Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T14:33:19.581Z Has data issue: false hasContentIssue false

3 - Biomimetic robots as scientific models: a view from the whisker tip

from Part II - Neuromorphic robots: biologically and neurally inspired designs

Published online by Cambridge University Press:  05 February 2012

Jeffrey L. Krichmar
Affiliation:
University of California, Irvine
Hiroaki Wagatsuma
Affiliation:
Kyushu Institute of Technology (KYUTECH), Japan
Get access

Summary

Introduction

Why build robot models of animals and their nervous systems? One answer is that in building a robot model of a target organism, which mimics sufficiently some aspects of that animal’s body, brain, and behavior, we can expect to learn a good deal about the original creature. Synthesis (engineering) is quite different from analysis (reverse-engineering), is often easier, and teaches fascinating lessons (Braitenberg, 1986). Another answer is that a robot model should allow us to conduct experiments that will help us better understand the biological system, and that would be impossible or at least much more difficult to perform in the original animal (Rosenblueth and Wiener, 1945). In this chapter our target organism is the rat and our specific focus is on the sophisticated tactile sensory system provided by that animal’s facial whiskers (vibrissae). Neurobiology shows us that the brain nuclei and circuits that process vibrissal touch signals, and that control the positioning and movement of the whiskers, form a neural architecture that is a good model of how the mammalian brain, in general, coordinates sensing with action. Thus, by building a robot whisker system we can take a significant step towards building the first robot “mammal.” Following a short review of relevant rat biology, this chapter will describe the design and development of two whiskered robot platforms – Whiskerbot and SCRATCHbot – that we have constructed in order to better understand the rat whisker system, and to test hypotheses about whisker control and vibrissal sensing in a physical brain-based device. We provide a description of each platform, including mechanical, electronic, and software components, discussing, in relation to each component, the design constraints we sought to meet and the trade-offs made between biomimetic ideals and engineering practicalities. Some results obtained using each platform are described together with a brief outline of future development plans. Finally, we discuss the use of biomimetic robots as scientific models and consider, using the example of whiskered robots, what contribution robotics can make to the brain and behavioral sciences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahissar, E.Arieli, A. 2001 Figuring space by timeNeuron 32 185CrossRefGoogle ScholarPubMed
Anderson, S. R.Porrill, J.Pearson, M. J. 2009 Cerebellar-inspired forward model of whisking enhances contact detection by vibrissae of robot ratSociety for Neuroscience AbstractsGoogle Scholar
Anjum, F.Turni, H.Mulder, P. G.van der Burg, J.Brecht, M. 2006 Tactile guidance of prey capture in Etruscan shrewsProceedings of the National Academy of Sciences of the USA 103 16 544CrossRefGoogle ScholarPubMed
Berg, R. W.Kleinfeld, D. 2003 Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular controlJournal of Neurophysiology 89 104CrossRefGoogle ScholarPubMed
Bermejo, R.Vyas, A.Zeigler, H. P. 2002 Topography of rodent whisking. I. Two-dimensional monitoring of whisker movementsSomatosensory and Motor Research 19 341CrossRefGoogle ScholarPubMed
Birdwell, J. A.Solomon, J. H.Thajchayapong, M. 2007 Biomechanical models for radial distance determination by the rat vibrissal systemJournal of Neurophysiology 98 2439CrossRefGoogle ScholarPubMed
Braitenberg, V 1986 Vehicles: Experiments in Synthetic PsychologyCambridge, MAMIT PressGoogle Scholar
Brecht, M.Preilowski, B.Merzenich, M. M. 1997 Functional architecture of the mystacial vibrissaeBehavioural Brain Research 84 81CrossRefGoogle ScholarPubMed
