Skip to main content Accessibility help
×
  • Cited by 3
  • Selina R. Cole, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History, David F. Wright, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History
Publisher:
Cambridge University Press
Online publication date:
April 2022
Print publication year:
2022
Online ISBN:
9781108893459
Subjects:
Humanities, Palaeontology and Life History, Evolutionary Biology, General

Book description

Fossil crinoids are exceptionally suited to deep-time studies of community paleoecology and niche partitioning. By merging ecomorphological trait and phylogenetic data, this Element summarizes niche occupation and community paleoecology of crinoids from the Bromide fauna of Oklahoma (Sandbian, Upper Ordovician). Patterns of community structure and niche evolution are evaluated over a ~5 million-year period through comparison with the Brechin Lagerstätte (Katian, Upper Ordovician). The authors establish filtration fan density, food size selectivity, and body size as major axes defining niche differentiation, and niche occupation is strongly controlled by phylogeny. Ecological strategies were relatively static over the study interval at high taxonomic scales, but niche differentiation and specialization increased in most subclades. Changes in disparity and species richness indicate the transition between the early-middle Paleozoic Crinoid Evolutionary Faunas was already underway by the Katian due to ecological drivers and was not triggered by the Late Ordovician mass extinction.

References

Anderson, P. S. (2009). Biomechanics, functional patterns, and disparity in Late Devonian arthrodires. Paleobiology, 35(3), 321342.
Andrews, P., Lord, J. M., & Evans, E. M. N. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11(2), 177205.
Antell, G. S., Fenton, I. S., Valdes, P. J., & Saupe, E. E. (2021). Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proceedings of the National Academy of Sciences, 118(18), e2017105118.
Armstrong, D. K. (2000). Paleozoic geology of the northern Lake Simcoe area, south-central Ontario. Ontario Geological Survey, Open File Report, 6011, pp. 1–43.
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54(2), 273288.
Ausich, W. I. (1983). Component concept for the study of the paleocommunities with an example from the Early Carboniferous of Southern Indiana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 44(3–4), 251282.
Ausich, W. I. (2001). Echinoderm taphonomy. In Jangoux, M. and Lawrence, J. M., eds., Echinoderm Studies 6. A. A. Balkema, Rotterdam, pp. 171227.
Ausich, W. I. (2016). Fossil species as data: a perspective from echinoderms. In Allmon, W. D. and Yacobucci, M. M., eds., Species and Speciation in the Fossil Record. University of Chicago Press, Chicago, pp. 301311.
Ausich, W. I. (2018). Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade. Swiss Journal of Palaeontology, 137(2), 159176.
Ausich, W. I. (2021). Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record. Elements of Paleontology. Cambridge University Press, Cambridge, UK.
Ausich, W. I., & Baumiller, T. K. (1993). Taphonomic method for determining muscular articulations in fossil crinoids. Palaios, 8(5), 477484.
Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173174.
Ausich, W. I., & Deline, B. (2012). Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 361–362, 3848.
Ausich, W. I., & Kammer, T. W. (2013). Mississippian crinoid biodiversity, biogeography and macroevolution. Palaeontology, 56(4), 727740.
Ausich, W. I., Kammer, T. W., & Baumiller, T. K. (1994). Demise of the Middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20(3), 345361.
Ausich, W. I., Kammer, T. W., Rhenberg, E. C., & Wright, D. F. (2015). Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology, 58(6), 937952.
Ausich, W. I., Wright, D. F., Cole, S. R., & Koniecki, J. M. (2018). Disparid and hybocrinid crinoids (Echinodermata) from the Upper Ordovician (lower Katian) Brechin Lagerstätte of Ontario. Journal of Paleontology, 92(5), 850871.
Bambach, R. K. (1983). Ecospace utilization and guilds in marine communities through the Phanerozoic. In Tevesz, M. J. S. and McCall, P. L., eds., Biotic Interactions in Recent and Fossil Benthic Communities. Springer, Boston, pp. 719746.
Bambach, R. K., Bush, A. M., & Erwin, D. H. (2007). Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50(1), 122.
Bapst, D. W. (2012). paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution, 3(5), 803807.
Bapst, D. W. (2013). A stochastic rate‐calibrated method for time‐scaling phylogenies of fossil taxa. Methods in Ecology and Evolution, 4(8), 724733.
