Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T21:11:00.957Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 February 2021

Thomas W. Baumgarte
Affiliation:
Bowdoin College, Maine
Stuart L. Shapiro
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aasi, J. et al. (The LIGO, VIRGO and NINJA-2 Collaborations) (2014). The NINJA-2 project: Detecting and characterizing gravitational waveforms modeled using numerical binary black hole simulations. Class. Quantum Grav. 31, 115004.CrossRefGoogle Scholar
Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016a). Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102.Google Scholar
Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016b). Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102.Google Scholar
Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017). GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101.Google Scholar
Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2018). GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040.Google Scholar
Ajith, P., Babak, S., Chen, Y., Hewitson, M., Krishnan, B., Sintes, A. M., Whelan, J. T., Brügmann, B., Diener, P., Dorband, N., Gonzalez, J., Hannam, M., Husa, S., Pollney, D., Rezzolla, L., Santamaría, L., Sperhake, U., and Thornburg, J. (2008). Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries. Phys. Rev. D 77, 104017.CrossRefGoogle Scholar
Ajith, P., Boyle, M., Brown, D. A., Brügmann, B., Buchman, L. T., Cadonati, L., Campanelli, M., Chu, T., Etienne, Z. B., Fairhurst, S., Hannam, M., Healy, J., Hinder, I., Husa, S., Kidder, L. E., Krishnan, B., Laguna, P., Liu, Y. T., London, L., Lousto, C. O., Lovelace, G., MacDonald, I., Marronetti, P., Mohapatra, S., Mösta, P., Müller, D., Mundim, B. C., Nakano, H., Ohme, F., Paschalidis, V., Pekowsky, L., Pollney, D., Pfeiffer, H. P., Ponce, M., Pürrer, M., Reifenberger, G., Reisswig, C., Santamaría, L., Scheel, M. A., Shapiro, S. L., Shoemaker, D., Sopuerta, C. F., Sperhake, U., Szilágyi, B., Taylor, N. W., Tichy, W., Tsatsin, P., and Zlochower, Y. (2012). The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Class. Quantum Grav. 29, 124001.Google Scholar
Ajith, P., Hannam, M., Husa, S., Chen, Y., Brügmann, B., Dorband, N., Müller, D., Ohme, F., Pollney, D., Reisswig, C., Santamaría, L., and Seiler, J. (2011). Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Phys. Rev. Lett. 106, 241101.Google Scholar
Albrecht, A. and Steinhardt, P. J. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220.Google Scholar
Alcubierre, M. (2008). Introduction to 3+1 Numerical Relativity. Oxford University Press, New York.Google Scholar
Alcubierre, M. and Brügmann, B. (2001). Simple excision of a black hole in 3+1 numerical relativity. Phys. Rev. D 63, 104006.CrossRefGoogle Scholar
Alcubierre, M., Brügmann, B., Diener, P., Koppitz, M., Pollney, D., Seidel, E., and Takahashi, R. (2003). Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023.Google Scholar
Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., and Palenzuela, C. (2012). Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040.Google Scholar
Ansorg, M., Brügmann, B., and Tichy, W. (2004). Single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011.CrossRefGoogle Scholar
Arnowitt, R., Deser, S., and Misner, C. W. (1962). The dynamics of general relativity. In L. Witten (ed.), Gravitation: An Introduction to Current Research, pp. 227. Wiley, New York. Also available at gr-qc/0405109.Google Scholar
