Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:06:13.356Z Has data issue: false hasContentIssue false

14 - Neutrophil function disorders

from Section IV - Leukocyte disorders

Published online by Cambridge University Press:  05 February 2013

Pedro de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
McKay-Dee Hospital, Utah
Get access

Summary

Introduction

The phagocytes comprise a small group of hematopoietically-derived cells that play diverse roles in human host defense. The name, coined by Elie Metchnikoff over a century ago (1), refers to one of their most prominent specializations – the ability to ingest particulate targets. However, Metchnikoff’s “microphages” and “macrophages” do much more than simply ingest foreign materials. They perform multiple roles in inflammation and host defense, in both the innate and adaptive arms of immunity. The following section will address phagocytic cells in their host defense roles as they relate to innate immunity, using the polymorphonuclear leukocyte (PMN) and its functions in the human neonate as the major focus of discussion.

Neonatal phagocyte production

Hematopoiesis in the fetus is initiated in the yolk sac, with the formation of “blood islands” from primitive blood progenitor cells. By the second month of gestation, the fetal liver becomes the major site of blood cell production, which then extends to include the spleen by 5 months’ gestation. At about this same time, the earliest components of marrow-based blood production appear and continue to become more prominent over the subsequent months leading up to term, while splenic and hepatic hematopoiesis diminish. During this time, pluripotent hematopoietic stem cells are present in the circulation (2), presumably in transit from hepatic and splenic hematopoiesis sites to the marrow for subsequent blood cell production during extra-uterine life. Most of these progenitor cells disappear from the circulation over 3 days following birth (3). The proliferative potential of the cells in the circulation at the time of term birth is actually greater than that of adult bone marrow cells (4), based upon in vitro studies, suggesting that the neonate’s myeloid blood cell production capabilities should be normal. However, at the time of delivery and during the neonatal period, myeloid cell production and kinetics differ from those of older children and adults.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 231 - 254
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Metchnikoff, E.Lectures on the Comparative Pathology of Inflammation. New York:Dover Publications, Inc, 1968.Google Scholar
Nathan, DG.The beneficence of neonatal hematopoiesis. N Engl J Med 1989;321:1190–1.CrossRefGoogle ScholarPubMed
Gonzalez, S, Amat, L, Azqueta, C, et al. Factors modulating circulation of hematopoietic progenitor cells in cord blood and neonates. Cytotherapy 2009;11:35–42.CrossRefGoogle ScholarPubMed
Liu, J, Li, K, Yuen, PM, et al. Ex vivo expansion of enriched CD34+ cells from neonatal blood in the presence of thrombopoietin, a comparison with cord blood and bone marrow. Bone Marrow Transpl 1999;24:247–52.CrossRefGoogle ScholarPubMed
Christensen, RD, Harper, TE, Rothstein, G. Granulocyte-macrophage progenitor cells (CFU-GM) in term and preterm neonates. J Pediatr 1986;109:1047–51.CrossRefGoogle ScholarPubMed
Cairo, MS. Neonatal neutrophil host defense. Am J Dis Child 1989;143:40–6.CrossRefGoogle ScholarPubMed
Ohls, RK, Li, Y, Abdel-Mageed, A, Buchanan, G, Mandell, L, Christensen, RD. Neutrophil pool sizes and granulocyte colony-stimulating factor production in human mid-trimester fetuses. Pediatr Res 1995;37:806–11.CrossRefGoogle ScholarPubMed
Laver, J, Duncan, E, Abboud, M, et al. High levels of granulocyte and granulocyte-macrophage colony-stimulating factors in cord blood of normal full-term neonates. J Pediatr 1990;116:627–32.CrossRefGoogle ScholarPubMed
Christensen, RD. Neutrophil kinetics in the fetus and neonate. Am J Pediatr Hematol Oncol 1989;11:215–23.Google ScholarPubMed
Berger, M. Complement deficiency and neutrophil dysfunction as risk factors for bacterial infection in newborns and the role of granulocyte transfusion in therapy. Rev Infect Dis 1990;12:S401–9.CrossRefGoogle ScholarPubMed
Berkow, RL, Dodson, RW. Functional analysis of the marginating pool of human polymorphonuclear leukocytes. Am J Hematol 1987;24:47–54.CrossRefGoogle ScholarPubMed