Barr, W. A. (2018). Ecomorphology. In Croft, D. A., Su, D. F., and Simpson, S. W., eds., Methods in Paleoecology. Springer, Dordrecht, 339349.
Baumiller, T. K. (1993). Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, 19(3), 304321.
Baumiller, T. K. (1997). Crinoid functional morphology. Paleontological Society Papers, 3, 4568.
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Review of Earth Planetary Sciences, 36(1), 221249.
Baumiller, T. K. (2020). Patterns of dominance and extinction in the record of Paleozoic crinoids. In B. David, A. Guille, J. P. Guille, and M. Roux, eds., Echinoderms Through Time. CRC Press, London, pp. 193–198.
Baumiller, T. K., & Ausich, W. I. (1996). Crinoid stalk flexibility: theoretical predictions and fossil stalk postures. Lethaia, 29(1), 4759.
Baumiller, T. K., & Gahn, F. (2003). Predation on crinoids. In Kelley, P. H., Kowalewski, M., & Hansen, T. A., eds., Predator-Prey Interactions in the Fossil Record. Topics in Geobiology, Kluwer Academic/Plenum Publishers, Dordrecht, 20, 263278.
Benevento, G.L., Benson, R.B., & Friedman, M. (2019). Patterns of mammalian jaw ecomorphological disparity during the Mesozoic/Cenozoic transition. Proceedings of the Royal Society B, 286(1902), 20190347.
Bennington, J. B., & Bambach, R. K. (1996). Statistical testing for paleocommunity recurrence: are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology, 127(1–4), 107133.
Blake, D. B., & Koniecki, J. (2019). Two new Paleozoic Asteroidea (Echinodermata) and their taxonomic and evolutionary significance. Journal of Paleontology, 93(1), 105114.
Blake, D. B., & Koniecki, J. (2020). Taxonomy and functional morphology of the Urasterellidae (Paleozoic Asteroidea, Echinodermata). Journal of Paleontology, 94(6), 11241147.
Blomberg, S. P., GarlandJr., T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717745.
Bock, W. J. (1994). Concepts and methods in ecomorphology. Journal of Biosciences, 19(4), 403413.
Brame, H. M. R., & Stigall, A. L. (2014). Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology, 40(1), 7090.
Brett, C. E., & Liddell, W. D. (1978). Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4(3), 329348.
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. Paleontological Society Papers, 3, 147190.
Brett, C. E., & Taylor, W. L. (1999). Middle Ordovician of the Lake Simcoe area of Ontario, Canada. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. H., eds., Fossil Crinoids. Cambridge University Press, Cambridge, UK, pp. 6874.
Brower, J. C. (2007). The application of filtration theory to food gathering in Ordovician crinoids. Journal of Paleontology, 81(6), 12841300.
Brower, J. C. (2013). Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of Northern Iowa and Southern Minnesota. Journal of Paleontology, 87(1), 1643.
Bush, A. M., & Bambach, R. K. (2011). Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences, 39(1), 241269.
Carlucci, J. R., Westrop, S. R., Brett, C. E., & Burkhalter, R. (2014). Facies architecture and sequence stratigraphy of the Ordovician Bromide Formation (Oklahoma): a new perspective on a mixed carbonate-siliciclastic ramp. Facies, 60(4), 9871012.
Carrano, M. T. (1997). Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zoological Journal of the Linnean Society, 121(1), 77104.
Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7), 693715.
Chang, L.M. & Skipwith, P.L. (2021). Relatedness and the composition of communities over time: evaluating phylogenetic community structure in the late Cenozoic record of bivalves. Paleobiology, 47(2), 301–313.
Ciampaglio, C. N. (2002). Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution & Development, 4(3), 170188.
Cole, S. R. (2017a). Phylogeny, Diversification, and Extinction Selectivity in Camerate Crinoids. The Ohio State University, doctoral dissertation.
Cole, S. R. (2017b). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91(4), 815828.
Cole, S. R. (2018). Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology, 62(3), 357373.
Cole, S. R. (2019). Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny. Paleobiology, 47(2), 251270.
Cole, S. R., Ausich, W. I., Colmenar, J., & Zamora, S. (2017). Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain). Journal of Paleontology, 91(4), 715734.
