Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:27:23.421Z Has data issue: false hasContentIssue false

3 - Physical and chemical changes in the ocean over basin-wide zones and decadal or longer time-scales: perspectives on current and future conditions

Published online by Cambridge University Press:  05 May 2015

Gunnar Kullenberg
Affiliation:
University of Gothenburg
Eddy Carmack
Affiliation:
American Geophysical Institute
Kenneth Denman
Affiliation:
University of Victoria
Salvatore Aricò
Affiliation:
United Nations Educational, Scientific and Cultural Organization (UNESCO), France
Get access

Summary

3.1 Introduction

Comprehensive international research programmes and reviews have firmly established that human activities are substantially impacting the total environment, including the ocean, and are triggering global and regional changes in the physical, chemical, and biological conditions which affect ecosystems and human societies. These programmes include the International Geosphere–Biosphere Programme (IGBP), the Large Marine Ecosystem Programme (LME), activities of the Intergovernmental Oceanographic Commission (IOC) and World Heritage Convention of UNESCO, as well as integrated assessments of the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Environment Programme (Kullenberg, 2010; Clarke, 2010).

As a consequence of the growing needs of the increasing human population, diverse pressures on the marine environment have increased markedly over past decades. These include offshore oil and gas exploration and exploitation (e.g. into deeper and more hazardous areas of the Arctic Basin), expansion of fisheries into new areas (e.g. the Southern Ocean krill fisheries), transportation and shipping (e.g. across previously ice-covered areas of the Arctic Basin), offshore extraction of renewable energy, aquaculture production, enhanced use of the coastal zone for urbanization, land reclamation, infrastructure installations, ports and transportation, and recreation and tourism. Taken together these factors constitute a global change parallel to the population growth since the 1950s, with large consequences for our physical environment. However, what of all these factors constitutes significant change? Carmack and McLaughlin (2011) conclude that ‘changes in the physical environment are considered significant when they affect the biosphere, including humans’. This definition agrees in principle with the IGBP and LME approach. Observations and model simulations show that impacts of climate change on the ocean include the redistribution of oceanic water mass boundaries and habitats, and identify the need for time-series observations over a wide range of ocean zones that will permit science-informed policy decisions.