Aylott, B., Baker, J. G., Boggs, W. D., Boyle, M., Brady, P. R., Brown, D. A., Brügmann, B., Buchman, L. T., Buonanno, A., Cadonati, L., Camp, J., Campanelli, M., Centrella, J., Chatterji, S., Christensen, N., Chu, T., Diener, P., Dorband, N., Etienne, Z. B., Faber, J., Fairhurst, S., Farr, B., Fischetti, S., Guidi, G., Goggin, L. M., Hannam, M., Herrmann, F., Hinder, I., Husa, S., Kalogera, V., Keppel, D., Kidder, L. E., Kelly, B. J., Krishnan, B., Laguna, P., Lousto, C. O., Mandel, I., Marronetti, P., Matzner, R., McWilliams, S. T., Matthews, K. D., Mercer, R. A., Mohapatra, S. R. P., Mroué, A. H., Nakano, H., Ochsner, E., Pan, Y., Pekowsky, L., Pfeiffer, H. P., Pollney, D., Pretorius, F., Raymond, V., Reisswig, C., Rezzolla, L., Rinne, O., Robinson, C., Röver, C., Santamaría, L., Sathyaprakash, B., Scheel, M. A., Schnetter, E., Seiler, J., Shapiro, S. L., Shoemaker, D., Sperhake, U., Stroeer, A., Sturani, R., Tichy, W., Liu, Y. T., van der Sluys, M., van Meter, J. R., Vaulin, R., Vecchio, A., Veitch, J., Viceré, A., Whelan, J. T., and Zlochower, Y. (2009). Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project. Class. Quantum Grav. 26, 165008.Google Scholar
Baker, J. G., Campanelli, M., Pretorius, F., and Zlochower, Y. (2007). Comparisons of binary black hole merger waveforms. Class. Quantum Grav. 24, S25.Google Scholar
Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J. (2006). Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102.Google Scholar
Baumgarte, T. W. (2000). Innermost stable circular orbit of binary black holes. Phys. Rev. D 62, 024018.Google Scholar
Baumgarte, T. W. (2012). Alternative approach to solving the Hamiltonian constraint. Phys. Rev. D 85, 084013.Google Scholar
Baumgarte, T. W. and Naculich, S. G. (2007). Analytical representation of a black hole puncture solution. Phys. Rev. D 75, 067502.CrossRefGoogle Scholar
Baumgarte, T. W. and Shapiro, S. L. (1998). Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007.CrossRefGoogle Scholar
Baumgarte, T. W. and Shapiro, S. L. (2010). Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge.Google Scholar
Baumgarte, T. W., Montero, P. J., Cordero-Carrión, I., and Müller, E. (2013). Numerical relativity in spherical polar coordinates: Evolution calculations with the BSSN formulation. Phys. Rev. D 87, 044026.Google Scholar
Beig, R. and Murchadha, N. Ó. (1994). Trapped surfaces in vacuum spacetimes. Class. Quantum Grav. 11, 419.Google Scholar
Beig, R. and Murchadha, N. Ó. (1996). Vacuum spacetimes with future trapped surfaces. Class. Quantum Grav. 13, 739.Google Scholar
Beig, R. and Murchadha, N. Ó. (1998). Late time behavior of the maximal slicing of the Schwarzschild black hole. Phys. Rev. D 57, 4728.CrossRefGoogle Scholar
Bergmann, P. G. (1957). Summary of the Chapel Hill Conference. Rev. Mod. Phys. 29, 352.Google Scholar
Bernuzzi, S. and Hilditch, D. (2010). Constraint violation in free evolution schemes: Comparing the BSSNOK formulation with a conformal decomposition of the Z4 formulation. Phys. Rev. D 81, 084003.CrossRefGoogle Scholar
Blecha, L., Sijacki, D., Kelley, L. Z., Torrey, P., Vogelsberger, M., Nelson, D., Springel, V., Snyder, G., and Hernquist, L. (2016). Recoiling black holes: Prospects for detection and implications of spin alignment. Mon. Not. Roy. Astron. Soc. 456, 961.CrossRefGoogle Scholar
Bogdanovic, T., Reynolds, C. S., and Miller, M. C. (2007). Alignment of the spins of supermassive black holes prior to merger. Astrophys. J. Lett. 661, L147.Google Scholar
Bona, C., Ledvinka, T., Palenzuela, C., and Zacek, M. (2003). General-covariant evolution formalism for numerical relativity. Phys. Rev. D 67, 104005.Google Scholar
Bona, C., Massó, J., Seidel, E., and Stela, J. (1995). New formalism for numerical relativity. Phys. Rev. Lett. 75, 600.Google Scholar