Athens, JW, Haab, OP, Raab, SO, et al. Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 1964;40:989–95.CrossRefGoogle Scholar
Hansen, NE, Karle, H, Valerius, NH. Neutrophil kinetics in acute bacterial infection. Acta Med Scand 1978;204:407–12.CrossRefGoogle ScholarPubMed
Athens, JW, Haab, OP, Raab, SO, et al. Leukokinetic studies. XI. Blood granulocyte kinetics in polycythemia vera, infection and myelofibrosis. J Clin Invest 1965;44:778–88.CrossRefGoogle ScholarPubMed
Gallin, JI. Human neutrophil heterogeneity exists, but is it meaningful?Blood 1984;63:977–83.Google ScholarPubMed
Etzioni, A.Adhesion molecules – their role in health and disease. Pediatr Res 1996;39:191–8.CrossRefGoogle ScholarPubMed
Galustian, C, Lubineau, A, le Narvor, C, Kiso, M, Brown, G, Feizi, T.L-selectin interactions with novel mono- and multisulfated Lewis X sequences in comparison with the potent ligand 3’-Lewis A. J Biol Chem 1999;274:18213–17.CrossRefGoogle Scholar
Wright, DG, Gallin, JI. Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol 1979;123:285–94.Google ScholarPubMed
Hampton, MB, Kettle, AJ, Winterbourn, CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase and bacterial killing. Blood 1998;92:3007–17.Google ScholarPubMed
Clark, RA, Borregaard, N. Neutrophils autoinactivate secretory products by myeloperoxidase-catalyzed oxidation. Blood 1985;65:375–81.Google ScholarPubMed
Grigg, JM, Savill, JS, Sarraf, C, Haslett, C, Silverman, M. Neutrophil apoptosis and clearance from neonatal lungs. Lancet 1991;338:720–2.CrossRefGoogle ScholarPubMed
Buhrer, C, Graulich, J, Stibenz, D, Dudenhausen, JW, Obladen, M. L-selectin is down-regulated in umbilical cord blood granulocytes and monocytes of newborn infants with acute infection. Pediatr Res 1994;36:799–804.CrossRefGoogle Scholar
Koenig, JM, Simon, J, Anderson, DC, Smith, E, Smith, CW. Diminished soluble and total cellular L-selectin in cord blood is associated with its impaired shedding from activated neutrophils. Pediatr Res 1996;39:616–21.CrossRefGoogle ScholarPubMed
Torok, C, Lundahl, J, Hed, J, Lagercrantz, H. Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child 1993;68:561–5.CrossRefGoogle ScholarPubMed
Smith, JR, Campbell, DE, Ludomirsky, A, et al. Expression of the complement receptors CR1 and CR3 and the type III Fcγ receptor on neutrophils from newborn infants and fetuses with Rh disease. Pediatr Res 1990;28:120–6.CrossRefGoogle Scholar
Bruce, MC, Baley, JE, Medvik, KA, Berger, M. Impaired surface membrane expression of C3bi but not C3b receptors on neonatal neutrophils. Pediatr Res 1987;21:306–11.CrossRefGoogle Scholar
Reddy, RK, Xia, Y, Hanikyrova, M, Ross, GD. A mixed population of immature and mature leucocytes in umbilical cord blood results in a reduced expression and function of CR3 (CD11b/CD18). Clin Exp Immunol 1998;114:462–7.CrossRefGoogle Scholar
McEvoy, LT, Zakem-Cloud, H, Tosi, MF. Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood 1996;87:3929–33.Google ScholarPubMed
Smith, JB, Kunjummen, RD, Raghavender, BH. Eosinophils and neutrophils of human neonates have similar impairments of quantitative up-regulation of Mac-1 (CD11b/CD18) expression in vitro. Pediatr Res 1991;30:355–61.CrossRefGoogle ScholarPubMed
Olson, TA, Ruymann, FB, Cook, BA, Burgess, DP, Henson, SA, Thomas, PJ. Newborn polymorphonuclear leukocyte aggregation: a study of physical properties and ultrastructure using chemotactic peptides. Pediatr Res 1983;12:993–7.CrossRefGoogle Scholar
Anderson, DC, Rothlein, R, Marlin, SD, Krater, SS, Smith, CW. Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11b/CD18)-dependent adherence reactions. Blood 1990;76:2613–21.Google ScholarPubMed
Masuda, K, Kinoshita, Y, Kobayashi, Y. Heterogeneity of Fc receptor expression in chemotaxis and adherence of neonatal neutrophils. Pediatr Res 1989;25:6–10.CrossRefGoogle ScholarPubMed
Krause, PJ, Maderazo, EG, Scroggs, M. Abnormalities of neutrophil adherence in newborns. Pediatrics 1982;69:184–7.Google ScholarPubMed
Carr, R, Davies, JM. Abnormal FcRIII expression by neutrophils from very preterm neonates. Blood 1990;76:607–11.Google ScholarPubMed
Payne, NR, Frestedt, J, Hunkeler, N, Eehrz, R. Cell-surface expression of immunoglobulin G receptors and the polymorphonuclear leukocytes and monocytes of extremely premature infants. Pediatr Res 1993;33:452–7.CrossRefGoogle ScholarPubMed
