Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T03:29:59.869Z Has data issue: false hasContentIssue false

Chapter 23 - Disorders of the Fetomaternal Unit

from Section IX - Miscellaneous

Published online by Cambridge University Press:  30 January 2021

Pedro A. de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric J. Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
University of Utah
Martha C. Sola-Visner
Affiliation:
Harvard University, Massachusetts
Get access

Summary

The fetal–placental–maternal unit can produce significant abnormalities in the neonate’s hematologic health at birth. A newborn can have disorders of white blood cells, red blood cells, or platelets, or any combination thereof. Neonatal cytopenias can result from dilution, peripheral destruction, or a defect in cellular production [1]. Maternal illness can be the cause of such abnormalities (Table 23.1). Close communication between the obstetrical provider and the pediatrician is important. This can allow for anticipation of a problem in order to mitigate the consequences, or to discover the cause if an unexpected cytopenia is detected.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 401 - 439
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rivers, A, Slayton, WB. Congenital cytopenias and bone marrow failure syndromes. Semin Perinatol 2009;33(1):20–8.Google Scholar
Roberts, I, Stanworth, S, Murray, NA. Thrombocytopenia in the neonate. Blood Rev 2008;22(4):173–86.Google Scholar
Aher, S, Malwatkar, K, Kadam, S. Neonatal anemia. Semin Fetal Neonatal Med 2008;13(4):239–47.CrossRefGoogle ScholarPubMed
Christensen, RD, Calhoun, DA. Congenital neutropenia. Clin Perinatol 2004;31(1):2938.Google Scholar
Crane, JM, van den Hof, MC, Dodds, L, Armson, BA, Liston, R. Neonatal outcomes with placenta previa. Obstet Gynecol 1999;93(4):541–4.Google Scholar
Faxelius, G, Raye, J, Gutberlet, R, et al. Red cell volume measurements and acute blood loss in high-risk newborn infants. J Pediatr 1977;90(2):273–81.CrossRefGoogle ScholarPubMed
McShane, PM, Heyl, PS, Epstein, MF. Maternal and perinatal morbidity resulting from placenta previa. Obstet Gynecol 1985;65(2):176–82.Google ScholarPubMed
Lubin, B. Neonatal anaemia secondary to blood loss. Clin Haematol 1978;7(1):1934.Google Scholar
Gagnon, R. No. 231: Guidelines for the management of vasa previa. J Obstet Gynaecol Can. 2017;39(10):e415–e21.Google Scholar
Walker, C, Ward, J. Intrapartum umbilical cord rupture. Obstet Gynecol 2009;113(2 Pt 2): 552–4.Google Scholar
Tabor, A, Bang, J, Norgaard-Pedersen, B. Fetomaternal haemorrhage associated with genetic amniocentesis: results of a randomized trial. Br J Obstet Gynaecol 1987;94(6):528–34.Google Scholar
Linderkamp, O, Versmold, HT, Strohhacker, I, et al. Capillary-venous hematocrit differences in newborn infants. I. Relationship to blood volume, peripheral blood flow, and acid base parameters. Eur J Pediatr 1977;127(1):914.Google Scholar
Jorgensen, J. Fetomaternal bleeding. During pregnancy and at delivery. Acta Obstet Gynecol Scand 1977;56(5):487–90.Google Scholar
Sebring, ES, Polesky, HF. Fetomaternal hemorrhage: Incidence, risk factors, time of occurrence, and clinical effects. Transfusion 1990;30(4):344–57.CrossRefGoogle ScholarPubMed
Huissoud, C, Divry, V, Dupont, C, Gaspard, M, Rudigoz, RC. Large fetomaternal hemorrhage: prenatal predictive factors for perinatal outcome. Am J Perinatol 2009;26(3):227–33.Google Scholar
Christensen, RD, Lambert, DK, Baer, VL, et al. Severe neonatal anemia from fetomaternal hemorrhage: Report from a multihospital health-care system. J Perinatol 2013;33(6):429–34.Google Scholar
Stefanovic, V. Fetomaternal hemorrhage complicated pregnancy: Risks, identification, and management. Curr Opin Obstet Gynecol 2016;28(2):8694.Google Scholar
Laube, DW, Schauberger, CW. Fetomaternal bleeding as a cause for unexplained fetal death. Obstet Gynecol 1982;60(5):649–51.Google Scholar
Catalano, PM, Capeless, EL. Fetomaternal bleeding as a cause of recurrent fetal morbidity and mortality. Obstet Gynecol 1990;76(5 Pt 2):972–3.Google ScholarPubMed
Downing, GJ, Kilbride, HW, Yeast, JD. Nonimmune hydrops fetalis caused by a massive fetomaternal hemorrhage associated with elevated maternal serum alpha-fetoprotein levels. A case report. J Reprod Med 1990;35(4):444–6.Google Scholar
Duckett, JR, Constantine, G. The Kleihauer technique: An accurate method of quantifying fetomaternal haemorrhage? Br J Obstet Gynaecol 1997;104(7):845–6.Google Scholar
Davis, BH, Olsen, S, Bigelow, NC, Chen, JC. Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 1998;38(8):749–56.Google Scholar
Fernandes, BJ, von Dadelszen, P, Fazal, I, Bansil, N, Ryan, G. Flow cytometric assessment of fetomaternal hemorrhage: A comparison with Betke-Kleihauer. Prenat Diagn 2007;27(7):641–3.Google Scholar
Savithrisowmya, S, Singh, M, Kriplani, A, et al. Assessment of fetomaternal hemorrhage by flow cytometry and Kleihauer-Betke test in Rh-negative pregnancies. Gynecol Obstet Invest 2008;65(2):84–8.Google Scholar
Kim, YA, Makar, RS. Detection of fetomaternal hemorrhage. Am J Hematol 2012;87(4):417–23.Google Scholar
Kennedy, MS. Perinatal issues in transfusion medicine. In Robock, ND, Grossman, BJ, Harris, T, Hillyer, CD, eds. AABB Technical Manual (Bethesda, MD.: AABB; 2011).Google Scholar
Kim, A, Economidis, MA, Stohl, HE. Placental abruption after amnioreduction for polyhydramnios caused by chorioangioma. BMJ Case Rep 2018;2018.Google Scholar
Alter, BP, Weiner, MA, Harris, MB. Erythrocyte characteristics in childhood acute leukemia. Am J Pediatr Hematol Oncol 1989;11(1):815.Google Scholar
Schenone, MH, Mari, G. The MCA Doppler and its role in the evaluation of fetal anemia and fetal growth restriction. Clin Perinatol 2011;38(1):83102, vi.Google Scholar
Tsuda, H, Matsumoto, M, Sutoh, Y, et al. Massive fetomaternal hemorrhage. Int J Gynaecol Obstet.1995;50(1):47–9.CrossRefGoogle ScholarPubMed
Whitecar, PW, Moise, KJ, Jr. Sonographic methods to detect fetal anemia in red blood cell alloimmunization. Obstet Gynecol Surv 2000;55(4):240–50.Google Scholar
Cosmi, E, Rampon, M, Saccardi, C, Zanardo, V, Litta, P. Middle cerebral artery peak systolic velocity in the diagnosis of fetomaternal hemorrhage. Int J Gynaecol Obstet 2012;117(2):128–30.CrossRefGoogle ScholarPubMed
Rubod, C, Deruelle, P, Le Goueff, F, et al. Long-term prognosis for infants after massive fetomaternal hemorrhage. Obstet Gynecol 2007;110(2 Pt 1):256–60.Google Scholar
Kecskes, Z. Large fetomaternal hemorrhage: Clinical presentation and outcome. J Matern Fetal Neonatal Med 2003;13(2):128–32.Google Scholar
Tollenaar, LSA, Slaghekke, F, Middeldorp, JM, et al. twin anemia polycythemia Sequence: Current views on pathogenesis, diagnostic criteria, perinatal management, and outcome. Twin Res Hum Genet 2016;19(3):222–33.Google Scholar
