Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T09:58:40.663Z Has data issue: false hasContentIssue false

Chapter 10 - Optical coherence tomography and brain magnetic resonance imaging in multiple sclerosis

Published online by Cambridge University Press:  05 May 2015

Peter A. Calabresi
Affiliation:
Department of Neurology, Johns Hopkins University Hospital, Baltimore
Laura J. Balcer
Affiliation:
Department of Neurology, NYU Langone Medical Center, New York
Elliot M. Frohman
Affiliation:
Department of Neurology, UT Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, DW, Ellenberg, JH, Leventhal, CM, Reingold, SC, Rodriguez, M, Silberberg, DH. Revised estimate of the prevalence of multiple sclerosis in the united states. Ann Neurol 1992 Mar;31(3):333–6.CrossRefGoogle ScholarPubMed
Prineas, J. Pathology of multiple sclerosis. in Cook, S, ed. Handbook of Multiple Sclerosis In: New York: Marcel Dekker; 2001. p. 289324.Google Scholar
Frohman, EM, Racke, MK, Raine, CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 2006 Mar 2;354(9):942–55.CrossRefGoogle ScholarPubMed
Marburg, O. Die sogennate akute multiple sklerose. Jahrb Psychiatrie 1906;27:211312.Google Scholar
Putnam, T. Studies in multiple sclerosis. Arch Neurol Psych 1936;35:1289–308.CrossRefGoogle Scholar
van Waesberghe, JH, Kamphorst, W, De Groot, CJ, van Walderveen, MA, Castelijns, JA, Ravid, R, et al. Axonal loss in multiple sclerosis lesions: Magnetic resonance imaging insights into substrates of disability. Ann Neurol November 1999;46(5):747–54.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
De Stefano, N, Narayanan, S, Francis, GS, Arnaoutelis, R, Tartaglia, MC, Antel, JP, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol January 2001;58(1):6570.CrossRefGoogle ScholarPubMed
Compston, A, Coles, A. Multiple sclerosis. Lancet April 6, 2002;359(9313):1221–31.CrossRefGoogle ScholarPubMed
Miller, DH. Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis. NeuroRx April 2004;1(2):284–94.CrossRefGoogle ScholarPubMed
Minneboo, A, Uitdehaag, BM, Jongen, P, Vrenken, H, Knol, D, van Walderveen, MA, et al. Association between MRI parameters and the MS severity scale: A 12 year follow-up study. Multiple Sclerosis May 2009;15(5):632–7.CrossRefGoogle Scholar
Calabrese, M, Atzori, M, Bernardi, V, Morra, A, Romualdi, C, Rinaldi, L, et al. Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol September 2007;254(9):1212–20.CrossRefGoogle ScholarPubMed
Calabrese, M, Agosta, F, Rinaldi, F, Mattisi, I, Grossi, P, Favaretto, A, et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol September 2009;66(9):1144–50.CrossRefGoogle ScholarPubMed
Rawes, JA, Calabrese, VP, Khan, OA, DeVries, GH. Antibodies to the axolemma-enriched fraction in the cerebrospinal fluid and serum of patients with multiple sclerosis and other neurological diseases. Multiple Sclerosis December 1997;3(6):363–9.CrossRefGoogle Scholar
Madigan, MC, Rao, NS, Tenhula, WN, Sadun, AA. Preliminary morphometric study of tumor necrosis factor-alpha (TNF alpha)-induced rabbit optic neuropathy. Neurol Res June 1996;18(3):233–6.Google ScholarPubMed
Shindler, KS, Ventura, E, Dutt, M, Rostami, A. Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp Eye Res September 2008;87(3):208–13.CrossRefGoogle ScholarPubMed
Frischer, JM, Bramow, S, Dal-Bianco, A, Lucchinetti, CF, Rauschka, H, Schmidbauer, M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain May 2009;132(Pt 5):1175–89.CrossRefGoogle ScholarPubMed
Kappos, L, Moeri, D, Radue, EW, Schoetzau, A, Schweikert, K, Barkhof, F, et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: A meta-analysis. gadolinium MRI meta-analysis group. Lancet March 20, 1999;353(9157):964–9.CrossRefGoogle ScholarPubMed
