Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T23:05:53.128Z Has data issue: false hasContentIssue false

Ancillary Studies

from Section I - Techniques and Practical Considerations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kim, KS. Acute bacterial meningitis in infants and children. Lancet Infect Dis. 2010;10(1):3242.Google Scholar
Kowalsky, RH, Jaffe, DM. Bacterial meningitis post-PCV7: declining incidence and treatment. Pediatr Emerg Care. 2013;29(6):758–66; quiz 767.CrossRefGoogle ScholarPubMed
Ouchenir, L, Renaud, C, Khan, S, Bitnun, A, Boisvert, A-A, McDonald, J, et al. The epidemiology, management, and outcomes of bacterial meningitis in infants. Pediatrics. 2017;140(1).Google Scholar
Simonsen, KA, Anderson-Berry, AL, Delair, SF, Davies, HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):2147.CrossRefGoogle ScholarPubMed
Heath, PT, Okike, IO, Oeser, C. Neonatal meningitis: can we do better? Adv Exp Med Biol. 2011;719:1124.CrossRefGoogle ScholarPubMed
Bundy, LM, Noor, A. Neonatal Meningitis. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
Furyk, JS, Swann, O, Molyneux, E. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health. 2011;16(6):672–9.CrossRefGoogle ScholarPubMed
Arora, N, Sadovsky, Y, Dermody, TS, Coyne, CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017;21(5):561–7.Google Scholar
Madrid, L, Varo, R, Sitoe, A, Bassat, Q. Congenital and perinatally-acquired infections in resource-constrained settings. Expert Rev Anti Infect Ther. 2016;14(9):845–61.Google Scholar
Muller, WJ. Treatment of perinatal viral infections to improve neurologic outcomes. Pediatr Res. 2017;81(1–2):162–9.CrossRefGoogle ScholarPubMed
de Crom, SCM, Rossen, JWA, van Furth, AM, Obihara, CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr. 2016;175(8):1023–9.Google Scholar
Moylett, EH. Neonatal Candida meningitis. Semin Pediatr Infect Dis. 2003;14(2):115–22.Google Scholar
McCarthy, MW, Walsh, TJ. Molecular diagnosis of invasive mycoses of the central nervous system. Expert Rev Mol Diagn. 2017;17(2):129–39.CrossRefGoogle ScholarPubMed
Miller, JM, Binnicker, MJ, Campbell, S, Carroll, KC, Chapin, KC, Gilligan, PH, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of america and the american society for microbiology. Clin Infect Dis. 2018;67(6):e194.CrossRefGoogle Scholar
World Health Organization. Laboratory methods for the diagnosis of meningitis, 2nd edition [Internet]. 2011 [cited 2019 Mar 8]. Available from: www.cdc.gov/meningitis/bacterial.htmlGoogle Scholar
Conly, JM, Ronald, AR. Cerebrospinal fluid as a diagnostic body fluid. Am J Med. 1983;75(1B):102–8.CrossRefGoogle ScholarPubMed
Gray, LD, Fedorko, DP. Laboratory diagnosis of bacterial meningitis. Clin Microbiol Rev. 1992;5(2):130–45.CrossRefGoogle ScholarPubMed
Ku, LC, Boggess, KA, Cohen-Wolkowiez, M. Bacterial meningitis in infants. Clin Perinatol. 2015;42(1):2945.CrossRefGoogle ScholarPubMed
Jerrard, DA, Hanna, JR, Schindelheim, GL. Cerebrospinal fluid. J Emerg Med. 2001;21(2):171–8.CrossRefGoogle ScholarPubMed
Bartholomew, JW, Mittwer, T. The Gram stain. Bacteriol Rev. 1952;16(1):129.CrossRefGoogle ScholarPubMed
Aryal, S. Acid-Fast Stain- Principle, Procedure, Interpretation and Examples [Internet]. 2018 [cited 2019 Mar 8]. Available from: https://microbiologyinfo.com/acid-fast-stain-principle-procedure-interpretation-and-examples/Google Scholar
Guarner, J, Brandt, ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80.Google Scholar
Lazcano, O, Speights, VO, Strickler, JG, Bilbao, JE, Becker, J, Diaz, J. Combined histochemical stains in the differential diagnosis of Cryptococcus neoformans. Mod Pathol. 1993;6(1):80–4.Google ScholarPubMed