Habli, M, Lim, FY, Crombleholme, T. Twin-to-twin transfusion syndrome: A comprehensive update. Clin Perinatol 2009;36(2):391416, x.Google Scholar
Djaafri, F, Stirnemann, J, Mediouni, I, Colmant, C, Ville, Y. Twin-twin transfusion syndrome – What we have learned from clinical trials. Semin Fetal Neonatal Med 2017;22(6):367–75.Google Scholar
Emery, SP, Bahtiyar, MO, Dashe, JS, et al. The North American Fetal Therapy Network Consensus Statement: Prenatal management of uncomplicated monochorionic gestations. Obstet Gynecol 2015;125(5):1236–43.Google Scholar
Lopriore, E, Oepkes, D. Fetal and neonatal haematological complications in monochorionic twins. Semin Fetal Neonatal Med 2008;13(4):231–8.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004;351(2):136–44.Google Scholar
Slaghekke, F, Lopriore, E, Lewi, L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: An open-label randomised controlled trial. Lancet 2014;383(9935):2144–51.Google Scholar
Robyr, R, Lewi, L, Salomon, LJ, et al. Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2006;194(3):796803.Google Scholar
Slaghekke, F, Zhao, DP, Middeldorp, JM, et al. Antenatal management of twin-twin transfusion syndrome and twin anemia-polycythemia sequence. Expert Rev Hematol 2016;9(8):815–20.Google Scholar
Verbeek, L, Slaghekke, F, Sueters, M, et al. Hematological disorders at birth in complicated monochorionic twins. Expert Rev Hematol 2017;10(6):525–32.Google Scholar
Fesslova, V, Villa, L, Nava, S, Mosca, F, Nicolini, U. Fetal and neonatal echocardiographic findings in twin-twin transfusion syndrome. Am J Obstet Gynecol 1998;179(4):1056–62.Google Scholar
Scott, F, Evans, N. Distal gangrene in a polycythemic recipient fetus in twin-twin transfusion. Obstet Gynecol 1995; 86 (4 Pt 2): 677–9.Google Scholar
Dawkins, RR, Marshall, TL, Rogers, MS. Prenatal gangrene in association with twin-twin transfusion syndrome. Am J Obstet Gynecol 1995;172(3):1055–7.Google Scholar
Broadbent, RS. Recipient twin limb ischemia with postnatal onset. J Pediatr 2007;150(2):207–9.Google Scholar
Bowden, JB, Hebert, AA, Rapini, RP. Dermal hematopoiesis in neonates: Report of five cases. J Am Acad Dermatol 1989;20(6):1104–10.Google ScholarPubMed
Schwartz, JL, Maniscalco, WM, Lane, AT, Currao, WJ. Twin transfusion syndrome causing cutaneous erythropoiesis. Pediatrics 1984;74(4):527–9.Google Scholar
Koenig, JM, Hunter, DD, Christensen, RD. Neutropenia in donor (anemic) twins involved in the twin-twin transfusion syndrome. J Perinatol 1991;11(4):355–8.Google ScholarPubMed
Pietrantoni, M, Stewart, DL, Ssemakula, N, et al. Mortality conference: twin-to-twin transfusion. J Pediatr 1998;132(6):1071–6.CrossRefGoogle ScholarPubMed
Rainey, KE, DiGeronimo, RJ, Pascual-Baralt, J. Successful long-term peritoneal dialysis in a very low birth weight infant with renal failure secondary to feto-fetal transfusion syndrome. Pediatrics 2000;106(4):849–51.Google Scholar
Sirotkina, M, Douroudis, K, Papadogiannakis, N, Westgren, M. Clinical outcome in singleton and multiple pregnancies with placental chorangioma. PloS One 2016;11(11):e0166562.Google Scholar
Abiramalatha, T, Sherba, B, Joseph, R, Thomas, N. Unusual complications of placental chorioangioma: consumption coagulopathy and hypertension in a preterm newborn. BMJ Case Rep 2016;2016.Google Scholar
Wu, Z, Hu, W. Clinical analysis of 26 patients with histologically proven placental chorioangiomas. Eur J Obstet Gynecol Reprod Biol 2016;199:156–63.Google Scholar
Ozer, EA, Duman, N, Kumral, A, et al. Chorioangiomatosis presenting with severe anemia and heart failure in a newborn. Fetal Diagn Ther 2008;23(1):56.Google Scholar
Sirotkina, M, Douroudis, K, Wahlgren, CF, Westgren, M, Papadogiannakis, N. Exploring the association between chorangioma and infantile haemangioma in singleton and multiple pregnancies: A case-control study in a Swedish tertiary centre. BMJ Open. 2017;7(9):e015539.Google Scholar
Nagel, HT, de Haan, TR, Vandenbussche, FP, Oepkes, D, Walther, FJ. Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection. Obstet Gynecol 2007;109(1):42–7.CrossRefGoogle ScholarPubMed
Jiao, L, Ghorani, E, Sebire, NJ, Seckl, MJ. Intraplacental choriocarcinoma: Systematic review and management guidance. Gynecol Oncol 2016;141(3):624–31.Google Scholar
Dance, LR, Patel, AR, Patel, MC, Cornejo, P, Pfeifer, CM. Cutaneous metastases of infantile choriocarcinoma can mimic infantile hemangioma both clinically and radiographically. Pediatr Radiol 2018;48(8):1167–71.CrossRefGoogle ScholarPubMed
Halliday, HL. Neonatal management and long-term sequelae. Best Pract Res Clin Obstet Gynaecol 2009;23(6):871–80.Google Scholar
Poryo, M, Wissing, A, Aygun, A, et al. Reference values for nucleated red blood cells and serum lactate in very and extremely low birth weight infants in the first week of life. Early Hum Dev 2017;105:4955.Google Scholar
Christensen, RD, Henry, E, Andres, RL, Bennett, ST. Reference ranges for blood concentrations of nucleated red blood cells in neonates. Neonatology 2011;99(4):289–94.Google Scholar
Martinelli, S, Francisco, RP, Bittar, RE, Zugaib, M. Hematological indices at birth in relation to arterial and venous Doppler in small-for-gestational-age fetuses. Acta Obstet Gynecol Scand 2009;88(8):888–93.Google Scholar
Baschat, AA, Harman, CR, Gembruch, U. Haematological consequences of placental insufficiency. Arch Dis Child Fetal Neonatal Ed 2004;89(1):F94.Google Scholar
Baschat, AA, Gungor, S, Kush, ML, et al. Nucleated red blood cell counts in the first week of life: A critical appraisal of relationships with perinatal outcome in preterm growth-restricted neonates. Am J Obstet Gynecol 2007;197(3):286e1-8.CrossRefGoogle ScholarPubMed
Baschat, AA, Kush, M, Berg, C, et al. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol 2013;41(1):6672.Google Scholar
Cordero, L, Landon, MB. Infant of the diabetic mother. Clin Perinatol 1993;20(3):635–48.Google Scholar
Hay, WW, Jr. Care of the infant of the diabetic mother. Curr Diab Rep 2012;12(1):415.Google Scholar
Cowett, RM, Schwartz, R. The infant of the diabetic mother. Pediatr Clin North Am 1982;29(5):1213–31.Google Scholar
Mimouni, F, Miodovnik, M, Siddiqi, TA, et al. Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986;68(3):370–2.Google Scholar
Cordero, L, Treuer, SH, Landon, MB, Gabbe, SG. Management of infants of diabetic mothers. Arch Pediatr Adolesc Med 1998;152(3):249–54.CrossRefGoogle ScholarPubMed
Green, DW, Khoury, J, Mimouni, F. Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetes. J Pediatr 1992; 120 (2 Pt 1): 302–5.Google Scholar
Stonestreet, BS, Goldstein, M, Oh, W, Widness, JA. Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol 1989; 257 (5 Pt 2): R1199-204.Google ScholarPubMed
