Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T07:53:39.583Z Has data issue: false hasContentIssue false

15 - Spectroscopy

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 395 - 408
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizpurua, J., Bryant, G.W., Richter, L. J., et al. 2005. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B, 71, 235420.CrossRefGoogle Scholar
Ajito, K., and Torimitsu, K. 2002. Single nanoparticle trapping using a Raman tweezers microscope. Appl. Spectrosc., 56, 541–4.CrossRefGoogle Scholar
Bálint, S., Kreuzer, M. P., Rao, S., et al. 2009. Simple route for preparing optically trappable probes for surface-enahnced Raman scattering. J. Phys. Chem. C, 113, 17724–9.CrossRefGoogle Scholar
Bjerneld, E. J., Svedberg, F., and Káll, M. 2003. Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett., 3, 593–6.CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C. 2010. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem. C, 114, 17267.CrossRefGoogle Scholar
Chan, J. W., Esposito, A. P., Talley, C. E., et al. 2004. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal. Chem., 76, 599–603.CrossRefGoogle ScholarPubMed
Chan, J. W., Winhold, H., Lane, S. M., and Huser, T. 2005. Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles. IEEE J. Sel. Top. Quant. Electron., 11, 858–63.CrossRefGoogle Scholar
Creely, C., Volpe, G., Singh, G., Soler, M., and Petrov, D. 2005. Raman imaging of floating cells. Opt. Express, 13, 6105–10.CrossRefGoogle ScholarPubMed
De Luca, A. C., Rusciano, G., Ciancia, R., et al. 2008. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers. Opt. Express, 16, 7943–57.CrossRefGoogle ScholarPubMed
Demtröder, W. 2003. Laser spectroscopy. Heidelberg, Germany: Springer Verlag.CrossRefGoogle Scholar
Dutto, F., Raillon, C., Schenk, K., and Radenovic, A. 2011. Nonlinear optical response in single alkaline niobate nanowires. Nano Lett., 11, 2517–21.CrossRefGoogle ScholarPubMed
Ferrari, A. C., and Basko, D. M. 2013. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnol., 8, 235–46.CrossRefGoogle ScholarPubMed
Ferrari, A. C., Meyer, J. C., Scardaci, V., et al. 2007. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 187401.Google Scholar
Ferraro, J. R., Nakamoto, K., and W., Brown C. 2003. Introductory Raman spectroscopy. Waltham, MA: Academic Press.Google Scholar
Fontes, A., Ajito, K., Neves, A. A. R., et al. 2005. Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system. Phys. Rev. E, 72, 012903.CrossRefGoogle Scholar
Gucciardi, P. G., Trusso, S., Vasi, C., Patanè, S., and Allegrini, M. 2007. Near-field Raman spectroscopy and imaging. Pages 287–329 of: Applied scanning probe methods V: Scanning probe microscopy techniques. Heidelberg, Germany: Springer Verlag.Google Scholar
Hamden, K. E., Bryan, B. A., Ford, P. W., et al. 2005. Spectroscopic analysis of Kaposi's sarcoma-associated herpesvirus infected cells by Raman tweezers. J. Virology Methods, 129, 145–51.CrossRefGoogle ScholarPubMed
Hartschuh, A., Pedrosa, H. N., Novotny, L., and Krauss, T. D. 2003. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science, 301, 1354–6.CrossRefGoogle ScholarPubMed
Hertel, T., Hagen, A., Talalaev, V., et al. 2005. Spectroscopy of single-and double-wall carbon nanotubes in different environments. Nano Lett., 5, 511–14.CrossRefGoogle ScholarPubMed
Huang, Y., Duan, X., and Lieber, C.M. 2005. Nanowires for integrated multicolor nanophotonics. Small, 1, 142–7.Google ScholarPubMed
Irrera, A., Artoni, P., Saija, R., et al. 2011. Size-scaling in optical trapping of silicon nanowires. Nano Lett., 11, 4879–84.CrossRefGoogle ScholarPubMed
Jorio, A., Saito, R., Hafner, J. H., et al. 2001. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett., 86, 1118–21.CrossRefGoogle ScholarPubMed
Kasim, J., Ting, Y., Meng, Y. Y., et al. 2008. Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express, 16, 7976–84.CrossRefGoogle ScholarPubMed
Kneipp, K., Moskovits, M., and Kneipp, H. 2006. Surface-enhanced Raman scattering. Berlin: Springer Verlag.CrossRefGoogle ScholarPubMed
Lamy de la Chapelle, M., and Pucci, A. 2013. Nanoantenna – Plasmon-enhanced spectroscopies for biotechnological applications. Singapore: Pan Stanford Publishing.CrossRefGoogle Scholar
Le Ru, E., and Etchegoin, P. 2008. Principles of surface-enhanced Raman spectroscopy. Amsterdam: Elsevier.Google Scholar
Lecler, S., Takakura, Y., and Meyrueis, P. 2005. Properties of a three-dimensional photonic jet. Opt. Lett., 30, 2641–3.CrossRefGoogle ScholarPubMed
Long, D. A. 2002. The Raman effect: A unified treatment of the theory of Raman scattering by molecules. New York: Wiley.CrossRefGoogle Scholar