Fisniku, LK, Brex, PA, Altmann, DR, Miszkiel, KA, Benton, CE, Lanyon, R, et al. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain March 2008;131(Pt 3):808–17.CrossRefGoogle ScholarPubMed
De Stefano, N, Matthews, PM, Fu, L, Narayanan, S, Stanley, J, Francis, GS, et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. results of a longitudinal magnetic resonance spectroscopy study. Brain August 1998;121 ( Pt 8)(Pt 8):1469–77.CrossRefGoogle ScholarPubMed
Fisher, E, Rudick, RA, Simon, JH, Cutter, G, Baier, M, Lee, JC, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology November 12, 2002;59(9):1412–20.CrossRefGoogle ScholarPubMed
Calabrese, M, De Stefano, N, Atzori, M, Bernardi, V, Mattisi, I, Barachino, L, et al. Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol October 2007;64(10):1416–22.CrossRefGoogle ScholarPubMed
Inglese, M, Oesingmann, N, Casaccia, P, Fleysher, L. Progressive multiple sclerosis and gray matter pathology: An MRI perspective. Mt Sinai J Med March–April 2011;78(2):258–67.CrossRefGoogle ScholarPubMed
Simon, JH. Brain atrophy in multiple sclerosis: What we know and would like to know. Multiple Sclerosis December 2006;12(6):679–87.CrossRefGoogle ScholarPubMed
Lucchinetti, CF, Popescu, BF, Bunyan, RF, Moll, NM, Roemer, SF, Lassmann, H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med December 8, 2011;365(23):2188–97.CrossRefGoogle ScholarPubMed
Brownell, B, Hughes, JT. The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry November 1962;25:315–20.CrossRefGoogle ScholarPubMed
Lumsden, C. The neuropathology of multiple sclerosis. In: Vinken, PJ, bruyn, GW, eds. Handbook of Clinical Neurology. Amsterdam: Elsevier; 1970. pp. 217309.Google Scholar
Bo, L, Vedeler, CA, Nyland, HI, Trapp, BD, Mork, SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol July 2003;62(7):723–32.CrossRefGoogle ScholarPubMed
Moll, NM, Rietsch, AM, Ransohoff, AJ, Cossoy, MB, Huang, D, Eichler, FS, et al. Cortical demyelination in PML and MS: Similarities and differences. Neurology January 29, 2008;70(5):336–43.CrossRefGoogle ScholarPubMed
Lovato, L, Willis, SN, Rodig, SJ, Caron, T, Almendinger, SE, Howell OW, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain. February 2011;134(Pt 2):534–41.CrossRefGoogle Scholar
Oh, J, Zackowski, K, Chen, M, Newsome, S, Saidha, S, Smith, SA, et al. Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis. Multiple Sclerosis. April 2013;19(4):427–35.CrossRefGoogle ScholarPubMed
Filippi, M, Rocca, MA, De Stefano, N, Enzinger, C, Fisher, E, Horsfield, MA, et al. Magnetic resonance techniques in multiple sclerosis: The present and the future. Arch Neurol December 2011;68(12):1514–20.CrossRefGoogle ScholarPubMed
Saidha, S, Syc, SB, Ibrahim, MA, Eckstein, C, Warner, CV, Farrell, SK, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain February 2011;134(Pt 2):518–33.CrossRefGoogle ScholarPubMed
Saidha, S, Syc, SB, Durbin, MK, Eckstein, C, Oakley, JD, Meyer, SA, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multiple Sclerosis. August 24, 2011;CrossRefGoogle Scholar
Syc, SB, Saidha, S, Newsome, SD, Ratchford, JN, Levy, M, Ford, E, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain October 17, 2011;CrossRefGoogle Scholar
Seigo, MA, Sotirchos, ES, Newsome, S, Babiarz, A, Eckstein, C, Ford, E, et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol March 15, 2012;CrossRefGoogle Scholar
Frohman, EM, Fujimoto, JG, Frohman, TC, Calabresi, PA, Cutter, G, Balcer, LJ. Optical coherence tomography: A window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol December 2008;4(12):664–75.CrossRefGoogle ScholarPubMed