Rider, ED, Christensen, RD, Hall, DC, Rothstein, G.Myeloperoxidase deficiency in neutrophils of neonates. J Pediatr 1988;112:648–51.CrossRefGoogle ScholarPubMed
Kjeldsen, L, Sengelov, H, Lollike, K, Borregaard, N. Granules and secretory vesicles in human neonatal neutrophils. Pediatr Res 1996;40:120–9.CrossRefGoogle ScholarPubMed
Ambruso, DR, Bentwood, B, Henson, PM, Johnston, RB Jr. Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules. Pediatr Res 1984;18:1148–53.CrossRefGoogle ScholarPubMed
Gahr, M, Schulze, M, Scheffczyk, D, Speer, CP, Peters, JH. Diminished release of lactoferrin from polymorphonuclear leukocytes of human neonates. Acta Haematol (Basel) 1987;77:90–4.CrossRefGoogle ScholarPubMed
Anderson, DC, Hughes, BJ, Smith, CW. Abnormal mobility of neonatal polymorphonuclear leukocytes. Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine. J Clin Invest 1981;68:863–74.CrossRefGoogle ScholarPubMed
Sacchi, F, Rondini, G, Mingrat, G, Stronati, M, Gancia, GP, Marseglia, GL, Siccardi, AG. Different maturation of neutrophil chemotaxis in term and preterm newborn infants. J Pediatr 1982;101:273–4.CrossRefGoogle ScholarPubMed
Tan, ND, Davidson, D. Comparative differences and combined effects of interleukin-8, leukotriene B4, and platelet activating factor on neutrophil chemotaxis of the newborn. Pediatr Res 1995;38:11–16.CrossRefGoogle ScholarPubMed
Usmani, SS, Schlessel, JS, Sia, CG, Kamran, S, Orner, SD. Polymorphonuclear leukocyte function in the preterm neonate: effect of chronologic age. Pediatrics 1991;87:675–9.Google ScholarPubMed
Santos, CD, Davidson, D. Neutrophil chemotaxis to leukotriene B4 in vitro is decreased for the human neonate. Pediatr Res 1993;33:242–6.CrossRefGoogle ScholarPubMed
Frenck, RW Jr, Buescher, ES, Vadhan-Raj, S.The effects of recombinant human granulocyte-macrophage colony stimulating factor on in vitro cord blood granulocyte function. Pediatr Res 1989;26:43–8.CrossRefGoogle ScholarPubMed
Yegin, O. Chemotaxis in childhood. Pediatr Res 1983;17:183–7.CrossRefGoogle ScholarPubMed
Raghunathan, R, Miller, ME, Everett, S, Leake, RD. Phagocyte chemotaxis in the perinatal period. J Clin Immunol 1982;2:242–5.CrossRefGoogle ScholarPubMed
Wilkinson, PC. Micropore filter methods for leukocyte chemotaxis. Meth Enzymol 1988;162:38–50.CrossRefGoogle ScholarPubMed
Rueff, P, Bihler, T, Linderkamp, O.Deformability and volume of neonatal and adult leukocytes. Pediatr Res 1991;29:128–32.CrossRefGoogle Scholar
Krause, PJ, Kreutzer, DL, Eisenfeld, L, Herson, VC, Weisman, S, Bannon, P, Greca, N.Characterization of nonmotile neutrophil subpopulations in neonates and adults. Pediatr Res 1989;25:519–24.CrossRefGoogle ScholarPubMed
Wolach, B, Ben Dor, M, Chomsky, O, Gavrieli, R, Shinitzky, M. Improved chemotactic ability of neonatal polymorphonuclear cells induced by mild membrane rigidification. J Leukoc Biol 1992;51:324–8.CrossRefGoogle ScholarPubMed
Yasui, K, Masida, M, Matsuoka, T, et al. Abnormal membrane fluidity as a cause of impaired functional dynamics of chemoattractant receptors on neonatal polymorphonuclear leukocytes: lack of modulation of the receptors by a membrane fluidizer. Pediatr Res 1988;24:442–6.CrossRefGoogle ScholarPubMed
Harris, MC, Shalit, M, Southwick, FS. Diminished actin polymerization by neutrophils from newborn infants. Pediatr Res 1993;33:27–31.CrossRefGoogle ScholarPubMed
Merry, C, Puri, P, Reen, DJ. Phosphorylation and the actin cytoskeleton in defective newborn neutrophil chemotaxis. Pediatr Res 1998;44:259–64.CrossRefGoogle ScholarPubMed
Anderson, DC, Hughes, BJ, Wible, LJ, Perry, GJ, Smith, CW, Brinkley, BR. Impaired motility of neonatal PMN leukocytes: relationship to abnormalities of cell orientation and assembly of microtubules in chemotactic gradients. J Leukocyte Biol 1984; 36:1–15.CrossRefGoogle ScholarPubMed
Strauss, RG, Hart, MJ. Spontaneous and drug-induced concanavalin A capping of neutrophils from human infants and their mothers. Pediatr Res 1981;15:1314–18.CrossRefGoogle ScholarPubMed
Santoro, P, Agosti, V, Viggiano, D, Palumbo, A, Sarno, T, Ciccimarra, F. Impaired D-myo-inositol 1,4,5-triphosphate generation from cord blood polymorphonuclear leukocytes. Pediatr Res 1995;38:564–7.CrossRefGoogle ScholarPubMed
Sacchi, F, Hill, HR. Defective membrane potential changes in neutrophils from human neonates. J Exp Med 1984;160:1247–52.CrossRefGoogle ScholarPubMed