Bona, C. and Palenzuela, C. (2005). Elements of Numerical Relativity: From Einstein’s Equations to Black Hole Simulations. Springer, Berlin, Heidelberg.Google Scholar
Bona, C., Palenzuela-Luque, C., and Bona-Casas, C. (2009). Elements of Numerical Relativity and Relativistic Hydrodynamics. Springer, Berlin, Heidelberg.Google Scholar
Bonazzola, S., Gourgoulhon, E., Grandclément, P., and Novak, J. (2004). A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates. Phys. Rev. D 70, 104007.Google Scholar
Bowen, J. M. and York, J. W. Jr. (1980). Time-asymmetric initial data for black holes and black hole collisions. Phys. Rev. D 21, 2047.Google Scholar
Brandt, S. and Brügmann, B. (1997). A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606.Google Scholar
Brill, D. R. and Lindquist, R. W. (1963). Interaction energy in geometrostatics. Phys. Rev. 131, 471.Google Scholar
Brown, J. D. (2008). Puncture evolution of Schwarzschild black holes. Phys. Rev. D 77, 044018.Google Scholar
Brown, J. D. (2009). Covariant formulations of Baumgarte, Shapiro, Shibata and Nakamura and the standard gauge. Phys. Rev. D 79, 104029.Google Scholar
Brügmann, B., Tichy, W., and Jansen, N. (2004). Numerical simulation of orbiting black holes. Phys. Rev. Lett. 92, 211101.Google Scholar
Buonanno, A., Cook, G. B., and Pretorius, F. (2007). Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018.Google Scholar
Buonanno, A. and Damour, T. (1999). Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006.Google Scholar
Campanelli, M., Lousto, C. O., Marronetti, P., and Zlochower, Y. (2006a). Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101.Google Scholar
Campanelli, M., Lousto, C. O., and Zlochower, Y. (2006b). Spinning black holes: The orbital hang-up. Phys. Rev. D 74, 041501.CrossRefGoogle Scholar
Campanelli, M., Lousto, C. O., Zlochower, Y., and Merritt, D. (2007a). Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. Lett. 659, L5.Google Scholar
Campanelli, M., Lousto, C. O., Zlochower, Y., and Merritt, D. (2007b). Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102.Google Scholar
Cardoso, V., Gualtieri, L., Herdeiro, C. A. R., and Sperhake, U. (2015). Exploring new physics frontiers through numerical relativity. Living Rev. Rel. 18, 1.Google Scholar
Carroll, S. (2004). Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco. Reissued in 2019 by Cambridge University Press.Google Scholar
Caudill, M., Cook, G. B., Grigsby, J. D., and Pfeiffer, H. P. (2006). Circular orbits and spin in black-hole initial data. Phys. Rev. D 74, 064011.Google Scholar
Chiaberge, M., Tremblay, G. R., Capetti, A., and Norman, C. (2018). The recoiling black hole candidate 3C 186: Spatially resolved quasar feedback and further evidence of a blueshifted broad-line region. Astrophys. J. 861, 56.CrossRefGoogle Scholar
Choptuik, M. W. (1993). Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9.Google Scholar
Choquet-Bruhat, Y. (2015). Introduction to General Relativity, Black Holes and Cosmology. Oxford University Press, Oxford.Google Scholar
Clough, K., Flauger, R., and Lim, E. A. (2018). Robustness of inflation to large tensor perturbations. J. Cosmology Astroparticle Phys. 2018, 065.Google Scholar
Cook, G. B. (1991). Initial data for axisymmetric black-hole collisions. Phys. Rev. D44, 2983.Google Scholar
Cook, G. B. (1994). Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes. Phys. Rev. D 50, 5025.CrossRefGoogle ScholarPubMed
Cook, G. B. and Pfeiffer, H. P. (2004). Excision boundary conditions for black-hole initial data. Phys. Rev. D 70, 104016.Google Scholar
De Donder, T. (1921). La gravifique einsteinienne. Gauthier-Villars, Paris.Google Scholar