In the present chapter we briefly summarize documented changes and variations in the physical, chemical, and biological nature of the marine environment over basin-wide zones and decadal or longer time-scales, omitting any in-depth analysis of possible consequences for biology and the ecosystem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, R. T. (2007). Picoplankton do some heavy lifting. Science 315: 777–778. doi: 10.1126/science.1137438.CrossRefGoogle ScholarPubMed
Beaugrand, G., Luczak, C., and Edwards, M. (2009). Rapid biogeographical plankton shifts in the North Atlantic Ocean. Global Change Biology 15: 1790–1803.Google Scholar
Bindoff, N. L., Willebrand, J., Artale, V., et al. (2007). Observations: Oceanic climate change and sea level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge: Cambridge University Press, pp. 385–428.Google Scholar
Carmack, E. C. (2007). The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Research Part II: Tropical Studies Oceanography 54(23–26): 2574–2598.CrossRefGoogle Scholar
Carmack, E. and McLaughlin, F. (2011). Towards recognition of physical and geochemical change in sub-Arctic and Arctic Seas. Progress in Oceanography 90(1–4): 90–104.CrossRefGoogle Scholar
Carmack, E. and Melling, H. (2011). Cryosphere: Warmth from the deep. Nature Geoscience 4(1): 7–8.CrossRefGoogle Scholar
Carmack, E. C., McLaughlin, F., Vagle, S., et al. (2010). Structures and property distributions in the three oceans surrounding Canada in 2007: A basis for a long-term ocean climate monitoring strategy. Atmosphere–Ocean 48(4): 211–224.CrossRefGoogle Scholar
Cermeño, P. and Falkowski, P. G. (2009). Controls on diatom biogeography in the ocean. Science 325(5947): 1539–1541. doi: 10.1126/science.1174159.CrossRefGoogle ScholarPubMed
Chavez, F. P., Ryan, J., Lluch-Cota, S., and Ñiquen, M. C. (2003). From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299: 217–221.CrossRefGoogle ScholarPubMed
Chua, T.-E., Kullenberg, G., and Bonga, D. (eds.) (2008). Securing the Oceans: Essays on Ocean Governance – Global and Regional Perspectives. Quezon City: GEF-UNDP-IMO Regional Programme on Building Partnerships in Environmental Management for the Seas of East Asia (PEMSEA) and the Nippon Foundation, 770 pp.Google Scholar
Church, J. (2006). Global sea levels: Past, present and future. In: IOC Annual Report No. 13, 8–16. Paris: UNESCO.Google Scholar
Church, J. A. and White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32: 585–602.CrossRefGoogle Scholar
Church, J. A., White, N. J., Konikow, L. F., et al. (2011). Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601. doi: 10.1029/2011GL048794.CrossRefGoogle Scholar
Clarke, A. (2010). The development of ocean climate programmes. In: Troubled Waters: Ocean Science and Governance. Holland, G. and Pugh, D. (eds.). Cambridge: Cambridge University Press, pp. 96–111.Google Scholar
Curry, R. G. and McCartney, M. S. (2001). Ocean gyre circulation changes associated with the North Atlantic oscillation. J. Phys. Oceanogr. 31: 3374–3400.2.0.CO;2>CrossRefGoogle Scholar
Curry, R. G., Dickson, R., and Yashayaev, I. (2003). A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426: 826–829.CrossRefGoogle ScholarPubMed
Danovaro, R., Gambi, C., Dell'Anno, A., et al. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 18: 1–8.CrossRefGoogle ScholarPubMed
Denman, K., Christian, J. R., Steiner, N., et al. (2011). Potential impacts of future ocean acidification on marine ecosystems and fisheries: Current knowledge and recommendations for future research. ICES Journal of Marine Science 68: 1019–1029.CrossRefGoogle Scholar
Di Lorenzo, E., Schneider, N., Cobb, K. M., et al. (2008). North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607. doi: 10.1029/2007GL032838.CrossRefGoogle Scholar
Diaz, R. J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle ScholarPubMed
Durack, P. J. and Wijffels, S. E. (2010). Fifty year trends in global ocean salinities and their relationship to broad scale warming. J. Clim. 23: 4342–4362.CrossRefGoogle Scholar
Feely, R. A., Sabine, C. L., Lee, K., et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366.CrossRefGoogle ScholarPubMed
Field, J. G., Hempel, G., and Summerhayes, C. P. (eds.) (2002). Oceans 2020: Science, Trends and the Challenge of Sustainability. Washington DC: Island Press, 296 pp.Google Scholar
Fulton, E. A. (2010). Approaches to end-to-end ecosystem models. Journal of Marine Systems 81: 171–183.CrossRefGoogle Scholar
Gregory, J. M., Church, J. A., Boer, G. J., et al. (2001). Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Climate Dynamics 18: 225–240.CrossRefGoogle Scholar
Guiot, J., Pons, A., de Beaulieu, J. L., and Reille, M. (1989). A 140,000-year continental climate reconstruction from two European pollen records. Nature 338: 309–313.CrossRefGoogle Scholar
Hansen, B., Stefánsson, U., and Svendsen, E. (1998). Iceland, Faroe and Norwegian Coasts. In: The Global Coastal Ocean. Regional Studies and Syntheses. Robinson, A. R. and Brink, K. H. (eds.). The Sea: Ideas and Observations on Progress in the Study of the Seas, 11. New York: John Wiley & Sons, pp. 733–758.Google Scholar