Saidha, S, Eckstein, C, Ratchford, JN. Optical coherence tomography as a marker of axonal damage in multiple sclerosis. CML – Multiple Sclerosis 2010;2(2):3343.Google Scholar
Toussaint, D, Perier, O, Verstappen, A, Bervoets, S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol September 1983;3(3):211–20.Google ScholarPubMed
Ikuta, F, Zimmerman, HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the united states. Neurology June 1976; 26(6 PT 2): 26–8.CrossRefGoogle ScholarPubMed
Green, AJ, McQuaid, S, Hauser, SL, Allen, , Lyness, R. Ocular pathology in multiple sclerosis: Retinal atrophy and inflammation irrespective of disease duration. Brain April 21, 2010;133(6):1591–601.CrossRefGoogle ScholarPubMed
Kerrison, JB, Flynn, T, Green, WR. Retinal pathologic changes in multiple sclerosis. Retina 1994;14(5):445–51.CrossRefGoogle ScholarPubMed
Naismith, RT, Xu, J, Tutlam, NT, Trinkaus, K, Cross, AH, Song, SK. Radial diffusivity in remote optic neuritis discriminates visual outcomes. Neurology May 25, 2010;74(21):1702–10.CrossRefGoogle ScholarPubMed
Talman, LS, Bisker, ER, Sackel, DJ, Long, DA, Galetta, KM, Ratchford, JN, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol June 2010;67(6):749–60.CrossRefGoogle ScholarPubMed
Papakostopoulos, D, Fotiou, F, Hart, JC, Banerji, NK. The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr Clin Neurophysiol January–February 1989;74(1):110.CrossRefGoogle ScholarPubMed
Forooghian, F, Sproule, M, Westall, C, Gordon, L, Jirawuthiworavong, G, Shimazaki, K, et al. Electroretinographic abnormalities in multiple sclerosis: Possible role for retinal autoantibodies. Doc Ophthalmol September 2006;113(2):123–32.CrossRefGoogle ScholarPubMed
Gundogan, FC, Demirkaya, S, Sobaci, G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis? – A structural and functional evaluation. Invest Ophthalmol Vis Sci December 2007;48(12):5773–81.CrossRefGoogle ScholarPubMed
Gills, JP Electroretinographic abnormalities and advanced multiple sclerosis. Invest Ophthalmol December 1966;5(6):555–9.Google ScholarPubMed
Gelfand, JM, Nolan, R, Schwartz, DM, Graves, J, Green, AJ. Microcystic macular edema in multiple sclerosis is associated with disease severity. Brain June 2012;135(Pt 6):1786–93.CrossRefGoogle ScholarPubMed
Saidha, S, Sotirchos, ES, Ibrahim, MA, Crainiceanu, CM, Gelfand, JM, Sepah, YJ, et al. Microcystic macular edema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: A retrospective study. Lancet Neurol November 2012;11(11):963–72.CrossRefGoogle ScholarPubMed
Brar, M, Yuson, R, Kozak, I, Mojana, F, Cheng, L, Bartsch, DU, et al. Correlation between morphologic features on spectral-domain optical coherence tomography and angiographic leakage patterns in macular edema. Retina March 2010;30(3):383–9.CrossRefGoogle ScholarPubMed
Sotirchos, ES, Saidha, S, Byraiah, G, Mealy, MA, Ibrahim, MA, Sepah, YJ, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology April 9, 2013;80(15):1406–14.CrossRefGoogle ScholarPubMed
Kaufhold, F, Zimmermann, H, Schneider, E, Ruprecht, K, Paul, F, Oberwahrenbrock, T, et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One August 6, 2013;8(8):e71145.CrossRefGoogle ScholarPubMed
Barboni, P, Carelli, V, Savini, G, Carbonelli, M, La Morgia, C, Sadun, AA. Microcystic macular degeneration from optic neuropathy: Not inflammatory, not trans-synaptic degeneration. Brain July 2013;136(Pt 7):e239.CrossRefGoogle Scholar
Wolff, B, Basdekidou, C, Vasseur, V, Mauget-Faysse, M, Sahel, JA, Vignal, C. Retinal inner nuclear layer microcystic changes in optic nerve atrophy: A novel spectral-domain OCT finding. Retina November–December 2013;33(10):2133–8.CrossRefGoogle ScholarPubMed
