosion and sediment transport on Earth. The planet is completely shrouded in clouds, and temperatures of the lower atmosphere do not vary much from equator to poles, resulting in winds not capable of significant erosion. Most of the materials exposed on the surface of Venus apparently formed during approximately the last 20% of solar system history, with no significant clues to conditions on the planet during prior eons. Because the dense atmosphere has destroyed small bolides, the smallest surviving impact craters have diameters of ~2 km, and the total population of impact craters is less than 1000. The dominant terrain on Venus is plains, which constitute ~80% of the planet's surface. Impact craters are randomly distributed on these plains, and thus differences in the relative age of surface materials based on differences in crater frequency are not statistically robust.

The global topography of Venus does not include the diagnostic plate-boundary signatures that are present on Earth, and thus plate tectonics has not been active on Venus during the time represented by the current surface materials and features.

Type
Chapter
Information
Planetary Tectonics , pp. 81 - 120
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, E. A. (2001). A stratigraphic study of small volcano clusters on Venus. Icarus, 149, 16–36.CrossRefGoogle Scholar
Anderson, E. M. (1951). The Dynamics of Faulting and Dyke Propagation with Applications to Britain. Edinburgh: Oliver and Boyd.Google Scholar
Anderson, F. S. and Smrekar, S. E. (1999). Tectonic effects of climate change on Venus. J. Geophys. Res., 104, 30 743–30 756.CrossRefGoogle Scholar
Arkani-Hamed, J. (1994). On the thermal evolution of Venus. J. Geophys. Res., 99, 2019–2033.CrossRefGoogle Scholar
Arkani-Hamed, J., Schaber, G. G., and Strom, R. G. (1993). Constraints on the thermal evolution of Venus inferred from Magellan data. J. Geophys. Res., 98, 5309–5315.CrossRefGoogle Scholar
Banerdt, W. B., McGill, G. E., and Zuber, M. T. (1997). Plains tectonics on Venus. In Venus II, ed. Gougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 901–930.Google Scholar
Basilevsky, A. T. (1994). Concentric wrinkle ridge pattern around Sif and Gula (abs.). Lunar Planet. Sci. Conf. XXV, 63–64.Google Scholar
Basilevsky, A. T. and Head, J. W. (1995). Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas. Earth, Moon, and Planets, 66, 285–336.CrossRefGoogle Scholar
Basilevsky, A. T. and Head, J. W. (1998). The geologic history of Venus: A stratigraphic view. J. Geophys. Res., 103, 8531–9544.CrossRefGoogle Scholar
Basilevsky, A. T. and Head, J. W. (2000). Geologic units on Venus: Evidence for their global correlation. Planet. Space Sci., 48, 75–111.CrossRefGoogle Scholar
Basilevsky, A. T., Pronin, A. A., Ronca, L. B., Kryuchkov, V. P., Sukhanov, A. L., and Markov, M. S. (1986). Styles of tectonic deformation on Venus: Analysis of Venera 15 and 16 data. Proc. Lunar Planet. Sci. Conf. 16, J. Geophys. Res., 91, D399–D411.CrossRefGoogle Scholar
Basilevsky, A. T., Head, J. W., Schaber, G. G., and Strom, R. G. (1997). The resurfacing history of Venus. In Venus II, ed. Gougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 1047–1084.Google Scholar
Bilotti, F. and Suppe, J. (1999). The global distribution of wrinkle ridges on Venus. Icarus, 139, 137–159.CrossRefGoogle Scholar
Bindschadler, D. L. and Head, J. W. (1991). Tessera terrain, Venus: Characterization and models for origin and evolution. J. Geophys. Res., 96, 5889–5907.CrossRefGoogle Scholar
Bindschadler, D. L. and Parmentier, E. M. (1990). Mantle flow tectonics: The influence of a ductile lower crust and implications for the formation of topographic uplands on Venus. J. Geophys. Res., 95, 21 329–21 344.CrossRefGoogle Scholar
Bindschadler, D. L., Schubert, G., and Kaula, W. M. (1992). Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. J. Geophys. Res., 97, 13 495–13 532.CrossRefGoogle Scholar
Bleamaster, L. F. and Hansen, V. L. (2004). Effects of crustal heterogeneity on the morphology of chasmata, Venus. J. Geophys. Res., 109, doi:10.1029/2003JE002193.CrossRefGoogle Scholar
Brian, A. W., Stofan, E. R., Guest, J. E., and Smrekar, S. E. (2004a). Laufey Regio: A newly discovered topographic rise on Venus. J. Geophys. Res., 109, doi:10.1029/2002JE002010.CrossRefGoogle Scholar
Brian, A. W., Guest, J. E., and Stofan, E. R. (2004b). Geologic map of the Taussig Quadrangle (V39), Venus. U.S. Geol. Surv. Geol. Invest. Ser. SIM-2813.