de Felice, A., Larrouturou, F., Mukohyama, S., and Oliosi, M. (2019). On the absence of conformally flat slicings of the Kerr spacetime. Phys. Rev. D 100, 124044.Google Scholar
Dennison, K. A. and Baumgarte, T. W. (2014). A simple family of analytical trumpet slices of the Schwarzschild spacetime. Class. Quantum Grav. 31, 117001.Google Scholar
Dennison, K. A., Baumgarte, T. W., and Montero, P. J. (2014). Trumpet slices in Kerr spacetimes. Phys. Rev. Lett. 113, 261101.Google Scholar
Droste, J. (1917). The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, Series B Phys. Sci. 19, 197.Google Scholar
East, W. E., Kleban, M., Linde, A., and Senatore, L. (2016). Beginning inflation in an inhomogeneous universe. J. Cosmology Astroparticle Phys. 2016, 010.Google Scholar
Einstein, A. (1915). Die Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin, Sitzber., 844.Google Scholar
Einstein, A. (1916). Näherungsweise Integration der Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin, Sitzber., 688.Google Scholar
Estabrook, F., Wahlquist, H., Christensen, S., Dewitt, B., Smarr, L., and Tsiang, E. (1973). Maximally slicing a black hole. Phys. Rev. D 7, 2814.Google Scholar
Etienne, Z. B., Liu, Y. T., and Shapiro, S. L. (2010). Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation. Phys. Rev. D 82, 084031.Google Scholar
Etienne, Z. B., Paschalidis, V., Haas, R., Mösta, P., and Shapiro, S. L. (2015). Illinois-GRMHD: An open-source, user-friendly GRMHD code for dynamical spacetimes. Class. Quantum Grav. 32, 175009.Google Scholar
Etienne, Z. B., Wan, M.-B., Babiuc, M. C., McWilliams, S. T., and Choudhary, A. (2017). GiRaFFE: An open-source general relativistic force-free electrodynamics code. Class. Quantum Grav. 34, 215001.Google Scholar
Friedrich, H. (1985). On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100, 525.Google Scholar
Garat, A. and Price, R. H. (2000). Nonexistence of conformally flat slices of the Kerr spacetime. Phys. Rev. D 61, 124011.Google Scholar
Garfinkle, D. (2002). Harmonic coordinate method for simulating generic singularities. Phys. Rev. D 65, 044029.CrossRefGoogle Scholar
Gerosa, D., Kesden, M., O’Shaughnessy, R., Klein, A., Berti, E., Sperhake, U., and Trifirò, D. (2015). Precessional instability in binary black holes with aligned spins. Phys. Rev. Lett. 115, 141102.Google Scholar
Giblin, J. T. and Tishue, A. J. (2019). Preheating in full general relativity. Phys. Rev. D 100, 063543.Google Scholar
Gieg, H., Dietrich, T., and Ujevic, M. (2019). Simulating binary neutron stars with hybrid equation of states: Gravitational waves, electromagnetic signatures, and challenges for numerical relativity. arXiv e-prints, arXiv:1908.03135.Google Scholar
Gleiser, R. J., Nicasio, C. O., Price, R. H., and Pullin, J. (1998). Evolving the Bowen– York initial data for spinning black holes. Phys. Rev. D 57, 3401.Google Scholar
Gleiser, R. J., Khanna, G., and Pullin, J. (2002). Evolving the Bowen–York initial data for boosted black holes. Phys. Rev. D 66, 024035.Google Scholar
González, J. A., Hannam, M. D., Sperhake, U., Brugmann, B., and Husa, S. (2007). Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Phys. Rev. Lett. 98, 231101.Google Scholar
González, J. A., Sperhake, U., Brügmannn, B., Hannam, M., and Husa, S. (2007). Total recoil: The maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101.Google Scholar
Gopal-Krishna, P. L. Biermann, L. Á. Gergely, , and Wiita, P. J. (2012). On the origin of X-shaped radio galaxies. Research in Astronomy and Astrophysics 12, 127.Google Scholar
Gourgoulhon, E. (2012). 3+1 Formalism in General Relativity. Springer, New York.Google Scholar
Gourgoulhon, E., Grandclément, P., and Bonazzola, S. (2002). Binary black holes in circular orbits. I. A global spacetime approach. Phys. Rev. D 65, 044020.Google Scholar