Cole, S. R., Ausich, W. I., Wright, D. F., & Koniecki, J. M. (2018). An echinoderm Lagerstätte from the Upper Ordovician (Katian), Ontario: taxonomic re-evaluation and description of new dicyclic camerate crinoids. Journal of Paleontology, 92(3), 488505.
Cole, S. R., & Hopkins, M. J. (2021). Selectivity and the effect of mass extinctions on disparity and functional ecology. Science Advances, 7(19), eabf4072.
Cole, S. R., Wright, D. F., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.
Cole, S. R., Wright, D. F., Ausich, W. I., & Koniecki, J. M. (2020). Paleocommunity composition, relative abundance, and new camerate crinoids from the Brechin Lagerstätte (Upper Ordovician). Journal of Paleontology, 94(6), 11031123.
Cooper, N., Jetz, W., & Freckleton, R. P. (2010). Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23(12), 25292539.
Darroch, S. A., Laflamme, M., & Wagner, P. J. (2018). High ecological complexity in benthic Ediacaran communities. Nature Ecology & Evolution, 2(10), 15411547.
Deline, B. (2021). Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities. Elements of Paleontology. Cambridge University Press, Cambridge, UK.
Deline, B., & Ausich, W. I. (2011). Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids. Paleobiology, 37(2), 214236.
Deline, B., Greenwood, J. M., Clark, J. W. et al. (2018). Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences, 115(38), E8909–E8918.
Deline, B., & Thomka, J. R. (2017). The role of preservation on the quantification of morphology and patterns of disparity within Paleozoic echinoderms. Journal of Paleontology, 91(4), 618632.
Deline, B., Thompson, J. R., Smith, N. S. et al. (2020). Evolution and development at the origin of a phylum. Current Biology, 30(9), 16721679.
Dineen, A. A., Fraiser, M. L., & Sheehan, P. M. (2014). Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews, 136, 339349.
Donovan, S. K. (1991). The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment. In Donovan, S. K., ed., The Processes of Fossilization. Belhaven Press, London, pp. 241269.
Erwin, D. H. (2008). Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology & Evolution, 23(6), 304310.
Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In Croft, D. A., Su, D. F., and Simpson, S. W., eds., Methods in Paleoecology. Springer, New York, 3751.
Feng, Z., Wang, J., Rößler, R., Ślipiński, A., & Labandeira, C. (2017). Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1), 556.
Fischer, V., Benson, R.B., Zverkov, N.G. et al. (2017). Plasticity and convergence in the evolution of short-necked plesiosaurs. Current Biology, 27(11), 16671676.
Foote, M. (1994). Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20(3), 320344.
Foote, M. (1997). Estimating taxonomic durations and preservation probability. Paleobiology, 23(3), 278300.
Foote, M. (1999). Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25(S2), 1115.
Fountain-Jones, N.M., Baker, S.C., & Jordan, G.J. (2014). Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40(1), 113.
Fraser, D., Gorelick, R., & Rybczynski, N. (2015). Macroevolution & climate change influence phylogenetic community assembly of North American hoofed mammals. Biological Journal of the Linnean Society, 114(3), 485494.
Fraser, D., & Lyons, S. K. (2017). Biotic interchange has structured Western Hemisphere mammal communities. Global Ecology and Biogeography, 26(12), 14081422.
Fraser, D., & Lyons, S. K. (2020). Mammal community structure through the Paleocene-Eocene thermal maximum. The American Naturalist, 196(3), 271290.
Gibson, B. M., Furbish, D. J., Rahman, I. A. et al. (2021). Ancient life and moving fluids. Biological Reviews, 96(1), 129152.
Goldman, D., Sadler, P. M., Leslie, S. A. et al. (2020). The Ordovician Period. In Gradstein, F. M., Ogg, J. M., Schmitz, M. D., Ogg, G. M., eds., Geological Time Scale 2020. Elsevier, Amsterdam, vol. 2, pp. 631694.
Gorzelak, P. & Zamora, S. (2016). Understanding form and function of the stem in early flattened echinoderms (pleurocystitids) using a microstructural approach. PeerJ, 4, e1820. doi: https://doi.org/10.7717/peerj.1820
Gould, S. J. (1985). The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11(1), 212.
Grossnickle, D.M. & Newham, E. (2016). Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proceedings of the Royal Society B, 283(1832), 20160256.