Brown, C. D. and Grimm, R. E. (1996). Lithospheric rheology and flexure at Artemis Chasma, Venus. J. Geophys. Res., 101, 12 697–12 708.CrossRefGoogle Scholar
Bryan, W. B. (1973). Wrinkle ridges as deformed surface crust on ponded mare lava. Proc. Lunar Planet. Sci. Conf. 4, 93–106.Google Scholar
Bullock, M. A. and Grinspoon, D. H. (1996). The stability of climate on Venus. J. Geophys. Res., 101, 7521–7530.CrossRefGoogle Scholar
Campbell, B. A. (1999). Surface formation rates and impact crater densities on Venus. J. Geophys. Res., 104, 21 952–21 955.CrossRefGoogle Scholar
Campbell, D. B. and Burns, B. A. (1980). Earth-based radar imagery of Venus. J. Geophys. Res., 85, 8271–8281.CrossRefGoogle Scholar
Campbell, D. B., Head, J. W., Harmon, J. K., and Hine, A. A. (1984). Venus volcanism and rift formation in Beta Regio. Science, 226, 167–170.CrossRefGoogle ScholarPubMed
Campbell, I. H. and Taylor, S. R. (1983). No water, no granites – no oceans, no continents. Geophys. Res. Lett., 10, 1061–1064.CrossRefGoogle Scholar
Connors, C. (1995). Determining heights and slopes of fault scarps and other surfaces on Venus using Magellan radar. J. Geophys. Res., 100, 14 361–14 382.CrossRefGoogle Scholar
Conners, C. and Suppe, J. (2001). Constraints on magnitude of extension on Venus from slope measurements. J. Geophys. Res., 106, 3237–3260.CrossRefGoogle Scholar
Donahue, T. M. and Russell, C. T. (1997). The Venus atmosphere and ionosphere and their interaction with the solar wind: An overview. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 3–31.Google Scholar
Donahue, T. M., Grinspoon, D. H., Hartle, R. E., and Hodges, R. R. (1997). Ion/neutral escape of hydrogen and deuterium: Evolution of water. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 385–414.Google Scholar
Ernst, R. E., Grosfils, E. B., and Mège, D. (2001). Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci., 29, 489–534.CrossRefGoogle Scholar
Foster, S. and Nimmo, F. (1996). Comparisons between rift systems of East Africa, Earth and Beta Regio, Venus. Earth Planet. Sci. Lett., 143, 183–195.CrossRefGoogle Scholar
Gaddis, L. R. and Greeley, R. (1990). Volcanism in northwest Ishtar Terrs, Venus. Icarus, 87, 327–338.CrossRefGoogle Scholar
Ghent, R. and Hansen, V. (1999). Structural and kinematic analysis of eastern Ovda Regio, Venus: Implications for crustal plateau formation. Icarus, 139, 116–136.CrossRefGoogle Scholar
Gilmore, M. S. and Head, J. W. (2000). Sequential deformation of plains at the margin of Alpha Regio, Venus: Implications for tessera formation. Meteorit. Planet. Sci., 35, 667–687.CrossRefGoogle Scholar
Gilmore, M. S., Ivanov, M. A., Head, J. W., and Basilevsky, A. T. (1997). Duration of tessera deformation on Venus. J. Geophys. Res., 102, 13 357–13 368.CrossRefGoogle Scholar
Gilmore, M. S., Collins, G. C., Ivanov, M. A., Marinangeli, L., and Head, J. W. (1998). Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res., 103, 16 813–16 840.CrossRefGoogle Scholar
Glaze, L. S., Stofan, E. R., Smrekar, S. E., and Baloga, S. M. (2002). Insights into corona formation through statistical analyses. J. Geophys. Res., 107, doi:10.1029/2002JE001904.CrossRefGoogle Scholar
Golombek, M. P., Plescia, J. B., and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. Proc. Lunar Planet. Sci. Conf. 21, 679–693.Google Scholar