Bishop, JA, Nelson, AM, Merz, WG, Askin, FB, Riedel, S. Evaluation of the detection of melanin by the Fontana-Masson silver stain in tissue with a wide range of organisms including Cryptococcus. Hum Pathol. 2012;43(6):898903.CrossRefGoogle ScholarPubMed
Grocott, RG. A stain for fungi in tissue sections and smears. Am J Clin Pathol. 1955;25(8):975–9.CrossRefGoogle ScholarPubMed
Kain, R. Histopathology. Methods Mol Biol. 2017;1508:185–93.Google Scholar
McManus, JFA. Histological and histochemical uses of periodic acid. Stain Technol. 1948;23(3):99108.CrossRefGoogle ScholarPubMed
Hageage, GJ, Harrington, BJ. Use of calcofluor white in clinical mycology. Lab Med. 1984;15(2):109–12.CrossRefGoogle Scholar
Barcia, JJ. The Giemsa stain: its history and applications. Int J Surg Pathol. 2007;15(3):292–6.Google Scholar
Ochola, LB, Vounatsou, P, Smith, T, Mabaso, MLH, Newton, CRJC. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6(9):582–8.CrossRefGoogle ScholarPubMed
Singhi, P, Saini, AG. Fungal and parasitic CNS infections. Indian J Pediatr. 2019;86(1):8390.Google Scholar
Montoya, JG. Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis. 2002;185 Suppl 1:S7382.CrossRefGoogle ScholarPubMed
CDC – DPDx - Laboratory identification of parasites of public health concern [Internet]. [cited 2019 Mar 16]. Available from: www.cdc.gov/dpdx/index.htmlGoogle Scholar
Steiner, I, Budka, H, Chaudhuri, A, Koskiniemi, M, Sainio, K, Salonen, O, et al. Viral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol. 2005;12(5):331–43.CrossRefGoogle ScholarPubMed
Levin, MJ, Weinberg, A, Schmid, DS. Herpes Simplex Virus and Varicella-Zoster Virus. Microbiol Spectr. 2016;4(3).CrossRefGoogle ScholarPubMed
Visvesvara, GS, Moura, H, Schuster, FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol. 2007;50(1):126.Google Scholar
Moïsi, JC, Saha, SK, Falade, AG, Njanpop-Lafourcade, B-M, Oundo, J, Zaidi, AKM, et al. Enhanced diagnosis of pneumococcal meningitis with use of the Binax NOW immunochromatographic test of Streptococcus pneumoniae antigen: a multisite study. Clin Infect Dis. 2009;48 Suppl 2:S4956.Google Scholar
Tang, MW, Clemons, KV, Katzenstein, DA, Stevens, DA. The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time. Crit Rev Microbiol. 2016;42(4):634–42.Google Scholar
Eyzaguirre, E, Haque, AK. Application of Immunohistochemistry to Infections. Arch Pathol Lab Med. 2008;132(3):424–31.CrossRefGoogle ScholarPubMed
Weinbergerova, B, Kocmanova, I, Racil, Z, Mayer, J. Serological approaches. Methods Mol Biol. 2017;1508:209–21.CrossRefGoogle ScholarPubMed
Bahr, NC, Boulware, DR. Methods of rapid diagnosis for the etiology of meningitis in adults. Biomark Med. 2014;8(9):1085–103.Google Scholar
Perfect, JR. Fungal diagnosis: how do we do it and can we do better? Curr Med Res Opin. 2013;29 Suppl 4:311.CrossRefGoogle Scholar
Johnson, RH, Einstein, HE. Coccidioidal meningitis. Clin Infect Dis. 2006;42(1):103–7.Google Scholar
Frickmann, H, Zautner, AE, Moter, A, Kikhney, J, Hagen, RM, Stender, H, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43(3):263–93.CrossRefGoogle ScholarPubMed
Poppert, S, Essig, A, Stoehr, B, Steingruber, A, Wirths, B, Juretschko, S, et al. Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol. 2005;43(7):3390–7.Google Scholar
Weiss, LM, Chen, Y-Y. EBER in situ hybridization for Epstein-Barr virus. Methods Mol Biol. 2013;999:223–30.Google Scholar
Procop, GW, Beck, RC, Pettay, JD, Kohn, DJ, Tuohy, MJ, Yen-Lieberman, B, et al. JC virus chromogenic in situ hybridization in brain biopsies from patients with and without PML. Diagn Mol Pathol. 2006;15(2):70–3.Google Scholar
Mackay, IM, Arden, KE, Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002;30(6):1292–305.Google Scholar