Perrine, SP, Greene, MF, Lee, PD, Cohen, RA, Faller, DV. Insulin stimulates cord blood erythroid progenitor growth: Evidence for an aetiological role in neonatal polycythaemia. Br J Haematol 1986;64(3):503–11.Google Scholar
Widness, JA, Teramo, KA, Clemons, GK, et al. Direct relationship of antepartum glucose control and fetal erythropoietin in human type 1 (insulin-dependent) diabetic pregnancy. Diabetologia 1990;33(6):378–83.Google Scholar
Widness, JA, Susa, JB, Garcia, JF, et al. Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Investi 1981;67(3):637–42.CrossRefGoogle ScholarPubMed
Green, DW, Mimouni, F. Nucleated erythrocytes in healthy infants and in infants of diabetic mothers [see comments]. J Pediatr 1990;116(1):129–31.Google Scholar
Green, DW, Mimouni, F, Khoury, J. Decreased platelet counts in infants of diabetic mothers. Am J Perinatol 1995;12(2):102–5.CrossRefGoogle ScholarPubMed
Perrine, SP, Greene, MF, Faller, DV. Delay in the fetal globin switch in infants of diabetic mothers. N Engl J Med 1985;312(6):334–8.Google Scholar
Bard, H, Prosmanne, J. Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers. Pediatrics 1985;75(6):1143–7.Google Scholar
Cetin, H, Yalaz, M, Akisu, M, Kultursay, N. Polycythaemia in infants of diabetic mothers: beta-hydroxybutyrate stimulates erythropoietic activity. J Int Med Res 2011;39(3):815–21.Google Scholar
Van Allen, MI, Jackson, JC, Knopp, RH, Cone, R. In utero thrombosis and neonatal gangrene in an infant of a diabetic mother. Am J Med Genet 1989;33(3):323–7.Google Scholar
Darmency-Stamboul, V, Chantegret, C, Ferdynus, C, et al. Antenatal factors associated with perinatal arterial ischemic stroke. Stroke 2012;43(9):2307–12.Google Scholar
Hathaway, WE, Mahasandana, C, Makowski, EL. Cord blood coagulation studies in infants of high-risk pregnant women. Am J Obstet Gynecol 1975;121(1):51–7.Google Scholar
Stuart, MJ, Elrad, H, Graeber, JE, et al. Increased synthesis of prostaglandin endoperoxides and platelet hyperfunction in infants of mothers with diabetes mellitus. J Lab Clin Med 1979;94(1):1226.Google Scholar
Stuart, MJ, Sunderji, SG, Allen, JB. Decreased prostacyclin production in the infant of the diabetic mother. J Lab Clin Med 1981;98(3):412–16.Google Scholar
Sarkar, S, Hagstrom, NJ, Ingardia, CJ, Lerer, T, Herson, VC. Prothrombotic risk factors in infants of diabetic mothers. J Perinatol 2005;25(2):134–8.Google Scholar
Easa, D, Coen, RW. Coagulation studies in infants of diabetic mothers. Am J Dis Child 1979;133(8):851–2.Google Scholar
Ambrus, CM, Ambrus, JL, Courey, N, et al. Inhibitors of fibrinolysis in diabetic children, mothers, and their newborn. Am J Hematol 1979;7(3):245–54.Google Scholar
Fonseca, VA, Reynolds, T, Fink, LM. Hyperhomocysteinemia and microalbuminuria in diabetes. Diabetes Care 1998;21(6):1028.Google Scholar
Mehta, R, Petrova, A. Neutrophil function in neonates born to gestational diabetic mothers. J Perinatol 2005;25(3):178–81.CrossRefGoogle ScholarPubMed
Lapolla, A, Sanzari, MC, Zancanaro, F, et al. A study on lymphocyte subpopulation in diabetic mothers at delivery and in their newborn. Diabetes Nutr Metab 1999;12(6):394–9.Google Scholar
Roll, U, Scheeser, J, Standl, E, Ziegler, AG. Alterations of lymphocyte subsets in children of diabetic mothers. Diabetologia 1994;37(11):1132–41.Google Scholar
American College of Obstetricians and Gynecologists. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol 2013;122(5):1122–31.Google Scholar
Manroe, BL, Weinberg, AG, Rosenfeld, CR, Browne, R. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979;95(1):8998.Google Scholar
Engle, WD, Rosenfeld, CR. Neutropenia in high-risk neonates. J Pediatr 1984;105(6):982–6.Google Scholar
Mouzinho, A, Rosenfeld, CR, Sanchez, PJ, Risser, R. Effect of maternal hypertension on neonatal neutropenia and risk of nosocomial infection. Pediatrics 1992;90(3):430–5.Google Scholar
Koenig, JM, Christensen, RD. Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med 1989;321(9):557–62.Google Scholar
Doron, MW, Makhlouf, RA, Katz, VL, Lawson, EE, Stiles, AD. Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 1994;125(3):452–8.Google Scholar
Christensen, RD, Henry, E, Wiedmeier, SE, Stoddard, RA, Lambert, DK. Low blood neutrophil concentrations among extremely low birth weight neonates: Data from a multihospital health-care system. J Perinatol 2006;26(11):682–7.Google Scholar
Teng, RJ, Wu, TJ, Garrison, RD, Sharma, R, Hudak, ML. Early neutropenia is not associated with an increased rate of nosocomial infection in very low-birth-weight infants. J Perinatol 2009;29(3):219–24.Google Scholar
Bolat, A, Gursel, O, Kurekci, E, Atay, A, Ozcan, O. Blood parameters changes in cord blood of newborns of hypertensive mothers. Eur J Pediatr 2013;172(11):1501–9.Google Scholar
Christensen, RD, Yoder, BA, Baer, VL, Snow, GL, Butler, A. Early-onset neutropenia in small-for-gestational-age infants. Pediatrics 2015;136(5):e1259-67.Google Scholar
Bizerea, TO, Stroescu, R, Rogobete, AF, Marginean, O, Ilie, C. Pregnancy induced hypertension versus small weight for gestational age: Cause of neonatal hematological Disorders. Clin Lab 2018;64(7):1241–8.Google Scholar
Sharma, G, Nesin, M, Feuerstein, M, Bussel, JB. Maternal and neonatal characteristics associated with neonatal neutropenia in hypertensive pregnancies. Am J Perinatol 2009;26(9):683–9.Google Scholar
Gray, PH, Rodwell, RL. Neonatal neutropenia associated with maternal hypertension poses a risk for nosocomial infection. Eur J Pediatr 1999;158(1):71–3.Google Scholar
Saini, H, Puppala, BL, Angst, D, Gilman-Sachs, A, Costello, M. Upregulation of neutrophil surface adhesion molecules in infants of pre-eclamptic women. J Perinatol 2004;24(4):208–12.Google Scholar
Stoll, BJ, Hansen, N. Infections in VLBW infants: Studies from the NICHD Neonatal Research Network. Semin Perinatol 2003;27(4):293301.Google Scholar
Makhlouf, RA, Doron, MW, Bose, CL, Price, WA, Stiles, AD. Administration of granulocyte colony-stimulating factor to neutropenic low birth weight infants of mothers with preeclampsia. J Pediatr 1995;126(3):454–6.Google Scholar
Carr, R, Modi, N, Dore, C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev 2003(3):CD003066.Google Scholar
Chakravorty, S, Murray, N, Roberts, I. Neonatal thrombocytopenia. Early Hum Dev 2005;81(1):3541.Google Scholar
Baschat, AA, Gembruch, U, Reiss, I, et al. Absent umbilical artery end-diastolic velocity in growth-restricted fetuses: A risk factor for neonatal thrombocytopenia. Obstet Gynecol 2000;96(2):162–6.Google Scholar
Brazy, JE, Grimm, JK, Little, VA. Neonatal manifestations of severe maternal hypertension occurring before the thirty-sixth week of pregnancy. J Pediatr 1982;100(2):265–71.Google Scholar