Grandclément, P., Gourgoulhon, E., and Bonazzola, S. (2002). Binary black holes in circular orbits. II. Numerical methods and first results. Phys. Rev. D 65, 044021.Google Scholar
Griffiths, D. J. (2013). Introduction to Electrodynamics (4th edn). Cambridge University Press, Cambridge.Google Scholar
Gullstrand, A. (1922). Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik, Astronomi och Fysik 16, 1.Google Scholar
Gundlach, C. and Martín-García, J. M. (2007). Critical phenomena in gravitational collapse. Living Rev. Rel. 10, 5.Google Scholar
Gundlach, C., Martín-García, J. M., Calabrese, G., and Hinder, I. (2005). Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767.Google Scholar
Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347.Google Scholar
Hahn, S. G. and Lindquist, R. W. (1964). The two-body problem in geometrodynamics. Ann. Phys. 29, 304.Google Scholar
Hannam, M., Husa, S., Murchadha, N. Ó., Brügmann, B., González, J. A., and Sperhake, U. (2007a). Where do moving punctures go? J. Phys. Conf. Series 66, 012047.Google Scholar
Hannam, M., Husa, S., Pollney, D., Brügmann, B., and O’Murchadha, N. (2007b). Geometry and regularity of moving punctures. Phys. Rev. Lett. 99, 241102.Google Scholar
Hannam, M., Husa, S., Ohme, F., Brügmann, B., and Murchadha, N. Ó. (2008). Wormholes and trumpets: The Schwarzschild spacetime for the moving-puncture generation. Phys. Rev. D 78, 064020.Google Scholar
Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativity. Addison Wesley, San Francisco.Google Scholar
Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.Google Scholar
Healy, J. and Lousto, C. O. (2018). Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties. Phys. Rev. D 97, 084002.Google Scholar
Healy, J., Lange, J., O’Shaughnessy, R., Lousto, C. O., Campanelli, M., Williamson, A. R., Zlochower, Y., Calderón Bustillo, J., Clark, J. A., Evans, C., Ferguson, D., Ghonge, S., Jani, K., Khamesra, B., Laguna, P., Shoemaker, D. M., Boyle, M., García, A., Hemberger, D. A., Kidder, L. E., Kumar, P., Lovelace, G., Pfeiffer, H. P., Scheel, M. A., and Teukolsky, S. A. (2018). Targeted numerical simulations of binary black holes for GW170104. Phys. Rev. D 97, 064027.Google Scholar
Healy, J., Lousto, C. O., Lange, J., O’Shaughnessy, R., Zlochower, Y., and Campanelli, M. (2019). The second RIT binary black hole simulations catalog and its application to gravitational waves parameter estimation. Phys. Rev. D 100, 024021.Google Scholar
Herrmann, F., Hinder, I., Shoemaker, D., and Laguna, P. (2007). Unequal-mass binary black hole plunges and gravitational recoil. Class. Quantum Grav. 24, S33.Google Scholar
Hilbert, D. (1915). Grundlagen der Physik. Gott. Nachr. 27, 395.Google Scholar
Hilditch, D. (2015). Dual foliation formulations of general relativity. arXiv e-prints, arXiv:1509.02071.Google Scholar
Hinder, I., Buonanno, A., Boyle, M., Etienne, Z. B., Healy, J., Johnson-McDaniel, N. K., Nagar, A., Nakano, H., Pan, Y., Pfeiffer, H. P., Pürrer, M., Reisswig, C., Scheel, M. A., Schnetter, E., Sperhake, U., Szilágyi, B., Tichy, W., Wardell, B., Zenginoğlu, A., Alic, D., Bernuzzi, S., Bode, T., Brügmann, B., Buchman, L. T., Campanelli, M., Chu, T., Damour, T., Grigsby, J. D., Hannam, M., Haas, R., Hemberger, D. A., Husa, S., Kidder, L. E., Laguna, P., London, L., Lovelace, G., Lousto, C. O., Marronetti, P., Matzner, R. A., Mösta, P., Mroué, A., Müller, D., Mundim, B. C., Nerozzi, A., Paschalidis, V., Pollney, D., Reifenberger, G., Rezzolla, L., Shapiro, S. L., Shoemaker, D., Taracchini, A., Taylor, N. W., Teukolsky, S. A., Thierfelder, M., Witek, H., and Zlochower, Y. (2013). Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Class. Quantum Grav. 31, 025012.Google Scholar