Strauss, RG, Snyder, EL. Uptake of extracellular calcium by neonatal neutrophils. J Leuk Biol 1985;37:423–9.CrossRefGoogle ScholarPubMed
Forman, ML, Stiehm, ER. Impaired opsonic activity but normal phagocytosis in low-birth-weight infants. N Engl J Med 1969;281:926–31.CrossRefGoogle ScholarPubMed
McCracken, GH, Eichenwald, HF. Leukocyte function and the development of opsonic and complement activity in the neonate. Amer J Dis Child 1971;121:120–6.Google ScholarPubMed
Wright, WC Jr, Ank, BJ, Herbert, J, Stiehm, ER. Decreased bactericidal activity of leukocytes of stressed newborn infants. Pediatrics 1975;56:579–84.Google ScholarPubMed
Dossett, JH, Williams, RC Jr, Quie, PG. Studies on interactions of bacteria, serum factors and polymorphonuclear leukocytes in mothers and newborns. Pediatrics 1969;44:49–57.Google Scholar
Lopez-Osuna, M, Kretschmer, RR. Bactericidal kinetics of newborn polymorphonuclear leukocytes against group B streptococci type III. Infection 1984;12:367–8.CrossRefGoogle ScholarPubMed
Marodi, L, Leijh, PCJ, van Furth, R. Characteristics and functional capabilities of human cord blood granulocytes and monocytes. Pediatr Res 1984;18:1127–31.CrossRefGoogle Scholar
Stroobant, J, Harris, MC, Cody, CS, Polin, RA, Douglas, SD. Diminished bactericidal capacity for group B Streptococcus in neutrophils from stressed and healthy neonates. Pediatr Res 1984;18:634–7.CrossRefGoogle Scholar
Wolach, B, Carmi, D, Gilboa, S, et al. Some aspects of the humoral immunity and the phagocytic function of newborn infants. Isr J Med Sci 1994;30:331–5.Google ScholarPubMed
Edwards, MS, Buffone, GJ, Fuselier, PA, Weels, JL, Baker, CJ. Deficient classical complement pathway activity in newborn sera. Pediatr Res 1983;17:685–8.CrossRefGoogle ScholarPubMed
Marodi, L, Leijh, PCJ, Braat, A, Daha, MR, van Furth, R. Opsonic activity of cord blood sera against various species of microorganism. Pediatr Res 1985;19:433–6.CrossRefGoogle ScholarPubMed
Chirico, G, Marconi, M, De Amici, M, et al. Deficiency of neutrophil bactericidal activity in term and preterm infants. Biol Neonate 1985;47:125–9.CrossRefGoogle ScholarPubMed
Schuit, KE, Powell, DA. Phagocytic dysfunction in monocytes of normal newborn infants. Pediatrics 1980;65:501–4.Google ScholarPubMed
Nurcombe, HL, Edwards, SW. Role of myeloperoxidase in intracellular and extracellular chemiluminescence of neutrophils. Ann Rheum Dis 1989;48:56–62.CrossRefGoogle ScholarPubMed
Shigeoka, AO, Santos, JI, Hill, HR. Functional analysis of neutrophil granulocytes from healthy, infected and stressed neonates. J Pediatr 1979;95:454–60.CrossRefGoogle ScholarPubMed
Krause, PJ, Herson, VC, Boutin-Lebowitz, J, et al. Polymorphonuclear leukocyte adherence and chemotaxis in stressed and healthy neonates. Pediatr Res 1986;20:296–300.CrossRefGoogle ScholarPubMed
Gasparoni, A, Chirico, G, De Amici, D, et al. Neutrophil chemotaxis in infants delivered by caesarian section. Eur J Pediatr 1991;150:481–2.CrossRefGoogle Scholar
Frazier, JP, Cleary, TG, Pickering, LK, Kohl, S, Ross, PJ. Leukocyte function in healthy neonates following vaginal and caesarian deliveries. J Pediatr 1982;101:269–72.CrossRefGoogle Scholar
Kinoshita, Y, Masuda, K, Kobayashi, Y. Adherence of cord blood neutrophils: effect of mode of delivery. J Pediatr 1991;118:115–17.CrossRefGoogle ScholarPubMed
Usmani, SS, Kamran, S, Harper, RG, Wapnir, RA, Mehta, R. Effect of maternal labor and mode of delivery on polymorphonuclear leukocyte function in healthy neonates. Pediatr Res 1993;33:466–8.CrossRefGoogle ScholarPubMed
Brus, F, van Oeveren, W, Okken, A, Oetomo, SO. Activation of circulating polymorphonuclear leukocytes in preterm infants with severe idiopathic respiratory distress syndrome. Pediatr Res 1996;39:456–3.CrossRefGoogle ScholarPubMed
Shigeoka, AO, Charette, RP, Wyman, ML, Hill, HR. Defective oxidative metabolic responses of neutrophils from stressed neonates. J Pediatr 1981;98:392–8.CrossRefGoogle ScholarPubMed
Ambruso, DR, Altenburger, KM, Johnston, RB, Jr. Defective oxidative metabolism in newborn neutrophils: discrepancy between superoxide anion and hydroxyl radical generation. Pediatrics 1979;64:722–5.Google ScholarPubMed