Bhat, YR, Cherian, CS. Neonatal thrombocytopenia associated with maternal pregnancy induced hypertension. Indian J Pediatr 2008;75(6):571–3.Google Scholar
McPherson, RJ, Juul, S. Patterns of thrombocytosis and thrombocytopenia in hospitalized neonates. J Perinatol 2005;25(3):166–72.Google Scholar
Christensen, RD, Henry, E, Wiedmeier, SE, et al. Thrombocytopenia among extremely low birth weight neonates: data from a multihospital healthcare system. J Perinatol 2006;26(6):348–53.Google Scholar
Raval, DS, Co, S, Reid, MA, Pildes, R. Maternal and neonatal outcome of pregnancies complicated with maternal HELLP syndrome. J Perinatol 1997;17(4):266–9.Google Scholar
Singhal, N, Amin, HJ, Pollard, JK, et al. Maternal haemolysis, elevated liver enzymes and low platelets syndrome: Perinatal and neurodevelopmental neonatal outcomes for infants weighing less than 1250 g. J Paediatr Child Health 2004;40(3):121–6.Google Scholar
Dotsch, J, Hohmann, M, Kuhl, PG. Neonatal morbidity and mortality associated with maternal haemolysis elevated liver enzymes and low platelets syndrome. Eur J Pediatr 1997;156(5):389–91.Google Scholar
Tsao, PN, Wei, SC, Su, YN, et al. Excess soluble fms-like tyrosine kinase 1 and low platelet counts in premature neonates of preeclamptic mothers. Pediatrics 2005;116(2):468–72.Google Scholar
Tsao, PN, Teng, RJ, Chou, HC, Tsou, KI. The thrombopoietin level in the cord blood in premature infants born to mothers with pregnancy-induced hypertension. Biol Neonate 2002;82(4):217–21.Google Scholar
Kalagiri, RR, Choudhury, S, Carder, T, et al. Neonatal thrombocytopenia as a consequence of maternal preeclampsia. AJP Rep 2016;6(1):e42-7.Google Scholar
Kurlat, I, Sola, A. Neonatal polycythemia in appropriately grown infants of hypertensive mothers. Acta Paediatr 1992;81(9):662–4.Google Scholar
Silverman, ED, Laxer, RM. Neonatal lupus erythematosus. Rheum Dis Clin North Am 1997;23(3):599618.Google Scholar
Zuppa, AA, Fracchiolla, A, Cota, F, et al. Infants born to mothers with anti-SSA/Ro autoantibodies: neonatal outcome and follow-up. Clin Pediatr (Phila) 2008;47(3):231–6.Google Scholar
Zuppa, AA, Riccardi, R, Frezza, S, et al. Neonatal lupus: Follow-up in infants with anti-SSA/Ro antibodies and review of the literature. Autoimmun Rev 2017;16(4):427–32.Google Scholar
Hariharan, D, Manno, CS, Seri, I. Neonatal lupus erythematosus with microvascular hemolysis. J Pediatr Hematol Oncol 2000;22(4):351–4.Google Scholar
Kanda, K, Sato, A, Abe, D, Nishijima, S, Ishigami, T. The unique coexistence of anti-SS-A/Ro antibodies in a neonate with symptomatic ischemic stroke. Pediatr Neurol 2016;62:4750.Google Scholar
Gotestam Skorpen, C, Hoeltzenbein, M, Tincani, A, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis 2016;75(5):795810.Google Scholar
Brewster, JA, Shaw, NJ, Farquharson, RG. Neonatal and pediatric outcome of infants born to mothers with antiphospholipid syndrome. J Perinat Med 1999;27(3):183–7.Google Scholar
Contractor, S, Hiatt, M, Kosmin, M, Kim, HC. Neonatal thrombosis with anticardiolipin antibody in baby and mother. Am J Perinatol 1992; 9 (5–6): 409–10.Google Scholar
Tabbutt, S, Griswold, WR, Ogino, MT, et al. Multiple thromboses in a premature infant associated with maternal phospholipid antibody syndrome. J Perinatol 1994;14(1):6670.Google Scholar
Boffa, MC, Lachassinne, E. Infant perinatal thrombosis and antiphospholipid antibodies: a review. Lupus 2007;16(8):634–41.Google Scholar
Motta, M, Chirico, G, Rebaioli, CB, et al. Anticardiolipin and anti-beta2 glycoprotein I antibodies in infants born to mothers with antiphospholipid antibody-positive autoimmune disease: A follow-up study. Am J Perinatol 2006;23(4):247–51.Google Scholar
Berkun, Y, Simchen, MJ, Strauss, T, et al. Antiphospholipid antibodies in neonates with stroke: A unique entity or variant of antiphospholipid syndrome? Lupus 2014;23(10):986–93.Google Scholar
Ngu, S-F, Hgan, HYS. Chemotherapy in pregnancy. Best Pract Res Clin Obstet Gynaecol 2016;33:86101.CrossRefGoogle ScholarPubMed
Azim, HA, Jr., Pavlidis, N, Peccatori, FA. Treatment of the pregnant mother with cancer: a systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part II: Hematological tumors. Cancer Treat Rev 2010;36(2):110–21.Google Scholar
Azim, HA, Jr., Peccatori, FA, Pavlidis, N. Treatment of the pregnant mother with cancer: a systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part I: Solid tumors. Cancer Treat Rev 2010;36(2):101–9.Google Scholar
Waalen, J. Pregnancy poses tough questions for cancer treatment [news]. J Natl Cancer Inst 1991;83(13):900–2.Google Scholar
Cordeiro, CN, Gemignani, ML. Gynecologic malignancies in pregnancy: Balancing fetal risks with oncologic safety. Obstet Gynecol Surv 2017;72(3):184–93.Google Scholar
Esposito, S, Tenconi, R, Preti, V, Groppali, E, Principi, N. Chemotherapy against cancer during pregnancy: A systematic review on neonatal outcomes. Medicine (Baltimore) 2016;95(38):e4899.CrossRefGoogle ScholarPubMed
Lishner, M, Avivi, I, Apperley, JF, et al. Hematologic malignancies in pregnancy: Management guidelines From an international consensus meeting. J Clin Oncol 2016;34(5):501–8.CrossRefGoogle ScholarPubMed
Doll, DC, Ringenberg, QS, Yarbro, JW. Antineoplastic agents and pregnancy. Semin Oncol 1989;16(5):337–46.Google Scholar
Zemlickis, D, Klein, J, Moselhy, G, Koren, G. Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol 1994;23(6):476–9.Google Scholar
Amant, F, Vandenbroucke, T, Verheecke, M, et al. Pediatric outcome after maternal cancer diagnosed during pregnancy. N Engl J Med 2015;373(19):1824–34.Google Scholar
de Haan, J, Verheecke, M, Van Calsteren, K, et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol 2018;19(3):337–46.Google Scholar
Buekers, TE, Lallas, TA. Chemotherapy in pregnancy. Obstet Gynecol Clin North Am 1998;25(2):323–9.Google Scholar
Achtari, C, Hohlfeld, P. Cardiotoxic transplacental effect of idarubicin administered during the second trimester of pregnancy. Am J Obstet Gynecol 2000;183(2):511–2.Google Scholar
Udink ten Cate, FE, ten Hove, CH, Nix, WM, et al.Transient neonatal myelosuppression after fetal exposure to maternal chemotherapy. Case report and review of the literature. Neonatology 2009;95(1):80–5.Google Scholar
Chakravarty, EF, Murray, ER, Kelman, A, Farmer, P. Pregnancy outcomes after maternal exposure to rituximab. Blood 2011;117(5):1499–506.Google Scholar
Cardonick, E, Usmani, A, Ghaffar, S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: Results of an international registry. Am J Clin Oncol 2010;33(3):221–8.Google Scholar
Cardonick, E, Dougherty, R, Grana, G, et al. Breast cancer during pregnancy: Maternal and fetal outcomes. Cancer J 2010;16(1):7682.Google Scholar