Bookstaver, PB, Mohorn, PL, Shah, A, Tesh, LD, Quidley, AM, Kothari, R, et al. Management of viral central nervous system infections: A primer for clinicians. J Cent Nerv Syst Dis. 2017;9:1179573517703342.Google ScholarPubMed
Hanson, KE, Couturier, MR. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin Infect Dis. 2016;63(10):1361–7.Google ScholarPubMed
Fakruddin, M, Mannan, KSB, Chowdhury, A, Mazumdar, RM, Hossain, MN, Islam, S, et al. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J Pharm Bioallied Sci. 2013;5(4):245–52.CrossRefGoogle ScholarPubMed
Monis, PT, Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol. 2006;6(1):212.Google Scholar
Buchan, BW, Ledeboer, NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783822.Google Scholar
Tomita, N, Mori, Y, Kanda, H, Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3(5):877–82.CrossRefGoogle ScholarPubMed
Notomi, T, Okayama, H, Masubuchi, H, Yonekawa, T, Watanabe, K, Amino, N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.Google Scholar
Kaneko, H, Iida, T, Aoki, K, Ohno, S, Suzutani, T. Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol. 2005;43(7):3290–6.Google Scholar
Seki, M, Kilgore, PE, Kim, EJ, Ohnishi, M, Hayakawa, S, Kim, DW. Loop-mediated isothermal amplification methods for diagnosis of bacterial meningitis. Front Pediatr. 2018;6:57.Google Scholar
Vincent, M, Xu, Y, Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795800.Google Scholar
Toley, BJ, Covelli, I, Belousov, Y, Ramachandran, S, Kline, E, Scarr, N, et al. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst. 2015;140(22):7540–9.Google Scholar
Qian, C, Wang, R, Wu, H, Ji, F, Wu, J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta. 2019;1050:115.Google Scholar
Lefterova, MI, Suarez, CJ, Banaei, N, Pinsky, BA. Next-generation sequencing for infectious disease diagnosis and management: a report of the Association for Molecular Pathology. J Mol Diagn. 2015;17(6):623–34.Google Scholar
Wilson, MR, Naccache, SN, Samayoa, E, Biagtan, M, Bashir, H, Yu, G, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370(25):2408–17.CrossRefGoogle ScholarPubMed
Chiu, CY. Viral pathogen discovery. Curr Opin Microbiol. 2013;16(4):468–78.CrossRefGoogle ScholarPubMed
Hou, Y, Zhang, X, Hou, X, Wu, R, Wang, Y, He, X, et al. Rapid pathogen identification using a novel microarray-based assay with purulent meningitis in cerebrospinal fluid. Sci Rep. 2018;8(1):15965.Google Scholar
Boriskin, YS, Rice, PS, Stabler, RA, Hinds, J, Al-Ghusein, H, Vass, K, et al. DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol. 2004;42(12):5811–8.Google Scholar
Zhou, L, Wu, R, Shi, X, Feng, D, Feng, G, Yang, Y, et al. Simultaneous detection of five pathogens from cerebrospinal fluid specimens using luminex technology. Int J Environ Res Public Health. 2016;13(2):193.Google Scholar
He, T, Kaplan, S, Kamboj, M, Tang, Y-W. Laboratory diagnosis of central nervous system infection. Curr Infect Dis Rep. 2016;18(11):35.Google Scholar
Patel, R. New developments in clinical bacteriology laboratories. Mayo Clin Proc. 2016;91(10):1448–59.Google Scholar
Bhatia, NS, Farrell, JJ, Sampath, R, Ranken, R, Rounds, MA, Ecker, DJ, et al. Identification of Streptococcus intermedius central nervous system infection by use of PCR and electrospray ionization mass spectrometry. J Clin Microbiol. 2012;50(12):4160–2.Google Scholar
Nagalingam, S, Lisgaris, M, Rodriguez, B, Jacobs, MR, Lederman, M, Salata, RA, et al. Identification of occult Fusobacterium nucleatum central nervous system infection by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2014;52(9):3462–4.Google Scholar
Lévêque, N, Legoff, J, Mengelle, C, Mercier-Delarue, S, N’guyen, Y, Renois, F, et al. Virological diagnosis of central nervous system infections by use of PCR coupled with mass spectrometry analysis of cerebrospinal fluid samples. J Clin Microbiol. 2014;52(1):212–7.Google Scholar