Hulse, R. A. and Taylor, J. H. (1975). Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51.Google Scholar
Isenberg, J. (1978). Unpublished.Google Scholar
Jackson, J. D. (1999). Classical Electrodynamics (3rd edn). Wiley, New York.Google Scholar
Kennefick, D. (2005 ). Einstein versus the Physical Review. Physics Today 58, 43.Google Scholar
Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237.CrossRefGoogle Scholar
Khan, S., Chatziioannou, K., Hannam, M., and Ohme, F. (2018). Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Phys. Rev. D 100, 024059.Google Scholar
Kidder, L. E., Field, S. E., Foucart, F., Schnetter, E., Teukolsky, S. A., Bohn, A., Deppe, N., Diener, P., Hébert, F., Lippuner, J., Miller, J., Ott, C. D., Scheel, M. A., and Vincent, T. (2017). SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics. J. Comp. Phys. 335, 84.Google Scholar
Knapp, A. M., Walker, E. J., and Baumgarte, T. W. (2002). Illustrating stability properties of numerical relativity in electrodynamics. Phys. Rev. D 65, 064031.Google Scholar
Komossa, S. (2012). Recoiling black holes: Electromagnetic signatures, candidates, and astrophysical implications. Adv. Astron. 2012, 364973.Google Scholar
Lanczos, C. (1922). Ein vereinfachtes Koordinatensystem für die Einsteinschen Gravitationsgleichungen. Phys. Z. 23, 537.Google Scholar
LeVeque, R. (1992). Numerical Methods for Conservation Laws (2nd edn). Birkhäuser, Basel, Switzerland; Boston, USA.Google Scholar
Lichnerowicz, A. (1944). L’intégration des équations de la gravitation relativiste et la problème des n corps. J. Math. Pure Appl 23, 37.Google Scholar
Lightman, A. P., Press, W. H., Price, R. H., and Teukolsky, S. A. (1975). Problem Book in Relativity and Gravitation. Princeton University Press, Princeton.Google Scholar
Lindblom, L., Scheel, M. A., Kidder, L. E., Owen, R., and Rinne, O. (2006). A new generalized harmonic evolution system. Class. Quantum Grav. 23, S447.Google Scholar
Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389.Google Scholar
Lousto, C. O. and Healy, J. (2016). Unstable flip-flopping spinning binary black holes. Phys. Rev. D 93, 124074.Google Scholar
Lousto, C. O. and Zlochower, Y. (2011). Hangup kicks: Still larger recoils by partial spin/orbit alignment of black-hole binaries. Phys. Rev. Lett. 107, 231102.Google Scholar
Lousto, C. O., Zlochower, Y., and Campanelli, M. (2017). Modeling the black hole merger of QSO 3C 186. Astrophys. J. 841, L28.Google Scholar
Lovelace, G., Owen, R., Pfeiffer, H. P., and Chu, T. (2008). Binary-black-hole initial data with nearly-extremal spins. Phys. Rev. D 78, 084017.Google Scholar
May, M. M. and White, R. H. (1966). Hydrodynamic calculations of general-relativistic collapse. Phys. Rev. 141, 1232.Google Scholar
Merritt, D. and Ekers, R. D. (2002). Tracing black hole mergers through radio lobe morphology. Science 297, 1310.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (2017). Gravitation (2nd edn). Freeman, New York.Google Scholar
Montero, P. J. and Cordero-Carrión, I. (2012). The BSSN equations in spherical coordinates without regularization: Vacuum and non-vacuum spherically symmetric systems. Phys. Rev. D 85, 124037.Google Scholar
Moore, T. A. (2013). A General Relativity Workbook. University Science Books, Mill Valley.Google Scholar
Mroué, A. H., Scheel, M. A., Szilágyi, B., Pfeiffer, H. P., Boyle, M., Hemberger, D. A., Kidder, L. E., Lovelace, G., Ossokine, S., Taylor, N. W., Zenginoğlu, A., Buchman, L. T., Chu, T., Foley, E., Giesler, M., Owen, R., and Teukolsky, S. A. (2013). Catalog of 174 binary black hole simulations for gravitational wave astronomy. Phys. Rev. Lett. 111, 241104.Google Scholar