Carvell, G. E.Simons, D. J. 1990 Biometric analyses of vibrissal tactile discrimination in the ratJournal of Neuroscience 10 2638CrossRefGoogle ScholarPubMed
Carvell, G. E.Simons, D. J.Lichtenstein, S. H.Bryant, P. 1991 Electromyographic activity of mystacial pad musculature during whisking behavior in the ratSomatosensory and Motor Research 8 159CrossRefGoogle ScholarPubMed
Chiel, H. JBeer, R D. 1997 The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environmentTrends in Neurosciences 20 553CrossRefGoogle Scholar
Chiel, H. J.Ting, L. H.Ekeberg, O.Hartmann, M. J. Z. 2009 The brain in its body: motor control and sensing in a biomechanical contextJournal of Neuroscience 29 12 80714CrossRefGoogle Scholar
Cohen, J. D.Hirata, A.Castro-Alamancos, M. A. 2008 Vibrissa sensation in superior colliculus: wide-field sensitivity and state-dependent cortical feedbackJournal of Neuroscience 28 11 20511 220CrossRefGoogle ScholarPubMed
Cramer, N. P.Li, Y.Keller, A. 2007 The whisking rhythm generator: a novel mammalian network for the generation of movementJournal of Neurophysiology 97 2148CrossRefGoogle Scholar
Dean, P.Redgrave, P.Westby, G. W. 1989 Event or emergency? Two response systems in the mammalian superior colliculusTrends in Neurosciences 12 137CrossRefGoogle ScholarPubMed
Dean, P.Porrill, J.Ekerot, C. F.Jörntell, H. 2010 The cerebellar microcircuit as an adaptive filter: experimental and computational evidenceNature Reviews Neuroscience 11 30CrossRefGoogle ScholarPubMed
Dörfl, J. 1982 The musculature of the mystacial vibrissae of the white mouseJournal of Anatomy 135 147Google ScholarPubMed
Drager, U. C.Hubel, D. H. 1976 Topography of visual and somatosensory projections to mouse superior colliculusJournal of Neurophysiology 39 91CrossRefGoogle ScholarPubMed
Ebara, S.Kumamoto, K.Matsuura, T.Mazurkiewicz, J. E.Rice, F. L. 2002 Similarities and differences in the innervation of mystacial vibrissal follicle–sinus complexes in the rat and cat: a confocal microscopic studyJournal of Comparative Neurology 449 103CrossRefGoogle ScholarPubMed
Epstein, J. M. 2008 Why model?Journal of Artificial Societies and Social Simulation 11 12Google Scholar
Etienne, A. S.Maurer, R.Séguinot, V. 1996 Path integration in mammals and its interaction with visual landmarksJournal of Experimental Biology 199 201Google ScholarPubMed
Evans, M.Fox, C. W.Pearson, M.Prescott, T. J. 2008
Evans, M.Fox, C. W.Pearson, M. J.Prescott, T. J. 2009 19
Fend, M.Bovet, S.Hafner, V. 2004
Fox, C.Evans, M.Stone, J.Prescott, T. 2008
Fox, C. W.Mitchinson, B.Pearson, M. J.Pipe, A. G.Prescott, T. J. 2009 Contact type dependency of texture classification in a whiskered mobile robotAutonomous Robots 26 223CrossRefGoogle Scholar
Gao, P.Bermejo, R.Zeigler, H. P. 2001 Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generatorJournal of Neuroscience 21 5374CrossRefGoogle ScholarPubMed
Gopal, V.Hartmann, M. J. Z. 2007 Using hardware models to quantify sensory data acquisition across the rat vibrissal arrayBioinspiration and Biomimetics 2 135CrossRefGoogle ScholarPubMed
Grant, R. A.Mitchinson, B.Fox, C. W.Prescott, T. J. 2009 Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface explorationJournal of Neurophysiology 101 862CrossRefGoogle ScholarPubMed
Gurney, K. N.Humphries, M.Wood, R.Prescott, T. J.Redgrave, P. 2004 Testing computational hypotheses of brain systems function: a case study with the basal gangliaNetwork 15 263CrossRefGoogle ScholarPubMed
Haiss, F.Schwarz, C. 2005 Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortexJournal of Neuroscience 25 1579CrossRefGoogle ScholarPubMed
Hartmann, M. J. 2001 Active sensing capabilities of the rat whisker systemAutonomous Robots 11 249CrossRefGoogle Scholar
Hartmann, M. J.Johnson, N. J.Towal, R. B.Assad, C. 2003 Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animalJournal of Neuroscience 23 6510CrossRefGoogle ScholarPubMed
Hill, D. N.Bermejo, R.Zeigler, H. P.Kleinfeld, D. 2008 Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activityJournal of Neuroscience 28 3438CrossRefGoogle ScholarPubMed