Greeley, R., Bender, K. C., Saunders, R. S., Schubert, G., and Weitz, C. M. (1997). Aeolian processes and features on Venus. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 547–589.Google Scholar
Grimm, R. E. (1994). Recent deformation on Venus. J. Geophys. Res., 99, 23 163–23 171.CrossRefGoogle Scholar
Grimm, R. E. and Phillips, R. J. (1991). Gravity anomalies, compensation mechanisms, and the geodynamics of western Ishtar Terra, Venus. J. Geophys. Res., 96, 8305–8324.CrossRefGoogle Scholar
Grosfils, E. B. and Head, J. W. (1994). The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state. Geophys. Res. Lett., 21, 701–704.CrossRefGoogle Scholar
Guest, J. E. and Stofan, E. R. (1999). A new view of the stratigraphic history of Venus. Icarus, 139, 55–66.CrossRefGoogle Scholar
Hamilton, V. E. and Stofan, E. R. (1996). The geomorphology and evolution of Hecate Chasma, Venus. Icarus, 121, 171–194.CrossRefGoogle Scholar
Hansen, V. L. (2000). Geologic mapping of tectonic planets. Earth Planet. Sci. Lett., 176, 527–542.CrossRefGoogle Scholar
Hansen, V. L. (2003). Venus diapirs: Thermal or compositional?Geol. Soc. Am. Bull., 115, 1040–1052.CrossRefGoogle Scholar
Hansen, V. L. and Phillips, R. J. (1993). Tectonics and volcanism of eastern Aphrodite Terra, Venus: No subduction, no spreading. Science, 260, 526–530.CrossRefGoogle ScholarPubMed
Hansen, V. L. and DeShon, H. R. (2002). Geologic map of the Diana Chasma Quadrangle (V37), Venus. U.S. Geol. Surv. Geol. Invest. Ser. I-2752.
Hansen, V. L. and Willis, J. J. (1996). Structural analysis of a sampling of tesserae: Implications for Venus geodynamics. Icarus, 123, 296–312.CrossRefGoogle Scholar
Hansen, V. L. and Willis, J. J. (1998). Ribbon terrain formation, southwestern Fortuna Tessera, Venus: Implications for lithosphere evolution. Icarus, 132, 321–343.CrossRefGoogle Scholar
Hansen, V. L., Willis, J. J., and Banerdt, W. B. (1997). Tectonic overview and synthesis. In Venus II, ed. Gougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 797–844.Google Scholar
Hansen, V. L., Phillips, R. J., Willis, J. J., and Ghent, R. R. (2000). Structures in tessera terrain, Venus: Issues and answers. J. Geophys. Res., 105, 4135–4152.CrossRefGoogle Scholar
Head, J. W. and Crumpler, L. S. (1987). Evidence for divergent plate boundary characteristics and crustal spreading on Venus. Science, 238, 1380–1385.CrossRefGoogle ScholarPubMed
Herrick, R. R. (1994). The resurfacing history of Venus. Geology, 22, 703–706.2.3.CO;2>CrossRefGoogle Scholar
Hoogenboom, T. and Houseman, G. A. (2005). Rayleigh-Taylor instability as a mechanism for coronae formation on Venus. Icarus, in review.Google Scholar
Hoogenboom, T., Houseman, G. A., and Martin, P. (2005). Elastic thickness estimates for coronae associated with chasmata on Venus. J. Geophys. Res., 110, doi://10.1029.2004JE002394.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (1996). Tessera terrain on Venus: A survey of the global distribution, characteristics and relation to surrounding units from Magellan data. J. Geophys. Res., 101, 14 861–14 908.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W.. (2001). Geologic map of the Lavinia Planitia Quadrangle (V-55), Venus. U.S. Geol. Surv. Geol. Invest. Ser., I-2684.