Nakamura, T., Oohara, K., and Kojima, Y. (1987). General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1.Google Scholar
Newman, E. T. and Penrose, R. (1968). New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proceedings of the Royal Society of London Series A 305, 175.Google Scholar
Painlevé, P. (1921). Le mécanique classique et la théorie de la relativité. L’Académie des sciences 173, 677.Google Scholar
Pan, Y., Buonanno, A., Taracchini, A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A., and Szilágyi, B. (2014). Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 89, 084006.Google Scholar
Paschalidis, V., Etienne, Z. B., Gold, R., and Shapiro, S. L. (2013). An efficient spectral interpolation routine for the TwoPunctures code. arXiv e-prints, arXiv:1304.0457.Google Scholar
Petrich, L. I., Shapiro, S. L., and Teukolsky, S. A. (1985). Oppenheimer–Snyder collapse with maximal time slicing and isotropic coordinates. Phys. Rev. D 31, 2459.CrossRefGoogle ScholarPubMed
Poisson, E. (2004). A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical Recipes in C++: The Art of Scientific Computing (3rd edn). Cambridge University Press, Cambridge.Google Scholar
Pretorius, F. (2005a). Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101.Google Scholar
Pretorius, F. (2005b). Numerical relativity using a generalized harmonic decomposition. Class. Quantum Grav. 22, 425.Google Scholar
Radice, D., Perego, A., Zappa, F., and Bernuzzi, S. (2018). GW170817: Joint constraint on the neutron star equation of state from multimessenger observations. Astrophys. J. Lett. 852, L29.Google Scholar
Reinhart, B. (1973). Maximal foliations of extended Schwarzschild space. J. Math. Phys. 14, 719.Google Scholar
Rezzolla, L., Most, E. R., and Weih, L. R. (2018). Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett. 852, L25.Google Scholar
Rezzolla, L. and Zanotti, O. (2013). Relativistic Hydrodynamics. Oxford University Press.Google Scholar
Ruchlin, I., Healy, J., Lousto, C. O., and Zlochower, Y. (2017). Puncture initial data for black-hole binaries with high spins and high boosts. Phys. Rev. D 95, 024033.Google Scholar
Ruiz, M., Shapiro, S. L., and Tsokaros, A. (2018). GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 97, 021501.Google Scholar
Scheel, M. A., Shapiro, S. L., and Teukolsky, S. A. (1995). Collapse to black holes in Brans–Dicke theory. I. Horizon boundary conditions for dynamical spacetimes. Phys. Rev. D 51, 4208.Google Scholar
Scheel, M. A., Pfeiffer, H. P., Lindblom, L., Kidder, L. E., Rinne, O., and Teukolsky, S. A. (2006). Solving Einstein’s equations with dual coordinate frames. Phys. Rev. D 74, 104006.Google Scholar
Schutz, B. F. (1980). Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge.Google Scholar
Schutz, B. F. (2009). A First Course in General Relativity (2nd edn). Cambridge University Press, Cambridge.Google Scholar
Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189.Google Scholar
Seidel, E. and Suen, W.-M. (1992). Towards a singularity-proof scheme in numerical relativity. Phys. Rev. Lett. 69, 1845.CrossRefGoogle ScholarPubMed
Shapiro, S. L. and Teukolsky, S. A. (1985a). Relativistic stellar dynamics on the computer. I. Motivation and numerical method. Astrophys. J. 298, 34.Google Scholar
Shapiro, S. L. and Teukolsky, S. A. (1985b). Relativistic stellar dynamics on the computer. II. Physical applications. Astrophys. J. 298, 58.Google Scholar
Shapiro, S. L. and Teukolsky, S. A. (1992). Collisions of relativistic clusters and the formation of black holes. Phys. Rev. D 45, 2739.Google Scholar
