Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T20:28:42.363Z Has data issue: false hasContentIssue false

Chapter 7 - Neonatal Encephalopathy

from Part II - Practice of Neuromonitoring: Neonatal Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

Neonatal encephalopathy (NE) is the term used to describe persistent neurological dysfunction evident in the first few days after birth. The commonest cause of NE is hypoxia-ischemia, but a similar clinical presentation may occur in other conditions. EEG is essential to grade the severity of neonatal encephalopathy, monitor response to anti-seizure therapy, and to predict outcome early in the neonatal period in infants with NE. Because therapeutic hypothermia is often used in neonatal encephalopathy, the impact of hypothermia on EEG findings is important to consider. EEG evolution and outcome prediction is altered by therapeutic hypothermia. Seizures are common in NE, and seizure burden is also altered by hypothermia. EEG and aEEG can assess severity of NE and predict outcome more accurately than clinical assessment alone. This chapter discusses the various uses of EEG and aEEG in neonatal encephalopathy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Douglas-Escobar, M, Weiss, MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169(4):397403.CrossRefGoogle ScholarPubMed
Ferriero, DM, Bonifacio, SL. The search continues for the elusive biomarkers of neonatal brain injury. J Pediatr. 2014;164(3):438–40.Google Scholar
Rutherford, M, Malamateniou, C, McGuinness, A, et al. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):351–60.CrossRefGoogle ScholarPubMed
Bonifacio, SL, Glass, HC, Vanderpluym, J, et al. Perinatal events and early magnetic resonance imaging in therapeutic hypothermia. J Pediatr. 2011;158(3): 360–5.CrossRefGoogle ScholarPubMed
Sarnat, HB, Sarnat, MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696705.Google Scholar
Thompson, CM, Puterman, AS, Linley, LL, et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 1997;86(7):757–61.Google Scholar
Lee, AC, Kozuki, N, Blencowe, H, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013;74(Suppl 1):5072.CrossRefGoogle ScholarPubMed
Lawn, JE, Cousens, S, Zupan, J; the Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365(9462):891900.Google Scholar
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al.; American Clinical Neurophysiology Society Critical Care Monitoring. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.CrossRefGoogle ScholarPubMed
Murray, DM, Boylan, GB, Ali, I. et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.CrossRefGoogle ScholarPubMed
Boylan, GB. EEG monitoring in the neonatal intensive care unit: a critical juncture. Clin Neurophysiol. 2011;122(10):1905–7.Google Scholar
Herman, ST, Abend, NS, Bleck, TP, et al.; E. E. G. T. F. o. t. A. C. N. S. Critical Care Continuous. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):8795.CrossRefGoogle ScholarPubMed
El-Dib, M, Chang, T, Tsuchida, TN, Clancy, RR. Amplitude-integrated electroencephalography in neonates. Pediatr Neurol. 2009;41(5):315–26.Google Scholar
Korotchikova, I, Connolly, S, Ryan, CA, et al. EEG in the healthy term newborn within 12 hours of birth. Clin Neurophysiol. 2009;120(6):1046–53.CrossRefGoogle ScholarPubMed
Korotchikova, I, Stevenson, NJ, Livingstone, V, Ryan, CA, Boylan, GB. Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period. Clin Neurophysiol. 2016;127(4):2095–101.CrossRefGoogle ScholarPubMed
Gunn, AJ, Thoresen, M. Animal studies of neonatal hypothermic neuroprotection have translated well into practice. Resuscitation. 2015;97:8890.Google Scholar
Pressler, RM, Boylan, GB, Morton, M, Binnie, CD, Rennie, JM. Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol. 2001;112(1):31–7.CrossRefGoogle ScholarPubMed
Lynch, NE, Stevenson, NJ, Livingstone, V, et al. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53(3):549–57.Google Scholar
Murray, DM, Boylan, GB, Ryan, CA, Connolly, S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics. 2009;124(3):e459–67.CrossRefGoogle ScholarPubMed
Walsh, BH, Murray, DM, Boylan, GB. The use of conventional EEG for the assessment of hypoxic ischaemic encephalopathy in the newborn: a review. Clin Neurophysiol. 2011;122(7):1284–94.CrossRefGoogle ScholarPubMed
Nash, KB, Bonifacio, SL, Glass, HC, et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology. 2011;76(6):556–62.CrossRefGoogle ScholarPubMed
Boylan, G, Burgoyne, L, Moore, C, O’Flaherty, B, Rennie, J. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99(8):1150–5.CrossRefGoogle ScholarPubMed
al Naqeeb, N, Edwards, AD, Cowan, FM, Azzopardi, D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics. 1999;103(6 Pt 1):1263–71.CrossRefGoogle ScholarPubMed
de Vries, LS, Toet, MC. How to assess the aEEG background. J Pediatr. 2009;154(4):625–6; author reply 626–7.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L. Monitoring brain function with aEEG in term asphyxiated infants before and during cooling. Acta Paediatr. 2013;102(7):678–9.CrossRefGoogle ScholarPubMed
Azzopardi, D, Brocklehurst, P, Edwards, D, et al. The TOBY Study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr. 2008;8:17.CrossRefGoogle ScholarPubMed
Shankaran, S, Pappas, A, McDonald, SA, et al.; H. Eunice Kennedy Shriver National Institute of Child and N. Human Development Neonatal Research. Predictive value of an early amplitude integrated electroencephalogram and neurologic examination. Pediatrics. 2011;128(1):e112–20.CrossRefGoogle ScholarPubMed
Cseko, AJ, Bango, M, Lakatos, P, et al. Accuracy of amplitude-integrated electroencephalography in the prediction of neurodevelopmental outcome in asphyxiated infants receiving hypothermia treatment. Acta Paediatr. 2013;102(7):707–11.CrossRefGoogle ScholarPubMed
Toet, MC, Hellstrom-Westas, L, Groenendaal, F, Eken, P, de Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999;81(1):F1923.Google Scholar
Thoresen, M, Hellstrom-Westas, L, Liu, X, de Vries, LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126(1):e131–9.Google Scholar
Evans, E, Koh, S, Lerner, J, Sankar, R, Garg, M. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F169–73.CrossRefGoogle Scholar
Marics, G, Cseko, A, Vasarhelyi, B, et al. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr. 2013;13:194.CrossRefGoogle ScholarPubMed
Olischar, M, Shany, E, Aygun, C, et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102(3):203–11.CrossRefGoogle ScholarPubMed
Yamamoto, H, Okumura, A, Fukuda, M. Epilepsies and epileptic syndromes starting in the neonatal period. Brain Dev. 2011;33(3):213–20.CrossRefGoogle ScholarPubMed
Young, GB, da Silva, OP. Effects of morphine on the electroencephalograms of neonates: a prospective, observational study. Clin Neurophysiol. 2000;111(11):1955–60.CrossRefGoogle ScholarPubMed
Shany, E, Benzaquen, O, Friger, M, Richardson, J, Golan, A. Influence of antiepileptic drugs on amplitude-integrated electroencephalography. Pediatr Neurol. 2008;39(6):387–91.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L. Midazolam and amplitude-integrated EEG. Acta Paediatr. 2004;93(9):1153–4.CrossRefGoogle ScholarPubMed
Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol. 2003;28(4):277–80.CrossRefGoogle ScholarPubMed
Mathieson, SR, Livingstone, V, Low, E, et al. Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection. Clin Neurophysiol. 2016;127(10):3343–50.CrossRefGoogle Scholar
Azzopardi, D, Robertson, NJ, Kapetanakis, A, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal fNeonatal Ed. 2013;98(5):F437–9.Google Scholar
Hellstrom-Westas, L, Rosen, I, Swenningsen, NW. Silent seizures in sick infants in early life. Diagnosis by continuous cerebral function monitoring. Acta Paediatr Scand. 1985;74(5):741–8.CrossRefGoogle ScholarPubMed
van Rooij, LG, Hellstrom-Westas, L, de Vries, LS. Treatment of neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):209–15.CrossRefGoogle ScholarPubMed
Wusthoff, CJ, Dlugos, DJ, Gutierrez-Colina, A, et al. Electrographic seizures during therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. J Child Neurol. 2011;26(6):724–8.CrossRefGoogle ScholarPubMed
Sharpe C, Reiner GE, Davis SL, et al. Levetiracetam versus phenobarbital for neonatal seizures: a randomized controlled trial. Pediatrics. 2020;145(6):e20193182.Google Scholar
Wirrell, EC, Armstrong, EA, Osman, LD, Yager, JY. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res. 2001;50(4):445–54.CrossRefGoogle ScholarPubMed
Miller, SP, Weiss, J, Barnwell, A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58(4):542–8.CrossRefGoogle ScholarPubMed
Low, E, Boylan, GB, Mathieson, SR, et al. Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed. 2012;97(4):F267–72.Google Scholar
Glass, HC, Wusthoff, CJ, Shellhaas, RA, et al. Risk factors for EEG seizures in neonates treated with hypothermia: A multicenter cohort study. Neurology. 2014;82(14):1239–44.CrossRefGoogle ScholarPubMed
Srinivasakumar, P, Zempel, J, Wallendorf, M, et al. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr. 2013;163(2):465–70.Google Scholar
Rafay, MF. , Cortez, MA, de Veber, GA, et al. Predictive value of clinical and EEG features in the diagnosis of stroke and hypoxic ischemic encephalopathy in neonates with seizures. Stroke. 2009;40(7):2402–7.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Soaita, AI, Clancy, RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120(4):770–7.Google Scholar
Glass, HC, Nash, KB, Bonifacio, SL, et al. Seizures and magnetic resonance imaging-detected brain injury in newborns cooled for hypoxic-ischemic encephalopathy. J Pediatr. 2011;159(5):731–5 e731.Google Scholar
Howell, KB, McMahon, JM, Carvill, GL, et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85(11):958–66.CrossRefGoogle Scholar
Pisano, T, Numis, AL, Heavin, SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56(5):685–91.CrossRefGoogle ScholarPubMed
Dulac, O. Epileptic encephalopathy with suppression-bursts and nonketotic hyperglycinemia. Handb Clin Neurol. 2013;113:1785–97.CrossRefGoogle ScholarPubMed
Azzopardi, DV, Strohm, B, Edwards, AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361(14):1349–58.CrossRefGoogle ScholarPubMed
Rennie, JM, Hagmann, CF, Robertson, NJ. Outcome after intrapartum hypoxic ischaemia at term. Semin Fetal Neonatal Med. 2007;12(5):398407.CrossRefGoogle ScholarPubMed
Mercuri, E, Anker, S, Guzzetta, A, et al. Visual function at school age in children with neonatal encephalopathy and low Apgar scores. Arch Dis Child Fetal Neonatal Ed. 2004;89(3):F258–62.Google Scholar
Azzopardi, D, Strohm, B, Marlow, N, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014;371(2):140–9.CrossRefGoogle ScholarPubMed
van Handel, M, de Sonneville, L, de Vries, LS, Jongmans, MJ, Swaab, H. Specific memory impairment following neonatal encephalopathy in term-born children. Dev Neuropsychol. 2012;37(1):3050.CrossRefGoogle ScholarPubMed
de Haan, M, Wyatt, JS, Roth, S, et al. Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci. 2006;9(4):350–8.Google Scholar
van Handel, M, Swaab, H, de Vries, L, Jongmans, MJ. Behavioral outcome in children with a history of neonatal encephalopathy following perinatal asphyxia. J Pediatr Psychol. 2010;35(3):286–95.CrossRefGoogle ScholarPubMed
Marlow, N, Rose, AS, Rands, CE, Draper, E. S. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2005;90(5):F380–7.CrossRefGoogle ScholarPubMed
Odd, DE, Lewis, G, Whitelaw, A, Gunnell, D. Resuscitation at birth and cognition at 8 years of age: a cohort study. Lancet. 2009;373(9675):1615–22.CrossRefGoogle ScholarPubMed
Osredkar, D, Toet, MC, van Rooij, LG, et al. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2005;115(2):327–32.Google Scholar
Hallberg, B, Grossmann, K, Bartocci, M, Blennow, M. The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment. Acta Paediatr. 2010;99(4):531–6.CrossRefGoogle ScholarPubMed
Azzopardi, D, TOBY Study Group. Predictive value of the amplitude integrated EEG in infants with hypoxic ischaemic encephalopathy: data from a randomised trial of therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014;99(1):F80–2.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×