Yamazaki, M, Matsuoka, T, Yasui, K, Komiyama, A, Akabane, T.Increased production of superoxide anion by neonatal polymorphonuclear leukocytes stimulated with a chemotactic peptide. Am J Hematol 1988;27:169–73.CrossRefGoogle ScholarPubMed
Ambruso, DR, Stork, LC, Gibson, BE, Thurman, GW. Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions. Pediatr Res 1987;21:205–10.CrossRefGoogle ScholarPubMed
Newberger, PE. Superoxide generation by human fetal granulocytes. Pediatr Res 1982;16:373–6.CrossRefGoogle Scholar
Kugo, M, Sano, K, Uetani, Y, Nakamura, H. Superoxide dismutase in polymorphonuclear leukocytes of term newborn infants and very low birth weight infants. Pediatr Res 1989;26:227–31.CrossRefGoogle ScholarPubMed
Peden, DB, VanDyke, K, Ardekani, A, Mullet, MD, Myerberg, DZ, VanDyke, C. Diminished chemiluminescent responses of polymorphonuclear leukocytes in severely and moderately preterm infants. J Pediatr 1987;111:904–5.CrossRefGoogle Scholar
Strauss, RG, Snyder, EL. Neutrophils from human infants exhibit decreased viability. Pediatr Res 1981;15:794–7.CrossRefGoogle ScholarPubMed
Allgaier, B, Shi, M, Luo, D, Koenig, JM. Spontaneous and Fas-mediated apoptosis are diminished in umbilical cord blood neutrophils compared with adult neutrophils. J Leukoc Biol 1998;64:331–6.CrossRefGoogle ScholarPubMed
Kohl, S, Loo, LS, Gonik, B.Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis 1984;150:14–19.CrossRefGoogle Scholar
Stiehm, ER, Roberts, RL, Ank, BJ, et al. Comparison of cytotoxic properties of neonatal and adult neutrophils and monocytes and enhancement by cytokines. Clin Diagn Lab Immunol 1994;1:342–7.Google ScholarPubMed
Roberts, RL, Ank, BJ, Stiehm, ER. Antiviral properties of neonatal and adult human neutrophils. Pediatr Res 1994;36:792–8.CrossRefGoogle ScholarPubMed
Hill, HR, Augustine, NH, Newton, JA, Shigeoka, AO, Morris, E, Sacchi, F. Correction of a developmental defect in neutrophil activation and movement. Am J Clin Pathol 1987;128:307–14.Google ScholarPubMed
Krause, PJ, Maderazo, EG, Contrino, J, et al. Modulation of neonatal neutrophil function by pentoxifylline. Pediatr Res 1991;29:123–7.CrossRefGoogle ScholarPubMed
Haque, K, Mohan, P. Pentoxyphylline for neonatal sepsis. Cochrane Database Syst Rev CD004205, 2003.Google ScholarPubMed
Hill, HR, Augustine, NH, Jaffe, HS. Human recombinant interferon γ enhances neonatal polymorphonuclear leukocyte activation and movement, and increases free intracellular calcium. J Exp Med 1991;173:767–70.CrossRefGoogle ScholarPubMed
Cairo, MS, van de Ven, C, Toy, C, Mauss, D, Sender, L.Recombinant human granulocyte-macrophage colony-stimulating factor primes neonatal granulocytes for enhanced oxidative metabolism and chemotaxis. Pediatr Res 1989;26: 395–9.CrossRefGoogle ScholarPubMed
Kamran, S, Usmani, SS, Wapnir, RA, Mehta, R, Harper, RG. In vitro effect of indomethacin on polymorphonuclear leukocyte function in preterm infants. Pediatr Res 1993;33:32–5.CrossRefGoogle ScholarPubMed
Freeman, J, Goldmann, DA, Smith, NE, Sidebottom, DG, Epstein, MF, Platt, R. Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units. N Engl J Med 1990;323:301–8.CrossRefGoogle ScholarPubMed
Cleary, TG, Pickering, LK. Mechanisms of intralipid effect on polymorphonuclear leukocytes. J Clin Lab Immunol 1983;11:21–6.Google ScholarPubMed
El-Mohandes, AA, Rivas, RA, Kiang, E, Wahl, LM, Katona, IM. Membrane antigen and ligand receptor expression on neonatal monocytes. Biol Neonate 1995;68:308–17.CrossRefGoogle ScholarPubMed
Schuit, KE, Powell, DA. Phagocytic dysfunction of monocytes of normal newborn infants. Pediatrics 1980;65:501–3.Google ScholarPubMed
Speer, CP, Ambruso, DR, Grimsley, J, Johnston, RB Jr. Oxidative metabolism in cord blood monocytes and monocyte-derived macrophages. Infect Immun 1985;50:919–21.Google ScholarPubMed
Speer, CP, Gahr, M, Wieland, M, Eber, S. Phagocytosis-associated functions in neonatal monocyte-derived macrophages. Pediatr Res 1988;24:213–16.CrossRefGoogle ScholarPubMed
Kaufman, D, Kilpatrick, L, Hudson, RG, Campbell, DE, Kaufman, A, Douglas, SD, Harris, MC. Decreased superoxide production, degranulation, tumor necrosis factor alpha secretion, and CD11b/CD18 receptor expression by adherent monocytes from preterm infants. Clin Diagn Lab Immunol 1999;6:525–9.Google ScholarPubMed
Marodi, L, Kaposzta, R, Campbell, DE, Polin, RA, Csongor, J, Johnston, RB Jr. Candidacidal mechanism in the human neonate. Impaired IFN-gamma activation of macrophages in newborn infants. J Immunol 1994;153:5643–9.Google Scholar