Ivanov, M. A. and Head, J. W. (2004). Stratigraphy of small shield volcanoes on Venus: Criteria for determining stratigraphic relationships and assessment of relative age and temporal abundance. J. Geophys. Res., 109, E10001, doi:10.l029/ 2004JE002252.CrossRefGoogle Scholar
Janes, D. M, Squyres, S. W., Bindschadler, D. L., Baer, G., Schubert, G., Sharpton, V. L., and Stofan, E. R. (1992). Geophysical models for the formation and evolution of coronae on Venus. J. Geophys. Res., 97, 16 055–16 067.CrossRefGoogle Scholar
Jellinek, A. M., Lenardic, A., and Manga, M. (2002). The influence of interior mantle temperature on the structure of plumes: Heads for Venus, tails for the Earth. Geophys. Res. Lett., 29, doi:1029/2001GL014624.CrossRefGoogle Scholar
Johnson, C. L. and Sandwell, D. T. (1992). Joints in venusian lava flows. J. Geophys. Res., 97, 13 601–13 610.CrossRefGoogle Scholar
Johnson, C. L. and Sandwell, D. T. (1994). Lithospheric flexure on Venus. Geophys. J. Int., 119, 627–647.CrossRefGoogle Scholar
Jull, M. G. and Arkani-Hamed, J. (1995). The implications of basalt in the formation and evolution of mountains on Venus. Phys. Earth Planet. Inter., 89, 163–175.CrossRefGoogle Scholar
Kasting, J. F. and Pollack, J. B. (1983). Loss of water from Venus: I. Hydrodynamic escape of hydrogen. Icarus, 53, 479–508.CrossRefGoogle Scholar
Kaula, W. M. and Phillips, R. J. (1981). Quantitative tests for plate tectonics on Venus. Geophys. Res. Lett., 8, 1187–1190.CrossRefGoogle Scholar
Kaula, W. M., Bindschadler, D. L., Grimm, R. E., Hansen, V. L., Roberts, K. M., and Smrekar, S. E. (1992). Styles of deformation in Ishtar Terra and their implications. J. Geophys. Res., 97, 16 085–16 120.CrossRefGoogle Scholar
Keep, M. and Hansen, V. L. (1994). Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation. J. Geophys. Res., 99, 26 015–26 028.CrossRefGoogle Scholar
Kidder, J. G. and Phillips, R. J. (1996). Convection-driven subsolidus crustal thickening on Venus. J. Geophys. Res., 101, 23 181–23 194.CrossRefGoogle Scholar
Kiefer, W. S. and Hager, B. H. (1991). A mantle plume model for the equatorial highlands of Venus. J. Geophys. Res., 96, 20 947–20 966.CrossRefGoogle Scholar
Kiefer, W. S. and Hager, B. H. (1992). Geoid anomalies and dynamic topography from convection in cylindrical geometry: Applications to mantle plumes on Earth and Venus. Geophys. J. Int., 108, 198–214.CrossRefGoogle Scholar
Koch, D. M. and Manga, M. (1996). Neutrally buoyant diapirs: A model for Venus coronae. Geophys. Res. Lett., 23, 225–228.CrossRefGoogle Scholar
Komatsu, G. and Baker, V. R. (1994). Plains tectonism on Venus: Inferences from canali longitudinal profiles. Icarus, 110, 275–286.CrossRefGoogle Scholar
Lachenbruch, A. H. (1961). Depth and spacing of tension cracks. J. Geophys. Res., 66, 4273–4292.CrossRefGoogle Scholar
Lenardic, W., Kaula, W. M., and Bindschadler, D. L. (1995). Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus. J. Geophys. Res., 100, 16 949–16 957.CrossRefGoogle Scholar
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L. (1998). High-temperature deformation of dry diabase with applications to tectonics on Venus. J. Geophys. Res., 103, 975–984.CrossRefGoogle Scholar
Magee, K. P. and Head, J. W. (2001). Large flow fields on Venus: Implications for plumes, rift associations and resurfacing. Geo. Soc. Am. Spec. Paper, 352, 81–101.Google Scholar
Marinangeli, L. and Gilmore, M. S. (2000). Geologic evolution of the Akna Montes-Atropos Tessera region, Venus. J. Geophys. Res., 195, 12 053–12 075.CrossRefGoogle Scholar
Martin, P., Stofan, E. R., Glaze, L. S., and Smrekar, S. E. Coronae of Parga Chasma, Venus. Icarus, in review.