Luis, SA, Christie, DR, Kaminski, A, Kenny, L, Peres, MH. Pregnancy and radiotherapy: Management options for minimising risk, case series and comprehensive literature review. J Med Imaging Radiat Oncol 2009;53(6):559–68.Google Scholar
Mayr, NA, Wen, BC, Saw, CB. Radiation therapy during pregnancy. Obstet Gynecol Clin North Am 1998;25(2):301–21.Google Scholar
Brent, RL. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: Counseling the pregnant and nonpregnant patient about these risks. Semin Oncol 1989;16(5):347–68.Google Scholar
Pentheroudakis, G, Pavlidis, N. Cancer and pregnancy: Poena magna, not anymore. Eur J Cancer 2006;42(2):126–40.Google Scholar
Needleman, S, Powell, M. Radiation hazards in pregnancy and methods of prevention. Best Pract Res Clin Obstet Gynaecol 2016;33:108–16.Google Scholar
Sebire, NJ, Jauniaux, E. Fetal and placental malignancies: prenatal diagnosis and management. Ultrasound Obstet Gynecol 2009;33(2):235–44.Google Scholar
Walker, JW, Reinisch, JF, Monforte, HL. Maternal pulmonary adenocarcinoma metastatic to the fetus: First recorded case report and literature review. Pediatr Pathol Mol Med 2002;21(1):5769.Google Scholar
Hurley, TJ, McKinnell, JV, Irani, MS. Hematologic malignancies in pregnancy. Obstet Gynecol Clin North Am 2005;32(4):595614.CrossRefGoogle ScholarPubMed
Mountain, KR, Hirsh, J, Gallus, AS. Neonatal coagulation defect due to anticonvulsant drug treatment in pregnancy. Lancet 1970;1(7641):265–8.Google Scholar
Hey, E. Effect of maternal anticonvulsant treatment on neonatal blood coagulation. Arch Dis Child Fetal Neonatal Ed 1999;81(3):F208-10.Google Scholar
Howe, AM, Oakes, DJ, Woodman, PD, Webster, WS. Prothrombin and PIVKA-II levels in cord blood from newborn exposed to anticonvulsants during pregnancy. Epilepsia 1999;40(7):980–4.Google Scholar
Chong, DJ, Lerman, AM. Practice update: Review of anticonvulsant therapy. Current Neurol Neurosci Rep 2016;16(4):39.Google Scholar
Harden, CL, Pennell, PB, Koppel, BS, et al. Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): III. Vitamin K, folic acid, blood levels, and breast-feeding: Report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia 2009;50(5):1247–55.Google Scholar
Albisetti, M, Monagle, P. Bleeding disorders. In de Alarcón, PA, Werner, EJ, Christensen, RD, eds. Neonatal Hematology Pathogenesis, Diagnosis and Management of Hematologic Problems (New York: Cambridge University Press, 2013), pp. 286301.CrossRefGoogle Scholar
Greinacher, A, Eckhardt, T, Mussmann, J, Mueller-Eckhardt, C. Pregnancy complicated by heparin associated thrombocytopenia: management by a prospectively in vitro selected heparinoid (Org 10172]. Thromb Res 1993;71(2):123–6.Google Scholar
Konkle, BA. Diagnosis and management of thrombosis in pregnancy. Birth Defects Res C Embryo Today 2015;105(3):185–9.CrossRefGoogle ScholarPubMed
D’Souza, R, Ostro, J, Shah, PS, et al. Anticoagulation for pregnant women with mechanical heart valves: A systematic review and meta-analysis. Eur Heart J 2017;38(19):1509–16.Google Scholar
Haghikia, A, Langer-Gould, A, Rellensmann, G, et al. Natalizumab use during the third trimester of pregnancy. JAMA Neurol 2014;71(7):891–5.Google Scholar
Barak, M, Cohen, A, Herschkowitz, S. Total leukocyte and neutrophil count changes associated with antenatal betamethasone administration in premature infants. Acta Paediatr 1992;81(10):760–3.Google Scholar
Anday, EK, Harris, MC. Leukemoid reaction associated with antenatal dexamethasone administration. J Pediatr 1982;101(4):614–6.Google Scholar
Juul, SE, Haynes, JW, McPherson, RJ. Evaluation of neutropenia and neutrophilia in hospitalized preterm infants. J Perinatol 2004;24(3):150–7.Google Scholar
Calhoun, DA, Kirk, JF, Christensen, RD. Incidence, significance, and kinetic mechanism responsible for leukemoid reactions in patients in the neonatal intensive care unit: A prospective evaluation. J Pediatr 1996;129(3):403–9.Google Scholar
WHO Guidelines Approved by the Guidelines Review Committee. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience (Geneva: World Health Organization, 2016).Google Scholar
Achebe, MM, Gafter-Gvili, A. How I treat anemia in pregnancy: Iron, cobalamin, and folate. Blood 2017;129(8):940–9.Google Scholar
Breymann, C. Iron deficiency anemia in pregnancy. Semin Hematol 2015;52(4):339–47.Google Scholar
Rahman, MM, Abe, SK, Rahman, MS, et al. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis. Am J Clin Nutr 2016;103(2):495504.Google Scholar
Milman, N, Bergholt, T, Byg, KE, Eriksen, L, Graudal, N. Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation. Acta Obstet Gynecol Scand 1999;78(9):749–57.Google Scholar
Werner, EJ, Stockman, JA, 3rd. Red cell disturbances in the fetomaternal unit. Semin Perinatol 1983;7(3):139–58.Google Scholar
Lesser, KB, Schoel, SB, Kling, PJ. Elevated zinc protoporphyrin/heme ratios in umbilical cord blood after diabetic pregnancy. J Perinatol 2006;26(11):671–6.Google Scholar
Rao, R, Georgieff, MK. Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 2007;12(1):5463.Google Scholar
American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 95: Anemia in pregnancy. (Reaffirmed in 2017.) Obstet Gynecol 2008;112(1):201–7.Google Scholar
Siu, AL, USPS Task Force. Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: US Preventive Services Task Force recommendation statement. Ann Intern Med 2015;163(7):529–36.Google Scholar
Lee, S, Guillet, R, Cooper, EM, et al. Prevalence of anemia and associations between neonatal iron status, hepcidin, and maternal iron status among neonates born to pregnant adolescents. Pediatr Res 2016; 79 (1–1): 42–8.Google Scholar
Pena-Rosas, JP, De-Regil, LM, Garcia-Casal, MN, Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2015(7):CD004736.Google Scholar
Rukuni, R, Bhattacharya, S, Murphy, MF, et al. Maternal and neonatal outcomes of antenatal anemia in a Scottish population: A retrospective cohort study. Acta Obstet Gynecol Scand 2016;95(5):555–64.Google Scholar
O’Brien, KO, Ru, Y. Iron status of North American pregnant women: An update on longitudinal data and gaps in knowledge from the United States and Canada. Am J Clin Nutr 2017;106(Suppl6): 1647s–54s.Google Scholar
Levy, S, Schapkaitz, E. The clinical utility of new reticulocyte and erythrocyte parameters on the Sysmex XN 9000 for iron deficiency in pregnant patients. Int J Lab Hematol 2018;40(6):683–90.Google Scholar
Allen, LH. Anemia and iron deficiency: Effects on pregnancy outcome. Am J Clin Nutr 2000;71(5 Suppl):1280S-4S.Google Scholar
Chaparro, CM. Setting the stage for child health and development: Prevention of iron deficiency in early infancy. J Nutr 2008;138(12):2529–33.Google Scholar
Siddappa, AM, Rao, R, Long, JD, Widness, JA, Georgieff, MK. The assessment of newborn iron stores at birth: A review of the literature and standards for ferritin concentrations. Neonatology 2007;92(2):7382.Google Scholar