Jung, D.Zelinsky, A. 1996 Whisker-based mobile robot navigation. InProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2 497CrossRefGoogle Scholar
Kim, D.Möller, R. 2004 Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior: From Animals to Animats 8Cambridge, MA:MIT PressGoogle Scholar
Kim, D.Möller, R. 2007 Biomimetic whiskers for shape recognitionRobotics and Autonomous Systems 55 229CrossRefGoogle Scholar
Kleinfeld, D.Berg, R. W.O’Connor, S. M. 1999 Anatomical loops and their electrical dynamics in relation to whisking by ratSomatosensory and Motor Research 16 69CrossRefGoogle ScholarPubMed
Kleinfeld, D.Ahissar, E.Diamond, M. E. 2006 Active sensation: insights from the rodent vibrissa sensorimotor systemCurrent Opinion in Neurobiology 16 435CrossRefGoogle ScholarPubMed
Knutsen, P.Biess, A.Ahissar, E. 2008 Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsionNeuron 59 35CrossRefGoogle ScholarPubMed
Knutsen, P. M.Pietr, M.Ahissar, E. 2006 Haptic object localization in the vibrissal system: behavior and performanceJournal of Neuroscience 26 8451CrossRefGoogle ScholarPubMed
Krupa, D. J.Matell, M. S.Brisben, A. J.Oliveira, L. M.Nicolelis, A. L. 2001 Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminationsJournal of Neuroscience 21 5752CrossRefGoogle ScholarPubMed
Lichtenstein, S. H.Carvell, G. E.Simons, D. J. 1990 Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directionsSomatosensory and Motor Research 7 47CrossRefGoogle ScholarPubMed
Lottem, E.Azouz, R. 2009 Mechanisms of tactile information transmission through whisker vibrationsJournal of Neuroscience 29 11 68611 697CrossRefGoogle ScholarPubMed
Mitchinson, B.Gurney, K. N.Redgrave, P. 2004 Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complexProceedings of the Royal Society of London B Biological Sciences 271 2509CrossRefGoogle Scholar
Mitchinson, B.Pearson, M.Melhuish, C.Prescott, T. J. 2006 BerlinSpringer-Verlag
Mitchinson, B.Martin, C. J.Grant, R. A.Prescott, T. J. 2007 Feedback control in active sensing: rat exploratory whisking is modulated by environmental contactProceedings of the Royal Society of London B Biological Sciences 274 1035CrossRefGoogle ScholarPubMed
Mitchinson, B.Arabzadeh, E.Diamond, M. E.Prescott, T. J. 2008 Spike-timing in primary sensory neurons: a model of somatosensory transduction in the ratBiological Cybernetics 98 185CrossRefGoogle ScholarPubMed
Mitchinson, B.Chan, T.-S.Chambers, J. 2010 BRAHMS: novel middleware for integrated systems computationAdvanced Engineering Informatics 24 49CrossRefGoogle Scholar
Nallatech, 2007 www.nallatech.com/mediaLibrary/images/english/6406
Neimark, M. A.Andermann, M. L.Hopfield, J. J.Moore, C. I. 2003 Vibrissa resonance as a transduction mechanism for tactile encodingJournal of Neuroscience 23 6499CrossRefGoogle ScholarPubMed
Nguyen, Q. T.Kleinfeld, D. 2005 Positive feedback in a brainstem tactile sensorimotor loopNeuron 45 447CrossRefGoogle Scholar
Pearson, M.Nibouche, M.Pipe, A. G. 2006
Pearson, M.Nibouche, M.Gilhespy, I. 2006 A hardware based implementation of a tactile sensory system for neuromorphic signal processing applications. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4Google Scholar
Pearson, M. J.Melhuish, C.Pipe, A. G. 2005
Pearson, M. J.Pipe, A. G.Mitchinson, B. 2007 Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approachIEEE Transactions on Neural Networks 18 1472CrossRefGoogle ScholarPubMed
Pearson, M. J.Pipe, A. G.Melhuish, C.Mitchinson, B.Prescott, T. J. 2007 Whiskerbot: a robotic active touch system modeled on the rat whisker sensory systemAdaptive Behaviour 15 223CrossRefGoogle Scholar
Petersen, C. C. H. 2007 The functional organization of the barrel cortexNeuron 56 339CrossRefGoogle ScholarPubMed
Prescott, T. J.Mitchinson, B.Redgrave, P.Melhuish, C.Dean, P. 2005
Prescott, T. J.Gonzalez, F. M.Gurney, K.Humphries, M. D.Redgrave, P. 2006 A robot model of the basal ganglia: behavior and intrinsic processingNeural Networks 19 31CrossRefGoogle ScholarPubMed
