Skip to main content Accessibility help
  • Print publication year: 2021
  • Online publication date: January 2021

Chapter 7 - A Guide to Identifying the Cause of Anemia in a Neonate

from Section III - Erythrocyte Disorders


Diagnosing anemia in a neonate is only a first step in a process that includes: clarifying the pathology responsible for the anemia, instituting the best-known therapy (if indeed a treatment is warranted), and then evaluating whether the therapy administered was effective in alleviating the anemia. Chapters 4, 6–10 and 20 focus on the principal varieties of anemia that occur in the neonatal period. The purpose of this chapter is not to repeat material detailed there, but to provide a method for navigating the somewhat unique process of diagnosing neonatal anemia and then discovering its cause. To accomplish this purpose, the chapter is organized into two parts: (1) making the diagnosis of anemia in neonates using reference intervals appropriate for gestational and postnatal age, and (2) following an evaluative algorithm to identify the underlying cause of the anemia in a neonatal patient.

1.Beutler, E, Waalen, J. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration? Blood 2006;107:1747–50.
2.Henry, E, Christensen, RD. Reference intervals in neonatal hematology. Clin Perinatol 2015;42:483–97.
3.Wintrobe, MM. Blood of normal men and women. Bull John Hopkins Hosp 1933;53:118–40.
4.Jopling, J, Henry, E, Wiedmeier, SE, Christensen, RD. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: Data from a multihospital health care system. Pediatrics 2009;123:e3337.
5.Ruíz-Argüelles, GJ, Sanchez-Medal, L, Loria, A, et al. Red cell indices in normal adults residing at altitude from sea level to 2670 meters. Am J Hematol 1980;8:265–71.
6.Oh, W, Lind, J. Venous and capillary hematocrit in newborn infants and placental transfusion. Acta Paediatr Scand 1966;55:3842.
7.Linderkamp, O, Versmold, HT, Strohhacker, I, et al. Capillary–venous hematocrit differences in newborn infants. 1. Relationship to blood volume, peripheral blood flow, and acid-base parameters. Eur J Pediatr 1977:127;914.
8.Judkins, AJ, MacQueen, BC, Christensen, RD, et al. Automated quantification of fragmented red blood cells: Neonatal reference intervals and clinical disorders of neonatal intensive care unit patients with high values. Neonatology. 2018;115:512.
9.Christensen, RD, Lambert, DK, Richards, DS. Estimating the nucleated red blood cell ‘emergence time’ in neonates. J Perinatol 2014;34:116–19.
10.Christensen, RD, Albertine, KH, Dahl, MJ, et al. Nucleated red blood cell counts in term neonates following fetal hypoxia. Neonatology (in press).
11.Kim, YA, Makar, RS. Detection of fetomaternal hemorrhage. Am J Hematol 2012;87:417–23.
12.Badior, KE, Casey, JR. Molecular mechanism for the red blood cell senescence clock. IUBMB Life 2018;70:3240.
13.Christensen, RD, Yaish, HM. Hemolytic disorders causing severe neonatal hyperbilirubinemia. Clin Perinatol 2015;42:515–27.
14.Christensen, RD, Lambert, DK, Henry, E, et al. End-tidal carbon monoxide as an indicator of the hemolytic rate. Blood Cells Mol Dis 2015;54:292–6.
15.Christensen, RD, Malleske, DT, Lambert, DK, Baer, VL, et al. Measuring end-tidal carbon monoxide of jaundiced neonates in the birth hospital to identify those with hemolysis. Neonatology 2016;109:15.
16.Bhutani, VK, Maisels, MJ, Schutzman, DL, Castillo Cuadrado, ME, et al. Identification of risk for neonatal haemolysis. Acta Paediatr 2018;107:1350–6.
17.Tidmarsh, GF, Wong, RJ, Stevenson, DK. End-tidal carbon monoxide and hemolysis. J Perinatol 2014;34:577–81.
18.Christensen, RD, Yaish, HM, Lemons, RS. Neonatal hemolytic jaundice: Morphologic features of erythrocytes that will help you diagnose the underlying condition. Neonatology 2014;105:243–9.
19.MacQueen, BC, Christensen, RD, Ward, DM, et al. The iron status at birth of neonates with risk factors for developing iron deficiency: A pilot study. J Perinatol 2017;37:436–40.
20.MacQueen, BC, Robert, D. Christensen, RD, Baer, VL, Ward, DM, Snow, GL. Screening umbilical cord blood for congenital iron deficiency. Blood Cells Mol Dis 2019;77:95100.
21.Yoon, D, Ponka, P, Prchal, JT. Hypoxia 5. Hypoxia and hematopoiesis. Am J Physiol Cell Physiol 2011;300:C1215C1222.
22.Shih, HM, Wu, CJ, Lin, SL. Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc 2018;117:955–63.