Guensburg, T. E. (1991). The stem and holdfast of Amygdalocystites florealis Billings, 1854 (Paracrinoidea): lifestyle implications. Journal of Paleontology, 65(4), 693695.
Guensburg, T. E., & Sprinkle, J. (2003). The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364, 143.
Hadly, E. A., Spaeth, P. A. & Li, C. (2009). Niche conservatism above the species level. Proceedings of the National Academy of Sciences, 106(S2), 1970719714.
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24(1), 129131.
Holland, S. M., & Zaffos, A. (2011). Niche conservatism along an onshore-offshore gradient. Paleobiology, 37(2), 270286.
Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. In L. N. de la Rosa and G. Müller, eds., Evolutionary Developmental Biology. Springer International Publishing, New York, pp. 112.
Hutchinson, G. E. (1978). An Introduction to Population Biology. Yale University Press, New Haven and London.
Jablonski, D. (2007). Scale and hierarchy in macroevolution. Palaeontology, 50(1), 87109.
Kammer, T. W. (1985). Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology, 59(3), 551560.
Kammer, T. W., & Ausich, W. I. (2006). The “Age of Crinoids”: A Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios, 21(3), 238248.
Kelley, P., Kowalewski, M., & Hansen, T. A. (Eds.). (2003). Predator-Prey Interactions in the Fossil Record, Topics in Geobiology 20, Kluwer Academic/Plenum Publishers, New York.
Kidwell, S. M., & Behrensmeyer, A. K. (Eds). (1993). Taphonomic Approaches to Time Resolution in the Fossil Assemblages, Short Courses in Paleontology, 6, Paleontological Society.
Kitazawa, K., Oji, T., & Sunamura, M. (2007). Food composition of crinoids (Crinoidea: Echinodermata) in relation to stalk length and fan density: their paleoecological implications. Marine Biology, 152(4), 959968.
Kolata, D. R. (1982). Camerates. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 170205.
Lamsdell, J.C., Congreve, C.R., Hopkins, M.J., Krug, A.Z., & Patzkowsky, M.E. (2017). Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology & Evolution, 32(6), 452–463.
Liberty, B. A. (1969). Palaeozoic geology of the Lake Simcoe area, Ontario. Geological Survey of Canada Memoir, 355, pp. 1–201.
Lloyd, G. T. (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society, 118(1), 131151.
Longman, M. W. (1982). Depositional setting and regional characteristics. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 610.
Lyons, S. K., Behrensmeyer, A. K., & Wagner, P. J. (Eds.). (2019). Foundations of Paleoecology: Classic Papers with Commentaries. University of Chicago Press, Chicago.
Macurda, D. B., & Meyer, D. L. (1974). Feeding posture of modern stalked crinoids. Nature, 247(5440), 394396.
Maechler, M., Rousseeuw, P. R., Struyf, A., & Gonzalez, J. (2019). Finding Groups in Data: Cluster Analysis Extended Rousseeuw et al. R package version 2.1.2.
Mallon, J. C. (2019). Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Scientific Reports, 9(1), 118.
Messing, C. G., Hoggett, A. K., Vail, L. L., Rouse, G. W., & Rowe, F. W. E. (2017). 7: Class Crinoidea. In O’Hara, T. and Byrne, M., eds., Australian Echinoderms: Biology, Ecology and Evolution. Csiro Publishing, Clayton, Australia, pp. 167225.
Meyer, D. L. (1973). Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22(2), 105129.
Meyer, D. L. (1979). Length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension-feeding. Marine Biology, 51(4), 361369.
Meyer, D. L., & Ausich, W. I. (1983). Biotic interactions among recent and among fossil crinoids. In Tevesz, M. J. S. & McCall, P. L., eds., Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology, Kluwer Academic/Plenum Publishers, New York, pp. 377427.
Meyer, D. L., Miller, A. I., Holland, S. M., & Datillo, B. F. (2002). Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology, 76(4), 725732.
Meyer, D. L., Vietch, M., Messing, C. G., & Stevenson, A. (2021). Crinoid Feeding Strategies: New Insights From Subsea Video And Time-Lapse. Elements of Paleontology. Cambridge University Press, Cambridge, UK.
Mitchell, J.S. & Makovicky, P.J. (2014). Low ecological disparity in Early Cretaceous birds. Proceedings of the Royal Society B, 281(1787), 20140608.