Shibata, M. (1999a). Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests. Phys. Rev. D 60, 104052.Google Scholar
Shibata, M. (1999b). Fully general relativistic simulation of merging binary clusters: Spatial gauge condition. Prog. Theor. Phys. 101, 1199.Google Scholar
Shibata, M. (2016). Numerical Relativity. World Scientific Publishing, Singapore.Google Scholar
Shibata, M. and Nakamura, T. (1995). Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428.Google Scholar
Shibata, M., Uryū, K., and Friedman, J. L. (2004). Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits. Phys. Rev. D 70, 044044.Google Scholar
Shibata, M., Fujibayashi, S., Hotokezaka, K., Kiuchi, K., Kyutoku, K., Sekiguchi, Y., and Tanaka, M. (2017). Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 96, 123012.Google Scholar
Smarr, L. L. (1979). Gauge conditions, radiation formulae, and the two black hole collision. In L. L. Smarr (ed.), Sources of Gravitational Radiation, pp. 245. Cambridge University Press, Cambridge.Google Scholar
Smarr, L. and York, J. W. Jr. (1978). Radiation gauge in general relativity. Phys. Rev. D 17, 1945.Google Scholar
Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99.Google Scholar
Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D. A., Kidder, L. E., Lovelace, G., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A., Szilágyi, B., Taylor, N. W., and Zenginoglu, A. (2014). Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys. Rev. D 89, 061502.Google Scholar
Taylor, E. D. and Wheeler, J. A. (2000). Exploring Black Holes. Addison Wesley Longman. San Francisco.Google Scholar
Taylor, J. H. and Weisberg, J. M. (1982). A new test of general relativity – gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253, 908.Google Scholar
Teukolsky, S. A. (2000). On the stability of the iterated Crank–Nicholson method in numerical relativity. Phys. Rev. D 61, 087501.Google Scholar
Thierfelder, M., Bernuzzi, S., and Brügmann, B. (2011). Numerical relativity simulations of binary neutron stars. Phys. Rev. D 84, 044012.Google Scholar
Thornburg, J. (1987). Coordinates and boundary conditions for the general relativistic initial data problem. Class. Quantum Grav. 4, 1119.Google Scholar
Thorne, K. S. and MacDonald, D. (1982). Electrodynamics in curved spacetime − 3+1 formulation. Mon. Not. Roy. Astron. Soc. 198, 339.Google Scholar
Toro, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag, Berlin.Google Scholar
van Meter, J. R., Baker, J. G., Koppitz, M., and Choi, D.-I. (2006). How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011.Google Scholar
Wald, R. M. (1984). General Relativity. The University of Chicago Press, Chicago.Google Scholar
Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York.Google Scholar
Wilson, J. R. and Mathews, G. J. (1995). Instabilities in close neutron star binaries. Phys. Rev. Lett. 75, 4161.Google Scholar
York, J. W. Jr. (1971). Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26, 1656.Google Scholar
York, J. W. Jr. (1979). Kinematics and dynamics of general relativity. In L. L. Smarr (ed.), Sources of Gravitational Radiation, pp. 83. Cambridge University Press, Cambridge.Google Scholar
York, J. W. Jr. (1999). Conformal ‘thin-sandwich’ data for the initial-value problem of general relativity. Phys. Rev. Lett. 82, 1350.Google Scholar
Zangwill, A. (2013). Modern Electrodynamics. Cambridge University Press, Cambridge.Google Scholar
Zlochower, Y. and Lousto, C. O. (2015). Modeling the remnant mass, spin, and recoil from unequal-mass, precessing black-hole binaries: The intermediate mass ratio regime. Phys. Rev. D 92, 024022.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×