Gills, JP, Wadsworth, JA. Degeneration of the inner nuclear layer of the retina following lesions of the optic nerve. Trans Am Ophthalmol Soc 1966;64:6688.Google ScholarPubMed
Engell, T, Hvidberg, A, Uhrenholdt, A. Multiple sclerosis: Periphlebitis retinalis et cerebro-spinalis. A correlation between periphlebitis retinalis and abnormal technetium brain scintigraphy. Acta Neurol Scand May 1984;69(5):293–7.CrossRefGoogle ScholarPubMed
Sepulcre, J, Murie-Fernandez, M, Salinas-Alaman, A, Garcia-Layana, A, Bejarano, B, Villoslada, P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology May 2007;68(18):1488–94.CrossRefGoogle ScholarPubMed
Ortiz-Perez, S, Martinez-Lapiscina, EH, Gabilondo, I, Fraga-Pumar, E, Martinez-Heras, E, Saiz, A, et al. Retinal periphlebitis is associated with multiple sclerosis severity. Neurology. September 3, 2013;81(10):877–81.CrossRefGoogle ScholarPubMed
Donaldson, MJ, Pulido, JS, Herman, DC, Diehl, N, Hodge, D. Pars planitis: A 20-year study of incidence, clinical features, and outcomes. Am J Ophthalmol December 2007;144(6):812–7.CrossRefGoogle ScholarPubMed
Gordon-Lipkin, E, Chodkowski, B, Reich, DS, Smith, SA, Pulicken, M, Balcer, LJ, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology October 16, 2007;69(16):1603–9.CrossRefGoogle ScholarPubMed
Grazioli, E, Zivadinov, R, Weinstock-Guttman, B, Lincoff, N, Baier, M, Wong, JR, et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci May 15, 2008;268(1–2):12–7.CrossRefGoogle ScholarPubMed
Siger, M, Dziegielewski, K, Jasek, L, Bieniek, M, Nicpan, A, Nawrocki, J, et al. Optical coherence tomography in multiple sclerosis: Thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol October 2008;255(10):1555–60.CrossRefGoogle ScholarPubMed
Dorr, J, Wernecke, KD, Bock, M, Gaede, G, Wuerfel, JT, Pfueller, CF, et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One April 8, 2011;6(4):e18132.CrossRefGoogle ScholarPubMed
Reich, DS, Smith, SA, Gordon-Lipkin, EM, Ozturk, A, Caffo, BS, Balcer, LJ, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol August 2009;66(8):9981006.CrossRefGoogle Scholar
Pfueller, CF, Brandt, AU, Schubert, F, Bock, M, Walaszek, B, Waiczies, H, et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One April 6, 2011;6(4):e18019.CrossRefGoogle ScholarPubMed
Syc, SB, Warner, CV, Hiremath, GS, Farrell, SK, Ratchford, JN, Conger, A, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Multiple Sclerosis. July 2010;16(7):829–39.CrossRefGoogle ScholarPubMed
Warner, CV, Syc, SB, Stankiewicz, AM, Hiremath, G, Farrell, SK, Crainiceanu, CM, et al. The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. PLoS One 2011;6(8):e22947.CrossRefGoogle ScholarPubMed
Young, KL, Brandt, AU, Petzold, A, Reitz, LY, Lintze, F, Paul, F, et al. Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol. May 2013;20(5):803–11.CrossRefGoogle Scholar
Zimmermann, H, Freing, A, Kaufhold, F, Gaede, G, Bohn, E, Bock, M, et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Multiple Sclerosis April 2013;19(4):443–50.CrossRefGoogle ScholarPubMed
Saidha, S, Sotirchos, ES, Oh, J, Syc, SB, Seigo, MA, Shiee, N, et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol January 2013;70(1):3443.CrossRefGoogle ScholarPubMed
Gabilondo, I, Martinez-Lapiscina, EH, Martinez-Heras, E, Fraga-Pumar, E, Llufriu, S, Ortiz, S, et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol October 2, 2013;Google Scholar
Shiee, N, Bazin, PL, Zackowski, KM, Farrell, SK, Harrison, DM, Newsome, SD, et al. Revisiting brain atrophy and its relationship to disability in multiple sclerosis. PLoS One 2012;7(5):e37049CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×