Muscente, A. D., Prabhu, A., Zhong, H. et al. (2018). Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences, 115(20), 52175222.
Myers, C. E., Stigall, A. L., & Lieberman, B. S. (2015). PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology, 41(2), 226244.
Nanglu, K., Caron, J. B., & Gaines, R. R. (2020). The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 46(1), 5881.
Novack-Gottshall, P. M. (2007). Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33(2), 273294.
Novack-Gottshall, P. M. (2016a). General models of ecological diversification. I. Conceptual synthesis. Paleobiology, 42(2), 185208.
Novack-Gottshall, P. M. (2016b). General models of ecological diversification. II. Simulations and empirical applications. Paleobiology, 42(2), 209239.
Novack-Gottshall, P. M., Sultan, A., Smith, N. S., Purcell, J., Hanson, K. E., Lively, R., Ranjha, I., Collins, C., Parker, R., Sumrall, C. D., & Deline, B. (2022). Morphological volatility precedes ecological innovation in early echinoderms. Nature Ecology & Evolution, 6, pp. 1–10.
Oksanen, J., Blanchet, , F. G., Friendly M., et al. (2020). vegan: Community Ecology Package. R package version 2.57.
Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48(3), 612622.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289290.
Parsley, R. L., 1982a. Paracrinoids. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 210223.
Parsley, R. L., 1982b. Eumorphocystis. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 280288.
Paton, T. R., & Brett, C. E. (2019). Revised stratigraphy of the middle Simcoe Group (Ordovician, upper Sandbian-Katian) in its type area: an integrated approach. Canadian Journal of Earth Sciences, 57(1), 184198.
Paton, T. R., Brett, C. E., & Kampouris, G. E. (2019). Genesis, modification, and preservation of complex Upper Ordovician hardgrounds: implications for sequence stratigraphy and the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 526, 5371.
Perera, S. N., & Stigall, A. L. (2018). Identifying hierarchical spatial patterns within paleocommunities: an example from the Upper Pennsylvanian Ames Limestone of the Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 111.
Peterman, D. J., Ritterbush, K. A., Ciampaglio, C. N. et al. (2021). Buoyancy control in ammonoid cephalopods refined by complex internal shell architecture. Scientific Reports, 11(1), 8055.
Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 34(1), 104116.
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B., & Winemiller, K. O. (2017). Toward a periodic table of niches, or exploring the lizard niche hypervolume. American Naturalist, 190(5), 601616.
Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659669.
Polly, P. D., Fuentes-Gonzalez, J., Lawing, A. M., Bormet, A.K., & Dundas, R. G. (2017). Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora. Evolutionary Ecology Research, 18(1), 6195.
Qian, H., & Jiang, L., 2014. Phylogenetic community ecology: integrating community ecology and evolutionary biology. Journal of Plant Ecology, 7(2), 97100
Rahman, I. A., Darroch, S. A., Racicot, R. A., & Laflamme, M. (2015). Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances, 1(10), e1500800.
Rahman, I. A., O’Shea, J., Lautenschlager, S., & Zamora, S. (2020). Potential evolutionary trade‐off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5), 689701.
Raia, P. (2010). Phylogenetic community assembly over time in Eurasian Plio-Pleistocene mammals. Palaios, 25(5), 327338.
Core Team, R. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org.
Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217223.
Ricklefs, R. E., & Miles, D. B. (1994). Ecological and evolutionary inferences from morphology: an ecological perspective. In Wainwright, P. C. and Reilly, S. M., eds., Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 1341.
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1–2), 131147.
Sallan, L. C., Kammer, T. W., Ausich, W. I., & Cook, L. A. (2011). Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences, 108(20), 83358338.
Schliep, K., Paradis, E., de Oliveira Martins, L. et al. (2021). Package ‘phangorn’. R package version 2.7.0.
Schroeder, K., Lyons, S. K., & Smith, F. A. (2021). The influence of juvenile dinosaurs on community structure and diversity. Science, 371(6532), 941944.
Schumm, M., Edie, S. M., Collins, K. S. et al. (2019). Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proceedings of the Royal Society B, 286(1908), 20190745.
Soul, L. C., & Wright, D. F. (2021). Phylogenetic Comparative Methods: A User’s Guide for Paleontologists. Elements of Paleontology. Cambridge University Press, Cambridge, UK.