Preziosi, P, Prual, A, Galan, P, et al. Effect of iron supplementation on the iron status of pregnant women: Consequences for newborns. Am J Clin Nutr 1997;66(5):1178–82.Google Scholar
McDonald, SJ, Middleton, P, Dowswell, T, Morris, PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev 2013(7):Cd004074.Google Scholar
Andersson, O, Hellstrom-Westas, L, Andersson, D, Domellof, M. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: A randomised controlled trial. BMJ 2011;343:d7157.Google Scholar
Basnet, S, Schneider, M, Gazit, A, Mander, G, Doctor, A. Fresh goat’s milk for infants: Myths and realities: A review. Pediatrics 2010;125(4):e973-7.Google Scholar
Watkins, D, Whitehead, VM, Rosenblatt, DS. Megaloblastic anemia. In Orkin, SH, Nathan, DG, Ginsburg, D, et al. eds. Nathan and Oski’s Hematology and Oncology of Infancy and Childhood, 8th ed. (Philadelphia, PA: Elsevier, 2015).Google Scholar
Watkins, S, Yunge, M, Jones, D, Kiely, E, Petros, AJ. Prolonged use of tissue plasminogen activator for bilateral lower limb arterial occlusion in a neonate. J Pediatr Surg 2001;36(4):654–6.Google Scholar
US Preventive Services Task Force. Folic acid for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. Ann Intern Med 2009;150(9):626–31.Google Scholar
Obeid, R, Oexle, K, Rissmann, A, Pietrzik, K, Koletzko, B. Folate status and health: Challenges and opportunities. J Perinat Med 2016;44(3):261–8.Google Scholar
Pritchard, JA, Scott, DE, Whalley, PJ, Haling, RF, Jr. Infants of mothers with megaloblastic anemia due to folate deficiency. JAMA 1970;211(12):1982–4.Google Scholar
Green, R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017;129(19):2603–11.Google Scholar
Watkins, D, Rosenblatt, DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis 2012;35(4):665–70.Google Scholar
Stabler, SP. Clinical practice. Vitamin B12 deficiency. N Engl J Med 2013;368(2):149–60.Google Scholar
Obeid, R, Murphy, M, Sole-Navais, P, Yajnik, C. Cobalamin Status from pregnancy to early childhood: Lessons from global experience. Adv Nutr 2017;8(6):971–9.Google Scholar
Chanarin, I. Folate and cobalamin. Clin Haematol 1985;14(3):629–41.Google Scholar
Bjorke Monsen, AL, Ueland, PM, Vollset, SE, et al. Determinants of cobalamin status in newborns. Pediatrics 2001;108(3):624–30.Google Scholar
Finkelstein, JL, Layden, AJ, Stover, PJ. Vitamin B-12 and perinatal health. Adv Nutr 2015;6(5):552–63.Google Scholar
Pawlak, R, Lester, SE, Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: A review of literature. Eur J Clin Nutr 2014;68(5):541–8.Google Scholar
Rosenblatt, DS, Whitehead, VM. Cobalamin and folate deficiency: Acquired and hereditary disorders in children. Semin Hematol 1999;36(1):1934.Google Scholar
Lampkin, BC, Shore, NA, Chadwick, D. Megaloblastic anemia of infancy secondary to maternal pernicious anemia. N Engl J Med 1966;274(21):1168–71.Google Scholar
Quentin, C, Huybrechts, S, Rozen, L, et al. Vitamin B12 deficiency in a 9-month-old boy. Eur J Pediatr 2012;171(1):193–5.Google Scholar
Pappo, AS, Fields, BW, Buchanan, GR. Etiology of red blood cell macrocytosis during childhood: impact of new diseases and therapies. Pediatrics 1992; 89 (6 Pt 1): 1063–7.Google Scholar
Kamoun, F, Guirat, R, Megdich, F, et al. Frequent infections, hypotonia, and anemia in a breastfed infant. J Pediatr Hematol Oncol 2017;39(2):141–2.Google Scholar
American Academy of Pediatrics, Kimberlin, DW, Brady, MT, Jackson, MA, Long, SS, eds. Red Book®: 2018–2021 Report of the Committee on Infectious Diseases, 31st ed. (Itasca, IL: American Academy of Pediatrics, 2018).Google Scholar
Remington, JS, McLeod, R, Thulliez, P, Desmonts, G. Toxoplasmosis. In Remington, JS, Klein, JO, eds. Infectious Disease of the Fetus and Newborn (Philadelphia, PA: W. B. Saunders Company, 2001).Google Scholar
Petersen, E. Toxoplasmosis. Semin Fetal Neonatal Med 2007;12(3):214–23.Google Scholar
Peyron, F, Mc Leod, R, Ajzenberg, D, et al. Congenital toxoplasmosis in France and the United States: One parasite, two diverging approaches. PLoS Neg Trop Dis 2017;11(2):e0005222.Google Scholar
Foudrinier, F, Marx-Chemla, C, Aubert, D, Bonhomme, A, Pinon, JM. Value of specific immunoglobulin A detection by two immunocapture assays in the diagnosis of toxoplasmosis. Eur J Clin Microbiol Infect Dis 1995;14(7):585–90.Google Scholar
Hohlfeld, P, Daffos, F, Costa, JM, et al. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med 1994;331(11):695–9.Google Scholar
Romand, S, Wallon, M, Franck, J, et al. Prenatal diagnosis using polymerase chain reaction on amniotic fluid for congenital toxoplasmosis. Obstet Gynecol 2001;97(2):296300.Google Scholar
Lukens, JN. Neonatal haematological abnormalities associated with maternal disease. Clin Haematol 1978;7(1):155–73.Google Scholar
Alford, CA, Jr., Stagno, S, Reynolds, DW. Congenital toxoplasmosis: Clinical, laboratory, and therapeutic considerations, with special reference to subclinical disease. Bull NY Acad Med 1974;50(2):160–81.Google Scholar
Koskiniemi, M, Lappalainen, M, Hedman, K. Toxoplasmosis needs evaluation. An overview and proposals. Am J Dis Child 1989;143(6):724–8.Google Scholar
Barron, SD, Pass, RF. Infectious causes of hydrops fetalis. Semin Perinatol 1995;19(6):493501.Google Scholar
Hohlfeld, P, Forestier, F, Kaplan, C, Tissot, JD, Daffos, F. Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 1994;84(6):1851–6.Google Scholar
Hohlfeld, P, Forestier, F, Marion, S, et al. Toxoplasma gondii infection during pregnancy: T lymphocyte subpopulations in mothers and fetuses. Pediatr Infect Dis J 1990;9(12):878–81.Google Scholar
Ingall, D, Sanchez, PJ. Syphilis. In Remington, JW, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant (Philadelphia, PA: W. B. Saunders Company; 2001), pp. 643–81.Google Scholar
Hurtig, AK, Nicoll, A, Carne, C, et al. Syphilis in pregnant women and their children in the United Kingdom: Results from national clinician reporting surveys 1994–7. BMJ (Clinical research ed) 1998;317(7173):1617–9.Google Scholar
Korenromp, EL, Mahiane, SG, Nagelkerke, N, et al. Syphilis prevalence trends in adult women in 132 countries: Estimations using the Spectrum Sexually Transmitted Infections model. Sci Rep 2018;8(1):11503.Google Scholar
American Academy of Pediatrics. Syphilis. In Kimberlin, DW, Brady, MT, Jackson, MA, Long, SS, eds. Red Book®: 2018–2021 Report of the Committee on Infectious Diseases, 31st ed. (Itasca, IL: American Academy of Pediatrics,2018), pp. 773–88.Google Scholar
Kollmann, TR, Dobson, S. Syphilis. In Remington, JW, Kleinhauer, E, Wilson, CB, Nizet, V, Maldonado, YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th ed. (Philadelphia, PA: Elsevier Saunders, 2011).Google Scholar