Chávez-Bueno, S, McCracken, GH. Bacterial meningitis in children. Pediatr Clin North Am. 2005;52(3):795810, vii.CrossRefGoogle ScholarPubMed
van Toorn, R, Solomons, R. Update on the diagnosis and management of tuberculous meningitis in children. Semin Pediatr Neurol. 2014;21(1):1218.Google Scholar
Waggoner, JJ, Pinsky, BA. Molecular diagnostics for human leptospirosis. Curr Opin Infect Dis. 2016;29(5):440–5.Google Scholar
Lipsett, SC, Nigrovic, LE. Diagnosis of Lyme disease in the pediatric acute care setting. Curr Opin Pediatr. 2016;28(3):287–93.CrossRefGoogle ScholarPubMed
Waites, KB. What’s new in diagnostic testing and treatment approaches for Mycoplasma pneumoniae infections in children? Adv Exp Med Biol. 2011;719:4757.Google Scholar
Anzivino, E, Fioriti, D, Mischitelli, M, Bellizzi, A, Barucca, V, Chiarini, F, et al. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J. 2009;6:40.Google Scholar
Pinninti, SG, Kimberlin, DW. Neonatal herpes simplex virus infections. Semin Perinatol. 2018;42(3):168–75.Google Scholar
Luck, SE, Wieringa, JW, Blázquez-Gamero, D, Henneke, P, Schuster, K, Butler, K, et al. Congenital cytomegalovirus: a European expert consensus statement on diagnosis and management. Pediatr Infect Dis J. 2017;36(12):1205–13.Google Scholar
Avgil, M, Ornoy, A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: consequences of neonatal or intrauterine infection. Reprod Toxicol. 2006;21(4):436–45.Google Scholar
Celletti, F, Sherman, G, Mazanderani, AH. Early infant diagnosis of HIV: review of current and innovative practices. Curr Opin HIV AIDS. 2017;12(2):112–6.Google Scholar
Schwartz, KL, Richardson, SE, MacGregor, D, Mahant, S, Raghuram, K, Bitnun, A. Adenovirus-associated central nervous system disease in children. J Pediatr. 2019;205:130–7.CrossRefGoogle ScholarPubMed
Pinto, M, Dobson, S. BK and JC virus: a review. J Infect. 2014;68 Suppl 1:S2-8.Google Scholar
Agut, H, Bonnafous, P, Gautheret-Dejean, A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313–35.Google Scholar
Tripathi, N, Watt, K, Benjamin, DK. Treatment and prophylaxis of invasive candidiasis. Semin Perinatol. 2012;36(6):416–23.Google Scholar
Fanella, S, Skinner, S, Trepman, E, Embil, JM. Blastomycosis in children and adolescents: a 30-year experience from Manitoba. Med Mycol. 2011;49(6):627–32.Google ScholarPubMed
Saccente, M, Woods, GL. Clinical and laboratory update on blastomycosis. Clin Microbiol Rev. 2010;23(2):367–81.Google Scholar
Lamoth, F, Calandra, T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother. 2017;72(suppl_1):i1928.Google Scholar
Yansouni, CP, Bottieau, E, Lutumba, P, Winkler, AS, Lynen, L, Büscher, P, et al. Rapid diagnostic tests for neurological infections in central Africa. Lancet Infect Dis. 2013;13(6):546–58.Google Scholar
Carpio, A, Romo, ML, Parkhouse, RME, Short, B, Dua, T. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers. Expert Rev Neurother. 2016;16(4):401–14.Google Scholar
Qvarnstrom, Y, Visvesvara, GS, Sriram, R, da Silva, AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44(10):3589–95.Google Scholar
Rodriguez, S, Wilkins, P, Dorny, P. Immunological and molecular diagnosis of cysticercosis. Pathog Glob Health. 2012;106(5):286–98.Google Scholar
Gavin, PJ, Shulman, ST. Raccoon roundworm (Baylisascaris procyonis). Pediatr Infect Dis J. 2003;22(7):651–2.Google Scholar
Lv, S, Zhou, X-N, Andrews, JR. Eosinophilic meningitis caused by angiostrongylus cantonensis. ACS Chem Neurosci. 2017;8(9):1815–16.Google Scholar
Tsang, VC, Wilkins, PP. Immunodiagnosis of schistosomiasis. Immunol Invest. 1997;26(1–2):175–88.Google Scholar

References

Gonzales, PR, Carroll, AJ, Korf, BR. Overview of clinical cytogenetics. Curr Protoc Hum Genet. 2016;89:8.1.1–8.1.13.Google Scholar