Prescott, T. J.Bryson, J. J.Seth, A. K. 2007 Introduction: modelling natural action selectionPhilosophical Transactions of the Royal Society of London B Biological Sciences 362 1521CrossRefGoogle ScholarPubMed
Prescott, T. J.Pearson, M. J.Mitchinson, B.Sullivan, J. C. W.Pipe, A. G. 2009 Whisking with robots: from rat vibrissae to biomimetic technology for active touchIEEE Robotics and Automation Magazine 16 42CrossRefGoogle Scholar
Prescott, T. J.Mitchinson, B.Grant, R. A.
Quist, B. W.Hartmann, M. J. 2008 A two-dimensional force sensor in the millinewton range for measuring vibrissal contactsJournal of Neuroscience Methods 172 158CrossRefGoogle ScholarPubMed
Redgrave, P.Prescott, T. J.Gurney, K. 1999 The basal ganglia: a vertebrate solution to the selection problem?Neuroscience 89 1009CrossRefGoogle ScholarPubMed
Rice, F. L.Mance, A.Munger, B. L. 1986 A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle–sinus complexesJournal of Comparative Neurology 252 154CrossRefGoogle ScholarPubMed
Rosenblueth, AWiener, N. 1945 The role of models in sciencePhilosophy of Science 12CrossRefGoogle Scholar
Russell, R. A. 1992 Using tactile whiskers to measure surface contours. InProceedings of the IEEE International Conference on Robotics and Automation 2 1295Google Scholar
Russell, R. A.Wijaya, J. A. 2005 Recognising and manipulating objects using data from a whisker sensor arrayRobotica 23 653CrossRefGoogle Scholar
Sachdev, R. N.Berg, R. W.Champney, G.Kleinfeld, D.Ebner, F. F. 2003 Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whiskingSomatosensory and Motor Research 20 163CrossRefGoogle Scholar
Sahibzada, N.Dean, P.Redgrave, P. 1986 Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in ratsJournal of Neuroscience 6 723CrossRefGoogle ScholarPubMed
Seth, A. K.McKinstry, J. L.Edelman, G. M.Krichmar, J. L. 2004 Active sensing of visual and tactile stimuli by brain-based devicesInternational Journal of Robotics and Automation 19 222CrossRefGoogle Scholar
Seth, A. K.McKinstry, J. L.Edelman, G. M.Krichmar, J. L. 2004 Proceedings of the IEEE International Conference4925
Shoykhet, M.Doherty, D.Simons, D. J. 2000 Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processingSomatosensory and Motor Research 17 171CrossRefGoogle ScholarPubMed
Solomon, J. H.Hartmann, M. J. 2006 Biomechanics: robotic whiskers used to sense featuresNature 443 525CrossRefGoogle Scholar
Sparks, D. L. 1986 Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculusPhysiological Reviews 66 118CrossRefGoogle ScholarPubMed
Stüttgen, M. C.Kullmann, S.Schwarz, C. 2008 Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulationJournal of Neurophysiology 100 1879CrossRefGoogle ScholarPubMed
Szwed, M.Bagdasarian, K.Ahissar, E. 2003 Encoding of vibrissal active touchNeuron 40 621CrossRefGoogle ScholarPubMed
Towal, R. B.Hartmann, M. J. 2006 Right-left asymmetries in the whisking behavior of rats anticipate head movementsJournal of Neuroscience 26 8838CrossRefGoogle ScholarPubMed
Ueno, N.Kaneko, M. 1994 Dynamic active antenna: a principle of dynamic sensing. InProceedings of the IEEE International Conference on Robotics and Automation 2 1784Google Scholar
Waite, P. M. E.Tracey, D. J. 1995 Paxinos, G.The Rat Nervous SystemNew YorkAcademic Press,705Google Scholar
Welker, W. I. 1964 Analysis of sniffing of the albino ratBehaviour 22 223CrossRefGoogle Scholar
Wilson, J. F.Chen, Z. 1995 A whisker probe system for shape perception of solidsJournal of Dynamic Systems Measurement Control 117 104CrossRefGoogle Scholar
Wineski, L. E. 1985 Facial morphology and vibrissal movement in the golden hamsterJournal of Morphology 183 199CrossRefGoogle ScholarPubMed
Yokoi, H.Lungarella, M.Fend, M.Pfeifer, R. 2005 Artificial whiskers: structural characterization and implications for adaptive robotsJournal of Robotics and Mechatronics 7 584CrossRefGoogle Scholar
Zucker, E.Welker, W. I. 1969 Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglionBrain Research 12 138156.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×