Woods, CR. Congenital syphilis-persisting pestilence. Pediatr Infect Dis J 2009;28(6):536–7.CrossRefGoogle ScholarPubMed
Mavrov, GI, Goubenko, TV. Clinical and epidemiological features of syphilis in pregnant women: The course and outcome of pregnancy. Gynecol Obstet Invest 2001;52(2):114–8.Google Scholar
Chhabra, RS, Brion, LP, Castro, M, Freundlich, L, Glaser, JH. Comparison of maternal sera, cord blood, and neonatal sera for detecting presumptive congenital syphilis: Relationship with maternal treatment. Pediatrics 1993;91(1):8891.Google Scholar
Whitaker, JA, Sartain, P, Shaheedy, M. Hematologic aspects of congenital syphilis. J Pediatr 1965;66:629.Google Scholar
Freiman, I, Super, M. Thrombocytopenia and congenital syphilis in South African Bantu infants. Arch Dis Child 1965;41:8790.Google Scholar
Karayalcin, G, Khanijou, A, Kim, KY, Aballi, AJ, Lanzkowsky, P. Monocytosis in congenital syphilis. Am J Dis Child 1977;131(7):782–3.Google Scholar
Shah, AA, Desai, AB. Paroxysmal cold hemoglobinuria (case report). Indian Pediatr 1977;14(3):219–21.Google Scholar
Pohl, M, Niemeyer, CM, Hentschel, R, et al. Haemophagocytosis in early congenital syphilis. Eur J Pediatr 1999;158(7):553–5.Google Scholar
Brown, HL, Abernathy, MP. Cytomegalovirus infection. Semin Perinatol 1998;22(4):260–6.Google Scholar
Nelson, CT, Demmler, GJ. Cytomegalovirus infection in the pregnant mother, fetus, and newborn infant. Clin Perinatol 1997;24(1):151–60.Google Scholar
Stagno, S. Cytomegalovirus. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant (Philadelphia, PA: W.B Saunders Company, 2001), pp. 389424.Google Scholar
Adler, SP. Transfusion-acquired CMV infection in premature infants. Transfusion 1989;29(3):278–90.Google Scholar
Yeager, AS, Palumbo, PE, Malachowski, N, Ariagno, RL, Stevenson, DK. Sequelae of maternally derived cytomegalovirus infections in premature infants. J Pediatr 1983;102(6):918–22.Google Scholar
Fowler, KB, Stagno, S, Pass, RF, et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992;326(10):663–7.Google Scholar
Pass, RF, Fowler, KB, Boppana, SB, Britt, WJ, Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J Clin Virol 2006;35(2):216–20.Google Scholar
Britt, W. Cytomegalovirus. In Remington, JW, Kleinhauer, E, Wilson, CB, Nizet, V, Maldonado, YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th ed. (Philadelphia, PA: Elsevier Saunders, 2011).Google Scholar
Hittner, HM, Desmond, M M, Montgomery, JR. Optic nerve manifestations of human congenital cytomegalovirus infection. Am J Ophthalmol 1976;81(5):661–5.Google Scholar
Boppana, SB, Fowler, KB, Britt, WJ, Stagno, S, Pass, RF. Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 1999;104(1 Pt 1):5560.Google Scholar
Schopfer, K, Lauber, E, Krech, U. Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch Dis Child 1978;53(7):536–9.Google Scholar
Lazzarotto, T, Varani, S, Gabrielli, L, Spezzacatena, P, Landini, MP. New advances in the diagnosis of congenital cytomegalovirus infection. Intervirology 1999;42(5–6): 390–7.Google Scholar
Rivers, A, Slayton, W. Development of the immune system. In de Alarcón, PA, Werner, EJ, Christensen, RD, eds. Neonatal Hematology Pathogenesis, Diagnosis and Management of Hematologic Problems (New York: Cambridge University Press; 2013), pp. 2536.Google Scholar
Revello, M G, Zavattoni, M, Baldanti, F, et al. Diagnostic and prognostic value of human cytomegalovirus load and IgM antibody in blood of congenitally infected newborns. J Clin Virol 1999;14(1):5766.Google Scholar
Hughes, BL, Gyamfi-Bannerman, C. Diagnosis and antenatal management of congenital cytomegalovirus infection. Am J Obstet Gynecol 2016;214(6):B5-B11.Google Scholar
Goegebuer, T, Van Meensel, B, Beuselinck, K, et al. Clinical predictive value of real-time pcr quantification of human cytomegalovirus DNA in amniotic fluid samples. J Clin Microbiol 2009;47(3):660–5.Google Scholar
Boppana, SB, Ross, SA, Shimamura, M, et al. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med 2011;364(22):2111–8.Google Scholar
Yamamoto, AY, Mussi-Pinhata, MM, Marin, LJ, et al. Is saliva as reliable as urine for detection of cytomegalovirus DNA for neonatal screening of congenital CMV infection? J Clin Virol 2006;36(3):228–30.Google Scholar
Arav-Boger, R, Reif, S, Bujanover, Y. Portal vein thrombosis caused by protein C and protein S deficiency associated with cytomegalovirus infection. J Pediatr 1995;126(4):586–8.CrossRefGoogle ScholarPubMed
Hathaway, WE, Mull, MM, Pechet, GS. Disseminated intravascular coagulation in the newborn. Pediatrics 1969;43(2):233–40.Google Scholar
Mizutani, K, Azuma, E, Komada, Y, et al. An infantile case of cytomegalovirus induced idiopathic thrombocytopenic purpura with predominant proliferation of CD10 positive lymphoblast in bone marrow. Acta Paediatr Jpn 1995;37(1):71–4.Google Scholar
Crapnell, K, Zanjani, ED, Chaudhuri, A, et al. In vitro infection of megakaryocytes and their precursors by human cytomegalovirus. Blood 2000;95(2):487–93.Google Scholar
Liesner, RJ. Non-immune neonatal anemias. In Lilleyman, JS, Hann, IM, Blanchette, VS, eds. Pediatric Hematology (London: Churchill Livingstone, 1999), pp. 185202.Google Scholar
Murray, JC, Bernini, JC, Bijou, HL, Rossmann, SN, Mahoney, DH, Jr., Morad, AB. Infantile cytomegalovirus-associated autoimmune hemolytic anemia. J Pediatr Hematol Oncol. 2001;23(5):318–20.Google Scholar
Maciejewski, JP, Bruening, EE, Donahue, RE, Mocarski, ES, Young, NS, St Jeor, SC. Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 1992;80(1):170–8.Google Scholar
Leruez-Ville, M, Ville, Y. Fetal cytomegalovirus infection: Best Prac Res Clin Obstet Gynaecol 2017;38:97107.Google Scholar
Cole, FS. Viral infections of the fetus and newborn. In Taeusch, HW, Ballard, RA, eds. Avery‘s Diseases of the Newborn, 7th ed. (Philadelphia, PA: W. B. Saunders Co., 1998), pp. 46789.Google Scholar
Mace, AO, Carter, T, Rueter, K, Bowen, AC. Congenital cytomegalovirus and infantile neutropenia: A causal relationship? J Paediatr Child Health 2018;54(1):8892.Google Scholar
Lambert, N, Strebel, P, Orenstein, W, Icenogle, J, Poland, GA. Rubella. Lancet 2015;385(9984):2297–307.Google Scholar
American Academy of Pediatrics. Rubella. In Kimberlin, DW, Brady, MT, Jackson, MA, Long, SS, eds. Red Book: 2018–2021 Report of the Committee on Infectious Diseases, 31st ed. (Itasca, IL: American Academy of Pediatrics; 2018), pp. 705–11.Google Scholar
Coulter, C, Wood, R, Robson, J. Rubella infection in pregnancy. Commun Dis Intell 1999;23(4):93–6.Google Scholar
Robinson, J, Lemay, M, Vaudry, WL. Congenital rubella after anticipated maternal immunity: Two cases and a review of the literature. Pediatr Infect Dis J 1994;13(9):812–5.Google Scholar