Manroe, BL, Weinberg, AG, Rosenfeld, CR, Browne, R. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979;95:89–98.CrossRefGoogle ScholarPubMed
Schmutz, N, Henry, E, Jopling, J, Christensen, RD. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisted. J Perinatol 2008;28:275–81.CrossRefGoogle Scholar
Mouzinho, A, Rosenfeld, CR, Sanchez, PJ, Risser, R. Revised reference ranges for circulating neutrophils in very low birth weight neonates. Pediatrics 1994;94:76–82.Google ScholarPubMed
Christensen, RD, Calhoun, DA, Rimsza, LM. A practical approach to evaluating and treating neutropenia in the neonatal intensive care unit. Clinics Perinatol 2000;27:577–601.CrossRefGoogle ScholarPubMed
Gray, PH, Rodwell, RL. Neonatal neutropenia associated with maternal hypertension poses a risk for nosocomial infection. Eur J Pediatr 1999;158:71–3.CrossRefGoogle Scholar
Koenig, JM, Christiansen, RD. The mechanism responsible for diminished neutrophil production in neonates delivered of women with pregnancy-induced hypertension. Am J Obstet Gynecol 1991;165:467–73.CrossRefGoogle ScholarPubMed
Christensen, RD, Henry, E, Weidmeier, SE, Stoddard, RA, Lambert, DK. Low blood neutrophil concentrations among extremely low birthweight neonates: data from a multi-hospital healthcare system. J Perinatol 2006;26:682–7.CrossRefGoogle Scholar
Ong, F, Dale, DC, Bonilla, MA, et al. Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 1997;11:120–5.Google Scholar
Carlsson, G, Aprikyan, AA, Tehranchi, R, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood 2004;103:3355–61.CrossRefGoogle ScholarPubMed
Doron, MW, Makhlouf, RA, Katz, VL, Lawson, EE, Stiles, AD. Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 1994;125:452–8.CrossRefGoogle ScholarPubMed
Christensen, RD, Rothstein, G. Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr 1980;96:316–18.CrossRefGoogle ScholarPubMed
Christensen, RD, Bradley, PP, Rothstein, G. The leukocyte left shift in clinical and experimental neonatal sepsis. J Pediatr 1981;98:101–5.Google ScholarPubMed
Russell, GA, Smyth, A, Cooke, RW. Receiver operating characteristic curves for comparison of serial neutrophil band forms and C reactive protein in neonates at risk for infection. Arch Dis Child 1992;67:808–12.CrossRefGoogle Scholar
Krediet, K, Gerards, L, Fleer, A, van Stekelenburg, G. The predictive value of CRP and I/T ratio in neonatal infection. J Perinat Med 1992;20:479–85.CrossRefGoogle ScholarPubMed
Berger, C, Uehlinger, J, Ghelfi, D, Blau, N, Fanconi, S. Comparison of C reactive protein and white blood cell count with differential in neonates at risk for septicaemia. Eur J Pediatr 1995;154:138–44.CrossRefGoogle ScholarPubMed
Weinberg, AG, Rosenfeld, CR, Manroe, BL, Browne, R. Neonatal blood cell count in health and disease. II. Values for lymphocytes, monocytes, and eosinophils. J Pediatr 1985;106:462–6.CrossRefGoogle ScholarPubMed
Patel, L, Garvey, B, Arnon, S, Roberts, IAG. Eosinophilia in newborn infants. Acta Paediatr 1994;83:797–801.CrossRefGoogle ScholarPubMed
Bhat, A, Scanlon, J. The pattern of eosinophilia in premature infants. J Pediatr 1981;98:612–16.CrossRefGoogle ScholarPubMed
Lawrence, R Jr, Church, JA, Richards, W, et al. Eosinophilia in the hospitalized neonate. Ann Allergy 1980;44:349–52.Google ScholarPubMed
Sullivan, SE, Calhoun, DA. Eosinophilia in the neonatal intensive care unit. Clin Perinatol 2000;27:603–22.CrossRefGoogle ScholarPubMed
Juul, SE, Haynes, JW, McPherson, RJ. Evaluation of eosinophilia in hospitalized preterm infants. J Perinatol 2005;25:182–8.CrossRefGoogle ScholarPubMed
Gibson, EL, Vaucher, Y, Corrigan, JJ Jr. Eosinophilia in premature infants; relationship to weight gain. J Pediatr 1979;95:99–101.CrossRefGoogle ScholarPubMed
Clark, RA, Malech, HL, Gallin, JI, et al. Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 1989;321:647–52.CrossRefGoogle ScholarPubMed
Newburger, PE, Cohen, HJ, Rothchild, SB, Hobbins, JC, Malawista, SE, Mahoney, MJ. Prenatal diagnosis of chronic granulomatous disease. N Engl J Med 1979;300:178–81.CrossRefGoogle ScholarPubMed
Anderson, DC, Schmalsteig, FC, Finegold, MJ, et al. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: Their quantitative definition and relation to leukocyte dysfunction and clinical features. J Clin Infect 1985;152:668–9.CrossRefGoogle ScholarPubMed