Sprinkle, J., ed. (1982a). Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma, The University of Kansas Paleontological Contributions, Lawrence, Monograph 1.
Sprinkle, J., (1982b). Echinoderm Zones & Faunas. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 4656.
Sprinkle, J., (1982c). Astrocystites. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 307308.
Sprinkle, J., Theisen, L., & McKinzie, M. G. (2015). New camerate crinoid from the Late Ordovician (Sandbian) Bromide Formation, Arbuckle Mountains, southern Oklahoma. Geological Society of America Abstracts with Programs, 47(7), 764.
Sprinkle, J., Guensburg, T. E., Rushlau, W. et al. (2018). New or more complete echinoderms discovered since 1982 from the Bromide Formation (Sandbian) of southern Oklahoma. Geological Society of America Abstracts with Programs, 50(6), doi: https://doi.org/10.1130/abs/2018AM-319856.
Sproat, C. D., Jin, J., Zhan, R. B., & Rudkin, D. M. (2015). Morphological variability and paleoecology of the Late Ordovician Parastrophina from eastern Canada and the Tarim Basin, Northwest China. Palaeoworld, 24(1–2), 160175.
Stanley, S. M. (1970). Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoirs, 125, 1282.
Stigall, A. L. (2012). Using ecological niche modelling to evaluate niche stability in deep time. Journal of Biogeography, 39(4), 772781.
Sumrall, C. D., & Gahn, F. J. (2006). Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Earth Sciences, 43(4), 497507.
Sumrall, C. D., & Schumacher, G. A. (2002). Cheirocystis fultonensis, a new glyptocystitoid rhombiferan from the Upper Ordovician of the Cincinnati Arch – comments on cheirocrinid ontogeny. Journal of Paleontology, 76(5), 843851.
Taylor, P. D. (2016). Competition between encrusters on marine hard substrates and its fossil record. Palaeontology, 59(4), 481497.
Taylor, W. L., & Brett, C. E. (1996). Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. Palaios, 11(2), 111140.
Ubaghs, G. (1978). Camerata. In Moore, R. C. and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T Echinodermata 2. Lawrence: Geological Society of America and University of Kansas Press, Boulder and Lawrence, pp. T409T519.
Van Valkenburgh, B. (1994). Ecomorphological analysis of fossil vertebrates and their paleocommunities. In Wainwright, P. C. and Reilly, S. M., eds., Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 140166.
Vermeij, G. J. (1987). Evolution and Escalation: an Ecological History of Life. Princeton University Press, Princeton.
Villéger, S., Novack‐Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561568.
Wagner, P. J., Kosnik, M. A., & Lidgard, S. (2006). Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science, 314(5803), 12891292.
Wainwright, P. C. (1991). Ecomorphology: experimental functional anatomy for ecological problems. American Zoologist, 31(4), 680693.
Walker, K. R. & Laporte, L. F. (1970). Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology, 44(5), 928944.
Walton, S. A., & Korn, D. (2018). An ecomorphospace for the Ammonoidea. Paleobiology, 44(2), 273289.
Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33(1), 475505.
Webby, B. D., Paris, F., Droser, M. L., & Percival, I. G., eds. (2004). The Great Ordovician Biodiversification Event. Columbia University Press, New York .
Weiser, M. D., & Kaspari, M. (2006). Ecological morphospace of New World ants. Ecological Entomology, 31(2), 131142.
Whittle, R. J., Witts, J. D., Bowman, V. C. et al. (2019). Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction. Palaeontology, 62(6), 919934.
Winemiller, K. O. (1991). Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, 61(4), 343365.
Wright, D. F. (2017a). Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7(1), 13745.
Wright, D. F. (2017b). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91(4), 799814.
Wright, D. F., & Toom, U. (2017). New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology, 60(6), 893910.
Wright, D. F., Ausich, W. I., Cole, S. R., Rhenberg, E. C., & Peter, M. E. (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91(4), 829846.
Wright, D. F., Cole, S. R., & Ausich, W. I. (2019). Biodiversity, systematics, and new taxa of cladid crinoids from the Ordovician Brechin Lagerstätte. Journal of Paleontology, 94(2), 334357.
Zanno, L. E., & Mackovicky, P. J. (2011). Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proceedings of the National Academy of Science, 108(1), 232237.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.