Masursky, H., Eliason, E., Ford, P. G., McGill, G. E., Pettengill, G. H., Schaber, G. G., and Schubert, G. (1980). Pioneer Venus radar results: Geology from images and altimetry. J. Geophys. Res., 85, 8232–8260.CrossRefGoogle Scholar
Maxwell, T. A. (1982). Orientation and origin of ridges in the Lunae Palus – Coprates region of Mars. Proc. Lunar Planet. Sci. Conf. 13, A97–A108.Google Scholar
Maxwell, T. A., El Baz, F., and Ward, S. H.(1975). Distribution, morphology, and origin of ridges and arches in Mare Serenitatis. Geol. Soc. Am. Bull., 86, 1273–1278.2.0.CO;2>CrossRefGoogle Scholar
McGill, G. E. (1993). Wrinkle ridges, stress domains, and kinematics of Venusian plains. Geophys. Res. Lett., 20, 2407–2410.CrossRefGoogle Scholar
McGill, G. E. (1994). Hotspot evolution and Venusian tectonic style. J. Geophys. Res., 99, 23 149–23 161.CrossRefGoogle Scholar
McGill, G. E. (1998). Central Eistla Regio: Origin and relative age of topographic rise. J. Geophys. Res., 103, 5889–5896.CrossRefGoogle Scholar
McGill, G. E. (2003). Kinematics of a linear deformation belt: The evolution of Pandrosos Dorsa, Venus (abs.). Lunar Planet. Sci. Conf. XXXIV, 1012. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
McGill, G. E. (2004a). Geologic map of the Bereghinya Planitia Quadrangle (V-8), Venus. U.S. Geol. Surv. Geol. Invest. Ser., I-2794.
McGill, G. E. (2004b). Tectonic and stratigraphic implications of the relative ages of Venusian plains and wrinkle ridges. Icarus, 172, 603–612.CrossRefGoogle Scholar
McGill, G. E. and Campbell, B. A. (2006). Radar properties as clues to relative ages of ridge belts and plains on Venus. J. Geophys. Res., 111, E12006, doi:10.1029/ 2006JE002705.CrossRefGoogle Scholar
McGovern, P. J. and Solomon, S. C. (1998). Growth of large volcanoes on Venus: Mechanical models and implications for structural evolution. J. Geophys. Res., 103, 11 071–11 101.CrossRefGoogle Scholar
McKenzie, D., Ford, P. G., Johnson, C., Parsons, B., Pettengill, G. H., Sandwell, D., Saunders, R. S., and Solomon, S. C. (1992). Features on Venus generated by plate boundary processes. J. Geophys. Res., 97, 13 533–13 544.CrossRefGoogle Scholar
McKenzie, D., McKenzie, J. M., and Saunders, R. S. (1992). Dike emplacement on Venus and on Earth. J. Geophys. Res., 97, 15 977–15 990.CrossRefGoogle Scholar
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A., and Melosh, H. J. (1997). Cratering on Venus: Models and observations. In Venus II, ed. Gougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 969–1014.Google Scholar
McLeod, L. C. and Phillips, R. J. (1994). Venusian channel gradients as a guide to vertical tectonics (abs.). Lunar Planet. Sci. Conf. XXV, 885–886.Google Scholar
Moreels, P. and Smrekar, S. E. (2003). Identification of polygonal patterns on Venus using mathematical morphology. IEEE Trans., Image Processing, 12, doi:10.1109/ TIP.2003.814254.Google Scholar
Moresi, L.-N. and Solomatov, V. S. (1998). Mantle convection with a brittle lithosphere: Thoughts on the global tectonic style of the Earth and Venus. Geophys. J., 133, 669–682.CrossRefGoogle Scholar