Peckham, CS. Clinical and serological assessment of children exposed in utero to confirmed maternal rubella. Br Med J 1974;1(5902):259–61.Google Scholar
Plotkin, SA, Reef, SE, Cooper, LZ, Alford, CA, Jr. Rubella. In Remington, JW, Kleinhauer, E, Wilson, CB, Nizet, V, Maldonado, YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th ed. (Philadelphia, PA: Elsevier Saunders, 2011).Google Scholar
Thomas, HI, Morgan-Capner, P, Cradock-Watson, JE, et al. Slow maturation of IgG1 avidity and persistence of specific IgM in congenital rubella: Implications for diagnosis and immunopathology. J Med Virol 1993;41(3):196200.Google Scholar
Bosma, TJ, Corbett, K M, Eckstein, MB, et al. Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J Clin Microbiol 1995;33(11):2881–7.Google Scholar
Bayer, WL, Sherman, FE, Michaels, RH, Szeto, IL, Lewis, JH. Purpura in congenital and acquired rubella. N Engl J Med 1965;273(25):1362–6.Google Scholar
Zinkham, WH, Medearis, DN, Jr., Osborn, JE. Blood and bone-marrow findings in congenital rubella. J Pediatr 1967;71(4):512–24.Google Scholar
Cooper, LZ, Green, RH, Krugman, S, Giles, JP, Mirick, GS. Neonatal thrombocytopenic purpura and other manifestations of rubella contracted in utero. Am J Dis Child 1965;110:416–27.Google Scholar
Rausen, AR, Richter, P, Tallal, L, Cooper, LZ. Hematologic effects of intrauterine rubella. JAMA 1967;199(2):75–8.Google Scholar
Cooper, LZ. The history and medical consequences of rubella. Rev Infect Dis 1985;7 Suppl 1:S2-10.Google Scholar
Lafer, CZ, Morrison, AN. Thrombocytopenic purpura progressing to transient hypoplastic anemia in a newborn with rubella syndrome. Pediatrics 1966;38(3):499501.Google Scholar
Gutierrez, K M, Whitley, RJ, Arvin, AM. Herpes Simplex. In Remington, JW, Kleinhauer, E, Wilson, CB, Nizet, V, Maldonado, YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th ed. (Philadelphia, PA: Elsevier Saunders, 2011).Google Scholar
Anderson, NW, Buchan, BW, Ledeboer, NA. Light microscopy, culture, molecular, and serologic methods for detection of herpes simplex virus. J Clin Microbiol 2014;52(1):28.Google Scholar
Scott, LL, Hollier, L M, Dias, K. Perinatal herpesvirus infections. Herpes simplex, varicella, and cytomegalovirus. Infect Dis Clin North Am 1997;11(1):2753.Google Scholar
American Academy of Pediatrics . Herpes simplex. In Kimberlin, DW, Brady, MT, Jackson, MA, Long, SS, eds. Red Book®: 2018–2021 Report of the Committee on Infectious Diseases, 31st ed. (Itasca, IL: American Academy of Pediatrics, 2018), pp. 437–49.Google Scholar
Koch, LH, Fisher, RG, Chen, C, et al. Congenital herpes simplex virus infection: Two unique cutaneous presentations associated with probable intrauterine transmission. J Am Acad Dermatol 2009;60(2):312–5.Google Scholar
Kohl, S. Neonatal herpes simplex virus infection. Clin Perinatol 1997;24(1):129–50.CrossRefGoogle ScholarPubMed
Douglas, J, Schmidt, O, Corey, L. Acquisition of neonatal HSV-1 infection from a paternal source contact. J Pediatr 1983;103(6):908–10.Google Scholar
Kimberlin, DW, Lakeman, FD, Arvin, AM, et al. Application of the polymerase chain reaction to the diagnosis and management of neonatal herpes simplex virus disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis. 1996;174(6):1162–7.Google Scholar
Greenes, DS, Rowitch, D, Thorne, GM, et al. Neonatal herpes simplex virus infection presenting as fulminant liver failure. Pediatr Infect Dis J 1995;14(3):242–4.Google Scholar
Shershow, LW, Ekert, H, Swanson, VL, Wright, HT, Jr., Gilchrist, GS. Intravascular coagulation in generalized herpes simplex infection of the newborn. Acta Paediatr Scand 1969;58(5):535–9.Google Scholar
Ekert, H. Coagulation abnormalities in generalised herpes-simplex infection of newborn. Lancet 1970;2(7676):775–6.Google Scholar
Miller, DR, Hanshaw, JB, O’Leary, DS, Hnilicka, JV. Fatal disseminated herpes simplex virus infection and hemorrhage in the neonate. Coagulation studies in a case and a review. J Pediatr 1970;76(3):409–15.Google Scholar
Cherry, JD. Enteroviruses. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant (Philadelphia, PA: W. B. Saunders Company, 2001), pp. 477518.Google Scholar
Cherry, JD, Krogstad, P. Enterovirus and parechovirus infections. In Remington, JW, Kleinhauer, E, Wilson, CB, Nizet, V, Maldonado, YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th ed. (Philadelphia, PA: Elsevier Saunders, 2011).Google Scholar
Harik, N, DeBiasi, RL. Neonatal nonpolio enterovirus and parechovirus infections. Semin Perinatol 2018;42(3):191–7.Google Scholar
Jenista, JA, Powell, KR, Menegus, MA. Epidemiology of neonatal enterovirus infection. J Pediatr 1984;104(5):685–90.Google Scholar
Abzug, MJ, Levin, MJ, Rotbart, HA. Profile of enterovirus disease in the first two weeks of life. Pediatr Infect Dis J. 1993;12(10):820–4.Google Scholar
American Academy of Pediatrics. Parvovirus B19. In Kimberlin, DW, Brady, MT, Jackson, MA, Long, SS, eds. Red Book®: 2018–2021 Report of the Committee on Infectious Diseases, 31st ed. (Itasca, IL: American Academy of Pediatrics, 2018), pp. 602–6.Google Scholar
Abzug, MJ. Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001;20(8):758–63.Google Scholar
Modlin, JF. Fatal echovirus 11 disease in premature neonates. Pediatrics 1980;66(5):775–80.Google Scholar
Abzug, MJ. The enteroviruses: Problems in need of treatments. J Infect 2014;68 Suppl 1:S108-14.Google Scholar
Abzug, MJ, Johnson, SM. Catastrophic intracranial hemorrhage complicating perinatal viral infections. Pediatr Infect Dis J 2000;19(6):556–9.Google Scholar
Lake, AM, Lauer, BA, Clark, JC, Wesenberg, RL, McIntosh, K. Enterovirus infections in neonates. J Pediatr 1976;89(5):787–91.Google Scholar
Tarcan, A, Ozbek, N, Gurakan, B. Bone marrow failure with concurrent enteroviral infection in a newborn. Pediatr Infect Dis J 2001;20(7):719–21.Google Scholar
Barre, V, Marret, S, Mendel, I, Lesesve, JF, Fessard, CI. Enterovirus-associated haemophagocytic syndrome in a neonate. Acta Paediatr 1998;87(4):469–71.Google Scholar
Abzug, MJ, Michaels, M G, Wald, E, et al. A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. J Pediatric Infect Dis Soc 2016;5(1):5362.Google Scholar
Brown, KE, Anderson, SM, Young, NS. Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science 1993;262(5130):114–7.Google Scholar
Brown, KE, Young, NS. Parvovirus B19 in human disease. Annu Rev Med 1997;48:5967.Google Scholar
Bonvicini, F, Bua, G, Gallinella, G. Parvovirus B19 infection in pregnancy-awareness and opportunities. Curr Opin Virol 2017;27:814.Google Scholar
Mossong, J, Hens, N, Friederichs, V, et al. Parvovirus B19 infection in five European countries: seroepidemiology, force of infection and maternal risk of infection. Epidemiol Infect 2008;136(8):1059–68.Google Scholar
Neu, N, Duchon, J, