Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T02:48:06.301Z Has data issue: false hasContentIssue false

10 - Neurodegenerative disease and the repair of oxidatively damaged DNA

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Marcus S. Cooke
Affiliation:
Departments of Cancer Studies and Genetics, University of Leicester, Leicester Royal Infirmary, UK
Get access

Summary

Free radicals and oxidative damage to DNA

In addition to endogenous sources of free radicals, such as those derived from normal metabolism (see Chapter 1), pathophysiological or environmental events may also generate free radicals. Cellular biomolecules, including nucleic acids, proteins and lipids are all targets for these damaging species. Reactive oxygen species (ROS) are of particular interest. Enzymic and non-enzymic antioxidants (discussed in Chapter 2) contribute to the limit on the extent to which ROS are produced, and hence their interaction with cellular components. If the balance between the anti- and pro-oxidant factors is altered in favour of the latter, a condition of oxidative stress arises, with a concomitant increase in biomolecule modification. Given its central role in cellular events, modification of DNA, for example 8-hydroxyguanine (8-OH-Gua), and thymine glycol (Tg), has been the subject of intense study. Such lesions may have a plethora of effects, most notably mutation, but also replicative block, deletions, microsatellite instability and loss of heterozygosity, as well as various epigenetic effects (for review see Cooke et al., 2003). Furthermore, a great deal of literature exists that describes elevated levels of lesions in a variety of diseases, suggesting that the induction of damage is an important event in pathogenesis (for review, see Cooke et al., 2003). Unlike oxidatively modified lipids and proteins, which may be removed and replaced as part of normal turnover, DNA needs to be repaired, and intense study has revealed much about the processes that maintain genome integrity.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 131 - 140
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Tohgi, H., Isobe, C., Murata, T. & Sato, C. (2002). Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with#x2019isease.J. Neurosci., Res., 70, 447–50CrossRefGoogle Scholar
Alam, Z. I., Jenner, A., Daniel, S. E.et al. (1997). Oxidative DNA damage in the Parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem., 69, 1196–203CrossRefGoogle ScholarPubMed
Alam, Z. I., Halliwell, B. & Jenner, P. (2000). No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington's disease. J. Neuroche., 75, 840–6CrossRefGoogle ScholarPubMed
Anson, R. M., Croteau, D. L., Stierum, R. H., Filburn, C., Parsell, R. & Bohr, V. A. (1998). Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucl. Acids Res., 26, 662–8CrossRefGoogle ScholarPubMed
Arai, K., Morishita, K., Shinmura, K.et al. (1997). Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene, 14, 2857–61CrossRefGoogle ScholarPubMed
Berdanier, C. D. & Everts, H. B. (2001). Mitochondrial DNA in aging and degenerative disease. Mutat. Res., 475, 169–83CrossRefGoogle ScholarPubMed
Bestwick, R. K., Moffett, G. L. & Mathews, C. K. (1982). Selective expansion of mitochondrial nucleoside triphosphate pools in antimetabolite-treated HeLa cells. J. Biol. Chem., 257, 9300–4Google ScholarPubMed
Bialkowski, K. & Kasprzak, K. S. (1998). A novel assay of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity. Nucl. Acids Res., 26, 3194–201CrossRefGoogle ScholarPubMed
Bogdanov, M., Brown, R. H., Matson, W.et al. (2000). Increased oxidative damage to DNA in ALS patients. Free Radical Biol. Med., 29, 652–8CrossRefGoogle ScholarPubMed
Bogdanov, M. B., Andreassen, O. A., Dedeoglu, A., Ferrante, R. J. & Beal, M. F. (2001). Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J. Neurochem., 79, 1246–9CrossRefGoogle Scholar
Brooks, P. J., Wise, D. S., Berry, D. A.et al. (2000). The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem., 275, 22355–62Google ScholarPubMed
Browne, S. E., Bowling, A. C., MacGarvey, U.et al. (999). Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol., 41, 646–53CrossRef
Calabrese, V., Scapagnini, G., Giuffrida Stella, A. M., Bates, T. E. & Clark, J. B. (2001). Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res., 26, 739–64CrossRefGoogle ScholarPubMed
Cappelli, E., Degan, P., Thompson, L. H. & Frosina, G. (2000). Efficient repair of 8-oxo-7,8-dihydrodeoxyguanosine in human and hamster xeroderma pigmentosum D cells. Biochemistry, 39, 10408–12CrossRefGoogle ScholarPubMed
Chopp, M., Chan, P. H., Hsu, C. Y., Cheung, M. E. & Jacobs, T. P. (1996). DNA damage and repair in central nervous system injury: National Institute of Neurological Disorders and Stroke Workshop Summary. Stroke, 27, 363–9CrossRefGoogle ScholarPubMed
Clayton, D. A., Doda, J. N. & Friedberg, E. C. (1974). The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl Acad. Sci., USA, 71, 2777–81CrossRefGoogle ScholarPubMed
Cooke, M. S., Evans, M. D., Herbert, K. E. & Lunec, J. (2000). Urinary 8-oxo-2′-deoxyguanosine-source, significance and supplements. Free Rad. Res., 32, 381–97CrossRefGoogle ScholarPubMed
Cooke, M. S., Lunec, J. & Evans, M. D. (2002). Progress in the analysis of urinary oxidative DNA damage. Free Rad. Biol. Med., 33, 1601–14CrossRefGoogle ScholarPubMed
Cooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB. J., 17, 1195–214CrossRefGoogle ScholarPubMed
Cooper, P. K., Nouspikel, T., Clarkson, S. G. & Leadon, S. A. (1997). Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science, 275, 990–3CrossRefGoogle ScholarPubMed
Croteau, D. L., Rhys, C. M., Hudson, E. K., Dianov, G. L., Hansford, R. G. & Bohr, V. A. (1997). An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem., 272, 27338–44CrossRefGoogle ScholarPubMed
Croteau, D. L., Stierum, R. H. & Bohr, V. A. (1999). Mitochondrial DNA repair pathways. Mutat. Res., 434, 137–48CrossRefGoogle ScholarPubMed
Vries, A. & Steeg, H. (1996). Xpa knockout mice. Semin. Cancer Biol., 7, 229–40CrossRefGoogle ScholarPubMed
Dianov, G. L., Houle, J. F., Iyer, N., Bohr, V. A. & Friedberg, E. C. (1997). Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucl. Acids Res., 25, 3636–42CrossRefGoogle ScholarPubMed
Druzhyna, N., Nair, R. G., LeDoux, S. P. & Wilson, G. L. (1998). Defective repair of oxidative damage in mitochondrial DNA in Down's syndrome. Mutat. Res., 409, 81–9CrossRefGoogle ScholarPubMed
Evans, M. D., Dizdaroglu, M. & Cooke, M. S. (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. Rev., 567, 1–61CrossRefGoogle ScholarPubMed
Fortini, P., Parlanti, E., Sidorkina, O. M., Laval, J. & Dogliotti, E. (1999). The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J. Biol. Chem., 274, 15230–6CrossRefGoogle ScholarPubMed
Galloway, A. M., Liuzzi, M. & Paterson, M. C. (1994). Metabolic processing of cyclobutyl pyrimidine dimers and (6–4) photoproducts in UV-treated human cells. Evidence for distinct excision-repair pathways. J. Biol. Chem., 269, 974–80Google ScholarPubMed
Graham, J. M., Anyane-Yeboa, K., Raams, A.et al. (2001). Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am. J. Hum. Genet., 69, 291–300CrossRefGoogle Scholar
Hanawalt, P. C. (1994). Transcription-coupled repair and human disease. Science, 266, 1957–8CrossRefGoogle ScholarPubMed
Kang, D., Nishida, J., Iyama, A.et al. (1995). Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J. Biol. Chem., 270, 14659–65CrossRefGoogle Scholar
Kikuchi, A., Takeda, A., Onodera, H.et al. (2002). Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiol. Dis., 9, 244–8CrossRefGoogle ScholarPubMed
Kim, S. H., Engelhardt, J. I., Henkel, J. S.et al. (2004). Widespread increased expression of the DNA repair enzyme PARP in brain in ALS. Neurology, 62, 319–22CrossRefGoogle ScholarPubMed
Koppele, J., Lucassen, P. J., Sakkee, A. N.et al. (1996). 8-OHdG levels in brain do not indicate oxidative DNA damage in Alzheimer's disease. Neurobiol. Agin., 17, 819–26CrossRefGoogle Scholar
Kruman, I. I., Kumaravel, T. S., Lohani, A.et al. (2002). Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J. Neurosci., 22, 1752–62CrossRefGoogle ScholarPubMed
Page, F., Kwoh, E. E., Avrutskaya, A.et al. (2000). Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell, 101, 159–71CrossRefGoogle ScholarPubMed
Leadon, S. A. & Cooper, P. K. (1993). Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl Acad. Sci., USA, 90, 10499–503CrossRefGoogle ScholarPubMed
Lezza, A., Mecocci, P., Cormio, A.et al. (1999). Area-specific differences in OH8dG and mtDNA4977 levels in Alzheimer disease patients and aged controls. J. Anti-Aging Med., 2, 209–15CrossRefGoogle Scholar
Link, C. J., Robbins, J. H. & Bohr, V. A. (1995). Gene specific DNA repair of damage induced in familial Alzheimer disease cells by ultraviolet irradiation or by nitrogen mustard. Mutat. Res., 336, 115–21CrossRefGoogle ScholarPubMed
Lipinski, L. J., Hoehr, N., Mazur, S. J.et al. (1999). Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucl. Acids Res., 27, 3153–8Google Scholar
Lovell, M. A., Xie, C. & Markesbery, W. R. (2000). Decreased base excision repair and increased helicase activity in Alzheimer's disease brain. Brain Res., 855, 116–23CrossRefGoogle ScholarPubMed
Lyras, L., Perry, R. H., Perry, E. K.et al. (1998). Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J. Neurochem., 71, 302–12CrossRefGoogle ScholarPubMed
Mattson, M. P., Chan, S. L. & Duan, W. (2002). Modification of brain aging and neurodegenerative disorders by genes, diet, and behaviour. Physiol. Rev., 82, 637–72CrossRefGoogle Scholar
McGoldrick, J. P., Yeh, Y. C., Solomon, M., Essigmann, J. M. & Lu, A. L. (1995). Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol. Cell Biol., 15, 989–96CrossRefGoogle ScholarPubMed
Mecocci, P., MacGarvey, U. & Beal, M. F. (1994). Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol., 36, 747–51CrossRefGoogle ScholarPubMed
Mecocci, P., Polidori, M. C., Ingegni, T.et al. (1998). Oxidative damage to DNA in lymphocytes from Alzheimer's disease patients. Neurology, 51, 1014–17CrossRefGoogle Scholar
Mo, J. Y., Maki, H. & Sekiguchi, M. (1992). Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc. Natl Acad. Sci., USA, 89, 11021–5CrossRefGoogle ScholarPubMed
Morocz, M., Kalman, J., Juhasz, A.et al. (2002). Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer's disease. Neurobiol. Agin., 23, 47–53Google ScholarPubMed
Nishioka, K., Ohtsubo, T., Oda, H.et al. (1999). Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cel., 10, 1637–52CrossRefGoogle ScholarPubMed
Nunomura, A., Perry, G., Aliev, K.et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. J. Neuropath. Exp. Neurol., 60, 759–67CrossRefGoogle ScholarPubMed
Parshad, R. P., Sanford, K. K., Price, F. M.et al. (1996). Fluorescent light-induced chromatid breaks distinguish Alzheimer disease cells from normal cells in tissue culture. Proc. Natl Acad. Sci., USA, 93, 5146–50CrossRefGoogle ScholarPubMed