Hardisty, EE, Vora, NL. Advances in genetic prenatal diagnosis and screening. Curr Opin Pediatr. 2014;26(6):634–8.Google Scholar
Rhoads, GG, Jackson, LG, Schlesselman, SE, de la Cruz, FF, Desnick, RJ, Golbus, MS, et al. The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med. 1989;320(10):609–17.CrossRefGoogle ScholarPubMed
Cherry, A, Akkari, Y, Barr, K, Kearney, H, Rose, N, South, S et al. Diagnostic cytogenetic testing following positive noninvasive prenatal screening results: a clinical laboratory practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2017;19(8):845–50.Google Scholar
Srebniak, M, Van Opstal, D, Joosten, M, Diderich, K, de Vries, F, Riedijk, S et al. Whole-genome array as a first-line cytogenetic test in prenatal diagnosis. Ultrasound Obstet Gynecol. 2015;45(4):363–72.Google Scholar
Filipovic-Sadic, S, Sah, S, Chen, L, Krosting, J, Sekinger, E, Zhang, W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399408.Google Scholar
Kashork, CD, Theisen, A, Shaffwer, G. Diagnosis of cryptic chromosomal syndromes by fluorescence in situ hybridization (FISH). Curr Protoc Hum Genet. 2010;8.10.1–20.Google Scholar
Miller, DT, Adam, MP, Aradhya, S, Biesecker, LG, Brothman, AR, Carter, NP, et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.Google Scholar
Bi, W, Borgan, C, Pursley, AN, Hixson, P, Shaw, CA, Bacino, CA, et al. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med. 2013;15(6):450–7.Google Scholar
Kovacs, GG. (Ed.) Neuropathology of neurodegenerative diseases. A practical guide. Cambridge University Press; 2015.Google Scholar
Bartlett, JMS, Shaaban, A, Schmitt, F. (Eds.) Molecular Pathology. A practical guide for the surgical pathologist and cytopathologist. Cambridge University Press; 2015.Google Scholar

References

Tebani, A, Abily-Donval, L, Afonso, C, Marret, S, Bekri, S. Clinical metabolomics: the new metabolic window for inborn errors of metabolism investigations in the post-genomic era. Int J MolSci 2016;17(7):1167.Google Scholar
Costanzo, M, Zacchia, M, Bruno, G, Crisci, D, Caterino, M, Ruoppolo, M. Integration of proteomics and metabolomics in exploring genetic and rare metabolic diseases. Kidney Dis 2017;3:6677.Google Scholar
Waters, D, Adeloye, D, Woolham, D, Wastnedge, E, Patel, S, Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health 2018;8(2):021102.Google Scholar
Ferreira, CR, van Karnebeek, CDM, Vockley, J, Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med 2019;21(1):102–6.Google Scholar
Mak, CM, Lee, HC, Chan, AY, Lam, CW. Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci 2013; 50(6): 142–62.Google Scholar
Rice, GM, Steiner, RD. Inborn errors of metabolism (Metabolic disorders). Pediatr Rev 2016; 37(1):315.Google Scholar
Sandlers, Y. Amino acids profiling for the diagnosis of metabolic disorders. In: Clinical biochemistry – fundamentals of medical and laboratory science [monograph on the Internet]. London: IntertechOpen; 2019 [cited 2019 Apr 29]. Available from: www.intechopen.com/online-first/amino-acids-profiling-for-the-diagnosis-of-metabolic-disorders.Google Scholar
Genetics Home Reference. nlm.nih.gov [homepage on the Internet]. Bethesda: US National Library of Medicine [cited 2019 May 1]. Available from: https://ghr.nlm.nih.gov/condition/phenylketonuria#genes.Google Scholar
Shennar, HK, Al-Asmar, D, Kaddoura, A, Al-Fahoum, S. Diagnosis and clinical features of organic acidemias: a hospital-based study in a single center in Damascus, Syria. Qatar Med J 2015;2015(1):9.Google Scholar
Allen, SN. Urea cycle disorder. Mental Health Clinician 2013;2(12):398401.Google Scholar
Stone, WL, Basit, H, Adil, A. Glycogen storage disease [updated 2019 Apr 25]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019 Jan. Available from: www.ncbi.nlm.nih.gov/books/NBK459277/.Google Scholar