Morgan, P. and Phillips, R. J. (1983). Hot spot heat transfer: Its application to Venus and implications to Venus and Earth. J. Geophys. Res., 88, 8305–8317.CrossRefGoogle Scholar
Muller, O. H. and Pollard, D. D. (1977). The state of stress near Spanish Peaks, Colorado, determined from a dike pattern. Pure Appl. Geophys., 115, 69–86.CrossRefGoogle Scholar
Nunes, D. C., Phillips, R. J., Brown, C. D., and Dombard, A. J. (2004). Relaxation of compensated topography and the evolution of crustal plateaus on Venus. J. Geophys. Res., 109, E01006, doi:10.1029/2003JE002119.CrossRefGoogle Scholar
Odé, H. (1957). Mechanical analysis of the dike pattern of the Spanish Peaks, Colorado. Geo. Soc. Am. Bull., 68, 567–576.CrossRefGoogle Scholar
Parker, T. J., Komatsu, G., and Baker, V. R. (1992). Longitudinal topographic profiles of very long channels in Venusian plains regions (abs.). Lunar Planet. Sci. Conf. XXIII, 1035–1036.Google Scholar
Parmentier, E. M. and Hess, P. C. (1992). Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet. Geophys. Res. Lett., 19, 2015–2018.CrossRefGoogle Scholar
Phillips, R. J. and Hansen, V. L. (1994). Tectonic and magmatic evolution of Venus. In Annual Review of Earth and Planetary Sciences, ed. Wetherill, G. W., assoc. ed. Albee, A. L. and Burke, K. C.. Palo Alto, CA: Annual Reviews, Inc., pp. 597–654.Google Scholar
Phillips, R. J. and Malin, M. C. (1983). The interior of Venus and tectonic implications. In Venus, ed. Hunten, D. M., Colin, L., Donahue, T. M. and Moroz, V. I.. Tucson, AZ: University of Arizona Press, pp. 159–214.Google Scholar
Phillips, R. J., Grimm, R. E., and Malin, M. C. (1991). Hotspot evolution and the global tectonics of Venus. Science, 252, 651–658.CrossRefGoogle Scholar
Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N., and Grimm, R. E., (1992). Impact craters and Venus resurfacing history. J. Geophys. Res., 97, 15 923–15 948.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on study of terrestrial analogs. Geo. Soc. Am. Bull., 97, 1289–1299.2.0.CO;2>CrossRefGoogle Scholar
Rathbun, J. A., Janes, D. M., and Squyres, S. W. (1999). Formation of Beta Regio, Venus: Results from measuring strain. J. Geophys. Res., 104, 1917–1928.CrossRefGoogle Scholar
Reese, C. C., Solomatov, V. S., and Moresi, L.-N. (1999). Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus, 139, 67–80.CrossRefGoogle Scholar
Richards, M. A., Yang, W.-S., Baumgardner, J. R., and Bunge, H.-P. (2001). Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem., Geophys., Geosyst., 1040, doi:10.1029/2002GC000374.Google Scholar
Roberts, K. M. and Head, J. W., (1990). Western Ishtar Terra and Lakshmi Planum, Venus: Models of formation and evolution. Geophys. Res. Lett., 17, 1341–1344.CrossRefGoogle Scholar
Roberts, K. M. and Head, J. W. (1993). Large-scale volcanism associated with coronae on Venus: Implications for formation and evolution. Geophys. Res. Lett., 20, 1111–1114.CrossRefGoogle Scholar
Robinson, E. M. and Parsons, B. (1988). Effect of a shallow low-viscosity zone on the formation of midplate swells. J. Geophys. Res., 93, 3144–3156.CrossRefGoogle Scholar
Rosenberg, E. and McGill, G. E. (2001). Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus. U.S. Geol. Surv. Geol. Invest. Ser. I-2721.
Sandwell, D. T. and Schubert, G. (1992). Flexural ridges, trenches and outer rises around Venus coronae. J. Geophys. Res., 97, 16 069–16 084.CrossRefGoogle Scholar
Schaber, G. (1982). Limited extension and volcanism along zones of lithospheric weakness. Geophys. Res. Lett., 9, 499–502.CrossRefGoogle Scholar
Schaber, G. G., Strom, R. G., Moore, H. J., Soderblom, L. A., Kirk, R. L., Chadwick, D. J., Dawson, D. D., Gaddis, L. R., Boyce, J. M., and Russell, J. (1992). Geology and distribution of impact craters on Venus: What are they telling us?J. Geophys. Res., 97, 13 257–13 301.CrossRefGoogle Scholar
Schubert, G. (1992). Numerical models of mantle convection. Annu. Rev. Fluid Mech., 24, 359–394.CrossRefGoogle Scholar
Schubert, G. and Sandwell, D. T. (1995). A global survey of possible subduction sites on Venus. Icarus, 117, 173–196.CrossRefGoogle Scholar
Schubert, G., Solomatov, V. S., Tackley, P. J., and Turcotte, D. L. (1997). Mantle convection and the thermal evolution of Venus. In Venus II, ed. Brougher, S. W., Hunten, D. M. and Phillips, R. J.Tucson, AZ: University of Arizona Press, pp. 1245–1287.Google Scholar
Schultz, R. A., (2000). Localization of bedding-plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C., and Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space Phys., 18, 269–311.CrossRefGoogle Scholar
Seif, A., Kirk, D. B., Young, R. E., Blanchard, R. C., Findlay, J. T., Kelly, G. M., and Sommer, S. C. (1980). Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: Results from the four Pioneer Venus probes. J. Geophys. Res., 85, 7903–7933.CrossRefGoogle Scholar
Senske, D. A., Schaber, G. G., and Stofan, E. R. (1992). Regional topographic rises on Venus: Geology of western Eistla Regio and comparisons to Beta Regio and Atla Regio. J. Geophys. Res., 97, 13 395–13 420.CrossRefGoogle Scholar
Simons, M., Solomon, S. C., and Hager, B. H. (1997). Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int., 131, 24–44.CrossRefGoogle Scholar
Smrekar, S. E. (1994). Evidence for active hotspots on Venus from analysis of Magellan gravity data. Icarus, 112, 2–26.CrossRefGoogle Scholar
Smrekar, S. E. and Parmentier, E. M. (1996). Interactions of mantle plumes with thermal and chemical boundary layers: Application to hotspots on Venus. J. Geophys. Res., 101, 5397–5410.CrossRefGoogle Scholar
Smrekar, S. E. and Phillips, R. J. (1991). Venusian highlands: Geoid to topography ratios and their implications. Earth Planet. Sci. Lett., 107, 582–597.CrossRefGoogle Scholar
Smrekar, S. E. and Solomon, S. C. (1992). Gravitational spreading of high terrain in Ishtar Terra, Venus. J. Geophys. Res., 97, 16 121–16 148.CrossRefGoogle Scholar
Smrekar, S. E. and Stofan, E. R. (1997). Coupled upwelling and delamination: A new mechanism for coronae formation and heat loss on Venus. Science, 277, 1289–1294.CrossRefGoogle Scholar
Smrekar, S. E., Stofan, E. R., and Kiefer, W. S. (1997). Large volcanic rises on Venus. In Venus II, ed. Brougher, S. W., Hunten, D.M. and Phillips, R. J.Tucson, AZ: University of Arizona Press, pp. 845–878.Google Scholar
Smrekar, S. E., Moreels, P., and Franklin, B. J. (2002). Characterization and formation of polygonal fractures on Venus. J. Geophys. Res., 107, E11, 5098, doi:10.1029/2001JE001808.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L.-N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21 795–21 818.CrossRefGoogle Scholar
Solomon, S. C. (1993). The geophysics of Venus. Phys. Today, 46, 48–55.CrossRefGoogle Scholar
Solomon, S. C., and Head, J. W. (1982). Mechanisms for lithospheric heat transport on Venus: Implications for tectonic style and volcanism. J. Geophys. Res., 87, 9236–9246.CrossRefGoogle Scholar
Solomon, S. C., Head, J. W., Kaula, W. M., McKenzie, D., Parsons, B., Phillips, R. J., Schubert, G., and Talwani, M., (1991). Venus tectonics: Initial analysis from Magellan. Science, 252, 297–312.CrossRefGoogle ScholarPubMed
Solomon, S. C., Smrekar, S. E., Bindschadler, D. L., Grimm, R. E., Kaula, W. M., McGill, G. E., Phillips, R. J., Saunders, R. S., Schubert, G., Squyres, S. W., and Stofan, E. R. (1992). Venus tectonics: An overview of Magellan observations. J. Geophys. Res., 97, 13 199–13 255.CrossRefGoogle Scholar
Solomon, S. C., Bullock, M. A., and Grinspoon, D. H. (1999). Climate change as a regulator of tectonics on Venus. Science, 286, 87–90.CrossRefGoogle ScholarPubMed
Squyres, S. W., Jankowski, D. G., Simons, M., Solomon, S. C., Hager, B. H., and McGill, G. E. (1992). Plains tectonism on Venus: The deformation belts of Lavinia Planitia. J. Geophys. Res., 97, 13 579–13 599.CrossRefGoogle Scholar
Squyres, S. W., Janes, D. M., Baer, G., Bindschadler, D. L., Schubert, G., Sharpton, V. L., and Stofan, E. R. (1992). The morphology and evolution of coronae on Venus. J. Geophys. Res., 97, 13 611–13 634.CrossRefGoogle Scholar
Squyres, S. W., Janes, D. M., Schubert, G., Bindschadler, D. L., Moersch, J. E., Turcotte, D. L., and Stofan, E. R. (1993). The spatial distribution of coronae and related features on Venus. Geophys. Res. Lett., 20, 2965–2968.CrossRefGoogle Scholar
Steinbach, V. and Yuen, D. A. (1994). Effects of depth dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Phys. Earth Planet. Inter., 86, 165–183.CrossRefGoogle Scholar
Steinbach, V., Yuen, D. A., and Zhao, W. L. (1993). Instabilities from phase transitions and the timescales of mantle thermal evolution. Geophys. Res. Lett., 20, 1119–1122.CrossRefGoogle Scholar
Strom, R. G. (1972). Lunar mare ridges, rings and volcanic ring complexes. Mod. Geol., 2, 133–157.Google Scholar
Stofan, E. R., Bindschadler, D. L., Head, J. W., and Parmentier, E. M. (1991). Corona structures on Venus: Models of origin. J. Geophys. Res., 96, 20 933–20 946.CrossRefGoogle Scholar
Stofan, E. R., Sharpton, V. L., Schubert, G., Baer, G., Bindschadler, D. L., Janes, D. M., and Squyres, S. W. (1992). Global distribution and characteristics of coronae and related features on Venus: Implications for the origin and relation to mantle processes. J. Geophys. Res., 97, 13 347–13 378.CrossRefGoogle Scholar
Stofan, E. R., Smrekar, S. E., Bindschadler, D. L., and Senske, D. A. (1995). Large topographic rises on Venus: Implications for mantle upwellings. J. Geophys. Res., 100, 23 317–23 327.CrossRefGoogle Scholar
Stofan, E. R., Bindschadler, D. L., Hamilton, V. E., Janes, D. M., and Smrekar, S. E. (1997). Coronae on Venus: Morphology and origin. In Venus II, ed. Brougher, S. W., Hunten, D. M. and Phillips, R. J.Tucson, AZ: University of Arizona Press, pp. 931–965.Google Scholar
Stofan, E. R., Tapper, S. W., Guest, J. E., Grinrod, P., and Smrekar, S. E. (2001). Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett., 28, 4267–4270.CrossRefGoogle Scholar
Stofan, E. R., Brian, A. W., and Guest, J. E. (2005). Resurfacing styles and rates on Venus: Assessment of 18 Venusian quadrangles. Icarus, 173, 312–321.CrossRefGoogle Scholar
Stofan, E. R., Guest, J. E., and Brian, A. W. Geologic map of the Hecate Chasma quadrangle (V-28), Venus. U.S. Geol. Surv. Geol. Invest. Ser., in review.
Sukhanov, W. L. and Pronin, A. A. (1989). Ridge belts on Venus as extensional features. Proc. Lunar Planet. Sci. Conf. 19, 335–348.Google Scholar
Tanaka, K. L., Senske, D. A., Price, M., and Kirk, R. L. (1997). Physiography, geomorphic/geologic mapping, and stratigraphy of Venus. In Venus II, ed. Brougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 667–694.Google Scholar
Taylor, F. W., Crisp, D., and Bezard, B. (1997). Near-infrared sounding of the lower atmosphere. In Venus II, ed. Brougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 325–351.Google Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res., 93, 10 236–10 254.CrossRefGoogle Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis Plateau of Mars. J. Geophys. Res., 96, 15 599–15 616.CrossRefGoogle Scholar
Wood, J. A., and 9 others (1981). Geophysical and cosmochemical constraints on properties of mantles of the terrestrial planets. In Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press, pp. 633–699.Google Scholar
Yung, D. L. and DeMore, W. B. (1999). Photochemistry of Planetary Atmospheres. Oxford: Oxford University Press.Google Scholar
Zuber, M. T. (1990). Ridge belts: Evidence for regional- and local-scale deformation on the surface of Venus. Geophys. Res. Lett., 17, 1369–1372.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×