Etzioni, A, Frydman, M, Pollack, S, et al. Brief report: Recurrent severe infections caused by a novel leukocyte adhesion efficiency. N Engl J Med 1992;327:1789–92.CrossRefGoogle Scholar
Etzioni, A, Tonetti, M. Leukocyte adhesion deficiency II- from A to almost Z. Immunol Rev 2000;178:138–47.CrossRefGoogle ScholarPubMed
Marquardt, T, Luhn, K, Srikrishna, G, Freeze, HH, Harms, E, Vestweber, D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999;94:3976–85.Google ScholarPubMed
Mory, A, Feigelson, SW, Yarali, N, et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 2008;112:2591.CrossRefGoogle ScholarPubMed
Svensson, L, Howarth, K, McDowall, A, et al. Leukocyte adhesion deficiency III is caused by mutations in KINDLIN-3 affecting integrin activation. Nat Med 2009;15:306–12.CrossRefGoogle ScholarPubMed
Hsu, CF, Wang, CC, Yuh, YS, Chen, YH, Chu, ML. The effectiveness of single and multiple applications of triple dye on umbilical cord separation time. Eur J Pediatr 1999;158:144–6.CrossRefGoogle ScholarPubMed
Dore, S, Buchan, D, Coulas, S, et al. Alcohol versus natural drying for newborn cord care. J Obstet Gynecol Neonatal Nurs 1998;27:621–7.CrossRefGoogle ScholarPubMed
Kemp, AS, Lubitz, L. Delayed umbilical cord separation in alloimmune neutropenia. Arch Dis Child 1993;68:52–3.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Andreis, IA, Bettili, G, Zamboni, G. Delayed separation of an appendix-containing umbilical stump. J Pediatr Surg 1995;30:1717–18.CrossRefGoogle ScholarPubMed
Parry, MF, Root, RK, Metcalf, JA, Delaney, KK, Kaplow, LS, Richar, WJ. Myeloperoxidase deficiency. Prevalence and clinical significance. Ann Int Med 1981;95:293–301.CrossRefGoogle ScholarPubMed
Nauseef, WM, Metcalf, JA, Root, RK. Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood 1983;61:483–92.Google ScholarPubMed
Gray, GR, Stamatoyannopoulos, G, Naiman, SC, et al. Neutrophil dysfunction, chronic granulomatous disease, and non-spherocytic haemolytic anaemia caused by complete deficiency of glucose-6-phosphate dehydrogenase. Lancet 1973;2:530–4.CrossRefGoogle ScholarPubMed
Corrons, V, Feliu, E, Pujades, MA, et al. Severe-glucose-6-phosphate-dehydrogenase (G6PD) deficiency associated with chronic hemolytic anemia, granulocyte dysfunction, and increased susceptibility to infections: description of new molecular variant (G6PD barcelona). Blood 1982;59:428–34.Google Scholar
Ardati, KO, Bajakian, KM, Tabbara, KS. Effect of glucose-6-phosphate dehydrogenase deficiency on neutrophil function. Acta Haematol 1997;97:211–15.CrossRefGoogle ScholarPubMed
Abu-Osba, YK, Mallouh, AA, Hann, RW. Incidence and causes of sepsis in glucose-6-phosphate dehydrogenase-deficient newborn infants. J Pediatr 1989;114:748–52.CrossRefGoogle ScholarPubMed
Thomas, GH, Beaudet, , et al. Disorders of glycoprotein degradation and structure: α-mannosidosis, ß-mannosidosis, fucosidosis, sialidosis, aspartylglucosaminuria and carbohydrate-deficient glycoprotein syndrome. In Scrivner, CR, Beaudet, AL, Sly, WS, Valle, D. (eds) The Metabolic and Molecular Basis of Inherited Disease, 7th edn, New York: McGraw-Hill, 1995;2529–61.Google Scholar
Newberger, PE, Malawista, SE, Dinauer, MC, et al. Chronic granulomatous disease and glutathione peroxidase deficiency, revisited. Blood 1994;84:3861–9.Google Scholar
Levy, HL, Sepe, SJ, Shih, VE, Vawter, GF, Klein, JO. Sepsis due to Escherichia coli in neonates with galactosemia. N Engl J Med 1977;297:823–5.CrossRefGoogle ScholarPubMed
Kobayashi, RH, Kettelhut, BV, Kobayashi, AL. Galactose inhibition of neonatal neutrophil function. Pediatr Infect Dis 1983;2:442–5.Google ScholarPubMed
Gitzelmann, R, Bosshard, NU. Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur J Pediatr 1993;152:S33–8.CrossRefGoogle Scholar
Novo, E, Garcia, MI, Lavergne, J. Nonspecific immunity in Down syndrome: a study of chemotaxis, oxidative metabolism, and cell surface marker expression in polymorphonuclear cells. Am J Med Genet 1993;46:384–91.CrossRefGoogle ScholarPubMed
Yasui, K, Shinozaki, K, Nakazawa, T, Agematsu, K, Komiyama, A. Presenility of granulocytes in Down syndrome individuals. Am J Med Genet 1999;84:406–12.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
de Alaracon, PA, Patil, S, Golberg, J, Allen, JB, Shaw, S. Infants with Down’s syndrome. Use of cytogenetic studies and in vitro colony assay for granulocyte progenitor to distinguish acute nonlymphocytic leukemia from a transient myeloproliferative disorder. Cancer 1987;60:987–93.3.0.CO;2-M>CrossRefGoogle Scholar
Courtney, SE, Hall, RT, Harris, DJ. Effect of blood transfusions on mortality in early-onset group-B streptococcal septicaemia. Lancet, Sept 1, 1979;462–3.Google Scholar
Christensen, RD, Hill, HR, Anstall, HB, Rothstein, G.Exchange transfusion as an alternative to granulocyte concentrate administration in neonates with bacterial sepsis and profound neutropenia. J Clin Apheresis 1984;2:177–83.CrossRefGoogle ScholarPubMed
Laurenti, F, Ferro, R, Isacchi, G, et al. Polymorphonuclear leukocyte transfusion for the treatment of sepsis in the newborn infant. J Pediatr 1981;98:118–22.CrossRefGoogle ScholarPubMed
Christensen, RD, Rothstein, G, Anstall, HB, Bybee, B. Granulocyte transfusion in neonates with bacterial infection, neutropenia and depletion of mature marrow neutrophils. Pediatrics 1982;70:1–6.Google ScholarPubMed
Cairo, MS, Worcester, C, Rucker, R, et al. Role of circulating complement and polymorphonuclear leukocyte transfusion in treatment and outcome in critically ill neonates with sepsis. J Pediatr 1987;110:935–41.CrossRefGoogle ScholarPubMed
Baley, JE, Stork, EK, Warkentin, PI, Shurin, SB. Buffy coat transfusions in neutropenic neonates with presumed sepsis: a prospective, randomized trial. Pediatrics 1987;80:712–20.Google ScholarPubMed
Wheeler, JG, Chauvenet, AR, Johnson, CA, et al. Neutrophil storage depletion in septic, neutropenic neonates. Pediatr Infect Dis J 1984;3:407–9.CrossRefGoogle ScholarPubMed
Friedman, CA, Robbins, KK, Temple, DM, Miller, CJ, Rawson, JE. Survival and neutrophil kinetics in infants with severe group B streptococcal disease treated with gammaglobulin. J Perinatol 1996;16:439–42.Google Scholar
Sanders, MR, Graeber, JE. Posttransfusion graft-versus-host disease in infancy. J Pediatr 1990;117:159–63.CrossRefGoogle ScholarPubMed
Leitman, SF, Holland, PV. Irradiation of blood products. Transfusion 1985;25:293–303.CrossRefGoogle ScholarPubMed
Wheeler, JG, Abramson, JS, Ekstrand, K. Function of irradiated polymorphonuclear leukocytes obtained by buffy-coat centrifugation. Transfusion 1984;24:238–9.CrossRefGoogle Scholar
Buescher, ES, Gallin, JI. Effects of storage and radiation on human neutrophil function in vitro. Inflammation 1987;11:401–16.CrossRefGoogle ScholarPubMed
Calhoun, DA, Christensen, RD. Human developmental biology of granulocyte colony stimulating factor. Clinics Perinatol 2000;27:559–76.CrossRefGoogle ScholarPubMed
Cairo, MS, Christensen, R, Sender, LS, et al. Results of a phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor in very low birth weight infants: significant induction of circulatory neutrophils, monocytes, platelets, and bone marrow neutrophils. Blood 1995;86:2509–15.Google ScholarPubMed
Kocherlakota, P, La Gamma, EF. Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia. Pediatrics 1997;100:E6.CrossRefGoogle ScholarPubMed
Schlibler, KR, Osborne, KA, Leung, LY, Le, TV, Baker, SI, Thompson, DD. A randomized, placebo-controlled trial of granulocyte colony-stimulating factor administered to newborn infants with neutropenia and clinical signs of early-onset sepsis. Pediatrics 1998;102:6–13.CrossRefGoogle Scholar
Makhlouf, RA, Doron, MW, Bose, CL, Price, WA, Stiles, AD. Administration of granulocyte colony-stimulating factor to neutropenic low birth weight infants of mothers with preeclampsia. J Pediatr 1995;124:454–6.CrossRefGoogle Scholar
LaGamma, EF, Alpan, O, Kocherlakota, P. Effect of granulocyte colony-stimulating factor on preeclampsia-associated neonatal neutropenia. J Pediatr 1995;126:457–9.CrossRefGoogle Scholar
Kuhn, P, Messer, J, Paupe, A, et al. A multi-center, randomized, placebo-controlled trial of prophylactic recombinant granulocyte colony stimulating factor in preterm neonates with neutropenia. J Pediatr, e-pub, May 23, 2009.CrossRefGoogle Scholar
Carr, R, Brocklehurst, P, Dore, CJ, Modi, N. Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single blind, multicentre, randomized controlled trial. Lancet 2009;373:226–33.CrossRefGoogle Scholar
Kocherlakota, P, LaGamma, EF. Preliminary report: rhG-CSF may reduce the incidence of neonatal sepsis in prolonged preeclampsia-associated neutropenia. Pediatrics 1998;102:1107–11.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×