Held, I. M. and Soden, B. J. (2006). Robust response of the hydrological cycle to global warming. J. Climate 19: 5686–5699.CrossRefGoogle Scholar
Hilborn, R. (1996). Risk analysis in fisheries and natural resource management. Human Ecology and Risk Assessment 2: 655–659.Google Scholar
Hoskins, B. J. and Hodges, K. I. (2002). New perspectives on the Northern Hemisphere winter storm tracks. Journal of the Atmospheric Sciences 59(6): 1041–1061.2.0.CO;2>CrossRefGoogle Scholar
Jansen, E., Overpeck, J., Briffa, K. R., et al. (2007). Palaeoclimate. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge: Cambridge University Press, pp. 433–497.Google Scholar
Johnson, G. C. and Wijffels, S. E. (2011). Ocean density change contributions to sea level rise. Oceanography 24: 112–121.CrossRefGoogle Scholar
Kabel, K., Moros, M., Porsche, C., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1000 years. Nature Climate Change 2(12): 871–874.CrossRefGoogle Scholar
Kopp, R. E., Simons, F. J., Mitrovica, J. X., et al. (2009). Probabilistic assessment of sea level during the last interglacial stage. Nature 462: 863–868.CrossRefGoogle ScholarPubMed
Kullenberg, G. (1970). On the oxygen deficit in the Baltic deep water. Tellus 22(3): 357.CrossRefGoogle Scholar
Kullenberg, G. (1983). The Baltic Sea. In: Ecosystems of the World 26: Estuaries and Enclosed Seas. Ketchum, B. H. (ed.). Amsterdam–Oxford–New York: Elsevier, pp. 309–335.Google Scholar
Kullenberg, G. (2010). Ocean science, an overview. In: Troubled Waters: Ocean Science and Governance. Holland, G. and Pugh, D. (eds.). Cambridge: Cambridge University Press.Google Scholar
Latif, M. and Meincke, J. (2001). Changes in the North Atlantic. In: Climate of the 21st Century: Changes and Risks. Lozän, J. L., Graßl, H., and Hupfer, P. (eds.). Hamburg: Wissenschaftliche Auswertungen, pp. 196–198.Google Scholar
Le Quéré, C., Rodenbeck, C., Buitenhuis, E. T., et al. (2008). Response to comments on ‘Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change’. Science 319: 570. doi: 10.1126/science.1147315.CrossRefGoogle Scholar
Le Quéré, C., Andres, R. J., Boden, T., et al. (2012). The global carbon budget 1959–2011. Earth Syst. Sci. Data Discuss. 5: 1107–1157. doi: 10.5194/essdd-5-1107-2012, 2012.CrossRefGoogle Scholar
Lemke, P., Ren, J., Alley, R. B., et al. (2007). Observations: Changes in snow, ice and frozen ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge: Cambridge University Press, pp. 337–383.Google Scholar
Levitus, S., Antonov, J. I., Boyer, T. P., et al. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters 39, L10603. doi: 10.1029/2012GL051106.Google Scholar
Li, W. K. W., McLaughlin, F. A., Lovejoy, C., et al. (2009). Smallest algae thrive as the Arctic Ocean freshens. Science 326: 539.CrossRefGoogle ScholarPubMed
Loeng, H., Brander, K., Carmack, E., et al. (2005). Marine systems. In: Arctic Climate Impact Assessment, ACIA. Symon, C., Arris, L., and Head, B. (eds.). Cambridge: Cambridge University Press, pp. 453–538.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., et al. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78: 1069–1079.2.0.CO;2>CrossRefGoogle Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., et al. (2007). Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge: Cambridge University Press, pp. 747–845.Google Scholar
Moloney, C. L., St John, M. A., Denman, K. L., et al. (2011). Weaving marine food webs from end to end under global change. Journal of Marine Systems 84: 106–116.CrossRefGoogle Scholar
Nicholls, R. J., Marinova, N., Lowe, J. A., et al. (2011). Sea-level rise and its possible impacts given a ‘beyond 4 degrees C world’ in the twenty-first century. Philosophical Transactions of the Royal Society A – Mathematical, Physical and Engineering Sciences 369: 161–181.CrossRefGoogle Scholar
North, G. R. and Duce, R. A. (2002). Climate change and the ocean. In: Oceans 2020: Science, Trends and the Challenge of Sustainability. Field, J. G., Hempel, G., and Summerhayes, C. P. (eds.). Washington DC: Island Press, pp. 85–108.Google Scholar
Occhipinti-Ambrogi, A. (2007). Global change and marine communities: Alien species and climate change. Mar. Pollut. Bull. 55(7–9): 342–352. doi: 10.1016/j.marpolbul.2006.11.014.CrossRefGoogle ScholarPubMed
Payne, J. L. and Clapham, M. E. (2012). End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? In: Annual Review of Earth and Planetary Sciences Vol. 40. Jeanloz, R. (ed.). pp. 89–111. doi: 10.1146/annurev-earth-042711-105329.CrossRef
Petit, J. R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
Pörtner, H. O. and Farrell, A. P. (2008). Ecology: Physiology and climate change. Science 322(5902): 690–692. doi: 10.1126/science.1163156.CrossRefGoogle ScholarPubMed
Proshutinsky, A., Krishfield, R., Timmermans, M.-L., et al. (2009). Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res. 114. doi: 10.1029/2008jc005104.CrossRefGoogle Scholar