Polidori, M. C., Mecocci, P., Browne, S. E., Senin, U. & Beal, M. F. (1999). Oxidative damage to mitochondrial DNA in Huntington's disease parietal cortex. Neurosci. Lett., 272, 53–6CrossRefGoogle ScholarPubMed
Reardon, J. T., Bessho, T., Kung, H. C., Bolton, P. H. & Sancar, A. (1997 ). In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc. Natl Acad. Sci., USA, 94, 9463–8CrossRefGoogle ScholarPubMed
Robbins, J. H. (1988). Xeroderma pigmentosum. Defective DNA repair causes skin cancer and neurodegeneration. J. Am. Med. Acad., 260, 384–8Google ScholarPubMed
Robbins, J. H., Brumback, R. A., Mendiones, M.et al. (1991). Neurological disease in xeroderma pigmentosum. Documentation of a late onset type of the juvenile onset form. Brain, 114 (3), 1335–61CrossRefGoogle ScholarPubMed
Robbins, J. H., Brumback, R. A. & Moshell, A. N. (1993). Clinically asymptomatic xeroderma pigmentosum neurological disease in an adult: evidence for a neurodegeneration in later life caused by defective DNA repair. Eur. Neurol., 33, 188–90CrossRefGoogle Scholar
Rolig, R. L. & McKinnon, P. J. (2000). Linking DNA damage and neurodegeneration. Trends Neurosci., 23, 417–24CrossRefGoogle ScholarPubMed
Rosenquist, T. A., Zharkov, D. O. & Grollman, A. P. (1997). Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl Acad. Sci., USA, 94, 7429–34CrossRefGoogle ScholarPubMed
Sancar, A. (1995). DNA repair in humans. Ann. Rev. Genet., 29, 69–105CrossRefGoogle ScholarPubMed
Sarasin, A. (1991). The paradox of DNA repair-deficient disease. Cancer J., 4, 233–7Google Scholar
Seidl, R., Greber, S., Schuller, E., Bernert, G., Cairns, N. & Lubec, G. (1997). Evidence against increased oxidative DNA damage in Down syndrome. Neurosci. Lett., 235, 137–40CrossRefGoogle ScholarPubMed
Slupska, M. M., Baikalov, C., Luther, W. M., Chiang, J. H., Wei, Y. F. & Miller, J. H. (1996). Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol., 178, 3885–92CrossRefGoogle ScholarPubMed
Stevnsner, T., Nyaga, S., Souza-Pinto, N. C.et al. (2002). Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene, 21, 8675–82CrossRefGoogle ScholarPubMed
Takao, M., Aburatani, H., Kobayashi, K. & Yasui, A. (1998). Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucl. Acids Res., 26, 2917–22CrossRefGoogle ScholarPubMed
Tornaletti, S. & Hanawalt, P. C. (1999). Effect of DNA lesions on transcription elongation. Biochimie, 81, 139–46CrossRefGoogle ScholarPubMed
Hoffen, A., Natarajan, A. T., Mayne, L. V., Zeeland, A. A., Mullenders, L. H. & Venema, J. (1993). Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucl. Acids Res., 21, 5890–5CrossRefGoogle ScholarPubMed
Vermeulen, W., Vuuren, A. J., Chipoulet, M.et al. (1994). Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harbour Symp. Quant. Biol., 59, 317–29CrossRefGoogle ScholarPubMed
Vladimirova, O., O'Connor, J., Cahill, A., Alder, H., Butunoi, C. & Kalman, B. (1998). Oxidative damage to DNA in plaques of MS brains, Multiple Sclerosis, 4, 413–18CrossRefGoogle ScholarPubMed
Wallace, D. C. (1992). Mitochondrial genetics: a paradigm for aging and degenerative diseases?Science, 256, 628–32CrossRefGoogle ScholarPubMed
Wallace, D. C. (1994). Mitochondrial DNA Mutations in diseases of energy metabolism. J. Bioenerg. Biomemb., 26, 241–50CrossRefGoogle ScholarPubMed
Watters, D. J. (2003). Oxidative stress in ataxia telangiectasia. Redox Rep., 8, 23–9CrossRefGoogle ScholarPubMed
Yakes, F. M. & Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress.Proc. Natl Acad. Sci., USA, 94, 514–19CrossRefGoogle ScholarPubMed
Zhang, J., Perry, G., Smith, M. A.et al. (1999). Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons, Am. J. Path., 154, 1423–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×