Guerrero, RB, Salazar, D, Tanpaiboon, P. Laboratory diagnostic approaches in metabolic disorders. Ann Transl Med 2018;6(24):470.Google Scholar
Vernon, HJ. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr 2015;169(8):778782.Google Scholar
Di Girolamo, F, Lante, I, Muraca, M, Putignani, L. The role of mass spectrometry in the “omics” era. Curr Org Chem 2013;17(23):2891–905.Google Scholar
Chace, DH, Kalas, TA, Naylor, EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003;49(11):177817.CrossRefGoogle ScholarPubMed
Pourfarzam, M, Zadhoush, F. Newborn Screening for inherited metabolic disorders; news and views. J Res Med Sci 2013;18(9):801–8.Google Scholar
Mittal, RD. Tandem mass spectroscopy in diagnosis and clinical research. Indian J Clin Biochem 2015;30(2):121–3.Google Scholar
Tebani, A, Afonso, C, Marret, S, Bekri, S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555.CrossRefGoogle Scholar
Ozben, T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. Clin Chem Lab Med 2013; 51(1): 157–76.Google Scholar
Therrell, BL Jr., Lloyd-Puryear, MA, Camp, KM, Mann, MY. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab 2014;113(1–2):1426.Google Scholar

References

Felgate, PD. Methods of analysis – initial testing. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:297314.Google Scholar
Polettini, A. Methods of analysis – confirmatory testing. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:315–20.Google Scholar
Jones, GR. Postmortem specimens. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:355360.Google Scholar
Dinis-Oliveira, RJ, Vieira, DN, Magalhães, T. Guidelines for collection of biological samples for clinical and forensic toxicological analysis. Forensic Sci Res. 2017;1(1):4251.CrossRefGoogle ScholarPubMed
Moody, DE. Immunoassays in forensic toxicology. In: Mayers, RA, ed. Encyclopedia of analytical chemistry. Wiley, Hoboken; 2006:134.Google Scholar
Tagliaro, F, Pascali, JP, Lewis, SW. Capillary electrophoresis in forensic chemistry. In: Houck, MM, ed. Forensic toxicology. Elsevier, London; 2018:4551.Google Scholar
Ramautar, R. Capillary electrophoresis-mass spectrometry for clinical metabolomics. Adv Clin Chem. 2016;74:134.Google Scholar
Kočová Vlčková, H, Pilařová, V, Svobodová, P, Plíšek, J, Švec, F, Nováková, L. Current state of bioanalytical chromatography in clinical analysis. Analyst. 2018 Mar. 12;143(6):13051325.Google Scholar
Lewis, SW, Lenehan, CE. Liquid and thin-layer chromatography. In: Houck, MM, ed. Forensic toxicology. Elsevier, London; 2018:61–6.Google Scholar
Polettini, A. Systematic toxicological analysis of drugs and poisons in biosamples by hyphenated chromatographic and spectroscopic techniques. J Chromatogr B Biomed Sci Appl. 1999;733(1–2):4763.Google Scholar
Lim, KF, Lewis, SW. Spectroscopic Techniques. In: Houck, MM, ed. Forensic toxicology. Elsevier, London: 2018:9199.Google Scholar
Wu, Y, Zhang, L, Jung, YM, Ozaki, Y. Two-dimensional correlation spectroscopy in protein science, a summary for the past 20 years. Spectrochim Acta A Mol Biomol Spectrosc. 2018;189:291–9.Google Scholar
Mogollón, NGS, Quiroz-Moreno, CD, Prata, PS, de Almeida, JR, Cevallos, AS, Torres-Guiérrez, R, Augusto, F. New advances in toxicological forensic analysis using mass spectrometry techniques. J Anal Methods Chem. 2018;2018:4142527.Google Scholar
Stauffer, E. Gas chromatography-mass spectrometry. In: Houck, MM, ed. Forensic Toxicology. Elsevier, London; 2018:7582.Google Scholar
Stone, JA, Fitzgerald, RL. Liquid chromatography-mass spectrometry education for clinical laboratory scientists. Clin Lab Med. 2018;38(3):527–37.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×