Maier, S. A. 2007. Plasmonics: Fundamentals and applications. New York: Springer Verlag.CrossRefGoogle Scholar
Maker, P.D., and Terhune, R.W. 1965. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev., 137, A801–818.CrossRefGoogle Scholar
Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G., and Ferrari, A. C. 2013. Optical trapping and manipulation of nanostructures. Nature Nanotech., 8, 807–19.CrossRefGoogle ScholarPubMed
Maragò, Onofrio M., Bonaccorso, F., Saija, R., et al. 2010. Brownian motion of graphene. ACS Nano, 4, 7515–23.CrossRefGoogle ScholarPubMed
McDougall, C., Stevenson, D. J., Brown, C. T. A., Gunn-Moore, F., and Dholakia, K. 2009. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophoton., 2, 736–43.CrossRefGoogle ScholarPubMed
Messina, E., Cavallaro, E., Cacciola, A., et al. 2011. Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C, 115, 5115–22.CrossRefGoogle Scholar
Nakayama, Y., Pauzauskie, P. J., Radenovic, A., et al. 2007. Tunable nanowire nonlinear optical probe. Nature, 447, 1098–1101.CrossRefGoogle ScholarPubMed
O'Connell, M. J., Bachilo, S. M., Huffman, C. B., et al. 2002. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593–6.CrossRefGoogle ScholarPubMed
Ohlinger, A., Nedev, S., Lutich, A. A., and Feldman, J. 2011. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett., 11, 1770–4.CrossRefGoogle ScholarPubMed
Petrov, D. V. 2007. Raman spectroscopy of optically trapped particles. J. Opt. A Pure Appl. Opt., 9, S139–156.CrossRefGoogle Scholar
Prikulis, J., Svedberg, F., Käll, M., et al. 2004. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett., 4, 115–18.CrossRefGoogle Scholar
Prodan, E., Radloff, C., Halas, N. J., and Nordlander, P. 2003. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419–22.CrossRefGoogle ScholarPubMed
Rao, S., Raj, S., Balint, S., et al. 2010. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett., 96, 213701.CrossRefGoogle Scholar
Reece, P. J., Paiman, S., Abdul-Nabi, O., et al. 2009. Combined optical trapping and microphotoluminescence of single InP nanowires. Appl. Phys. Lett., 95, 101109.CrossRefGoogle Scholar
Rodgers, T., Shoji, S., Sekkat, Z., and Kawata, S. 2008. Selective aggregation of singlewalled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys. Rev. Lett., 101, 127402.CrossRefGoogle Scholar
Rusciano, G., De Luca, A. C., Sasso, A., and Pesce, G. 2006. Phase-sensitive detection in Raman tweezers. Appl. Phys. Lett., 89, 261116.CrossRefGoogle Scholar
Shi, K., Li, P., and Liu, Z. 2007. Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap. Appl. Phys. Lett., 90, 141116.CrossRefGoogle Scholar
Singh, G. P., Creely, C. M., Volpe, G., Grötsch, H., and Petrov, D. 2005. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy. Anal. Chem., 77, 2564–8.CrossRefGoogle ScholarPubMed
Stevenson, D., Agate, B., Tsampoula, X., et al. 2006. Femtosecond optical transfection of cells: Viability and efficiency. Opt. Express, 14, 7125–33.CrossRefGoogle Scholar
Svedberg, F., Li, Z., Xu, H., and Käll, M. 2006. Creating hot nanoparticle pairs for surfaceenhanced Raman spectroscopy through optical manipulation. Nano Lett., 6, 2639–41.CrossRefGoogle Scholar
Tan, P. H., Rozhin, A. G., Hasan, T., et al. 2007. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett., 99, 137402.CrossRefGoogle ScholarPubMed
Tan, S., Lopez, H. A., Cai, C. W., and Zhang, Y. 2004. Optical trapping of single-walled carbon nanotubes. Nano Lett., 4, 1415–19.CrossRefGoogle Scholar
Tang, H., Yao, H., Wang, G., et al. 2007. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers. Opt. Express, 15, 12708–16.CrossRefGoogle ScholarPubMed
Tong, L., Miljković, V. D., Johansson, P., and Käll, M. 2011. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett., 11, 4505–8.CrossRefGoogle Scholar
Wang, F., Reece, P. J., Paiman, S., et al. 2011. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett., 11, 4149–53.CrossRefGoogle ScholarPubMed
Wang, F., Toe, W. J., Lee, W. M., et al. 2013. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett., 13, 1185–91.Google Scholar
Willets, K. A., and Van Duyne, R. P. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267–97.CrossRefGoogle ScholarPubMed
Xie, C.,Dinno, M. A., and Li, Y. 2002. Near-infraredRaman spectroscopy of single optically trapped biological cells. Opt. Lett., 27, 249–51.CrossRefGoogle ScholarPubMed
Xie, C., Goodman, C., Dinno, M., and Li, Y.-Q. 2004. Real-time Raman spectroscopy of optically trapped living cells and organelles. Opt. Express, 12, 6208–14.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×