Rahmstorf, S., Foster, G., and Cazenave, A. (2012). Comparing climate projections to observations up to 2011. Environmental Research Letters 7. doi: 10.1088/1748–9326/7/4/044035.CrossRefGoogle Scholar
Rayner, N. A., Brohan, P., Parker, D. E., et al. (2006). Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. Journal of Climate 19: 446–469.CrossRefGoogle Scholar
Robinson, A. R. and Brink, K. H. (eds.) (1998). The Global Coastal Ocean. Regional Studies and Syntheses. The sea: Ideas and observations on progress in the study of the seas, 11. New York: John Wiley & Sons, 1062 pp.Google Scholar
Roemmich, D. and Gilson, J. (2009). The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progr. Oceanogr. 82: 81–100.CrossRefGoogle Scholar
Rogers, A. D. and Laffoley, D. A. (2011). International Earth System Expert Workshop on Ocean Stresses and Impacts. Summary Report. Oxford: IPSO, 18 pp.Google Scholar
Royer, T. C. and Stabeno, P. J. (1998). Polar ocean boundaries. In: The Global Coastal Ocean. Regional Studies and Syntheses. Robinson, A. R. and Brink, K. H. (eds.). The sea: Ideas and observations on progress in the study of the seas, 11. New York: John Wiley & Sons, pp. 69–78.Google Scholar
Sabine, C. L., Feely, R. A., Gruber, N., et al. (2004). The oceanic sink for anthropogenic CO2. Science 305: 367–371.CrossRefGoogle ScholarPubMed
Sarmiento, J. L., Slater, R., Barber, R., et al. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18, GB 3003: 1–23.CrossRefGoogle Scholar
Schanze, J. J., Schmitt, R. W., and Yu, L. L. 2010. The global oceanic freshwater cycle: A state-of-the-art quantification. J. Marine Res. 68: 569–595.CrossRefGoogle Scholar
Schmitt, R. (2008). Salinity and the global water cycle. Oceanography 21: 12–19.CrossRefGoogle Scholar
Shepherd, A., Ivins, E. R., Geruo, A., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science 338: 1183–1189.CrossRefGoogle ScholarPubMed
Sherman, K., Aquarone, M. C., and Adams, S. (eds.) (2009). Sustaining the World';s Large Marine Ecosystems. Gland: IUCN, 140 pp.Google Scholar
Steinacher, M., Joos, F., Frolicher, T. L., et al. (2009). Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6: 515–533.CrossRefGoogle Scholar
Stock, C. A., Alexander, M. A., Bond, N. A., et al. (2011). On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography 88: 1–27.CrossRefGoogle Scholar
Stommel, H. (1958). The Gulf Stream: A Physical and Dynamical Description. Berkeley and Los Angeles: University of California Press and London: Cambridge University Press, 202 pp.Google Scholar
Stramma, L., Johnson, G. C., Sprintall, J., et al. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science 320: 655–658.CrossRefGoogle ScholarPubMed
Tang, Q. (2009). Changing states of the Yellow Sea Large Marine Ecosystem: Anthropogenic forcing and climate impacts. In: Sustaining the World's Large Marine Ecosystems. Sherman, K., Aquarone, M. C., and Adams, S. (eds.). Gland: IUCN, pp. 77–88.Google Scholar
US National Snow and Ice Data Center (2012). Arctic Sea Ice News and Analysis, Monthly Archives, September 2012,http://nsidc.org/arcticseaicenews/2012/09/.
US Ocean Carbon and Biogeochemistry (OCB) Program, the European Project on Ocean Acidification (EPOCA) and the UK Ocean Acidification Research Programme (UKOA) 2010 (and further update). Frequently Asked Questions About Ocean Acidification, www.whoi.edu/website/OCB-OA/FAQs.
Vermeer, M. and Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America 106: 21527–21532.CrossRefGoogle ScholarPubMed
Voituriez, B. (2003). The Changing Ocean: Its Effects on Climate and Living Resources. IOC Ocean Forum Series 4. Paris: UNESCO Publishing, 170 pp.Google Scholar
Wassmann, P., Duarte, C. M., Agusti, S., et al. (2011). Footprints of climate change in the Arctic marine ecosystem. Global Change Biol. 17(2): 1235–1249.CrossRefGoogle Scholar
Wefer, G. and Berger, W. H. (2001). Causes of climate change in the Quaternary. In: Climate of the 21st Century: Changes and Risks. Lozän, J. L., Graßl, H., and Hupfer, P. (eds.). Hamburg: Wissenschaftliche Auswertungen, pp. 61–64.Google Scholar
Yamagata, T., Behera, S. K., Luo, J.-J., et al. (2004). Coupled ocean–atmosphere variability in the tropical Indian Ocean. Geophysical Monograph Series 147: 189–211.Google Scholar
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., et al. (2009). Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 326: 1098–1100.CrossRefGoogle ScholarPubMed
Yu, L. (2011). A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research 116, C10025. doi: 10.1029/2010JC006937.CrossRefGoogle Scholar
Zebiak, S. E. (1989). Oceanic heat content variability and El Niño cycles. J. Phys. Oceanogr. 19: 475–486.2.0.CO;2>CrossRefGoogle Scholar
Zeebe, R. E. (2012). History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. In: Annual Review of Earth and Planetary Sciences Vol. 40. Jeanloz, R. (ed.). 141–165.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×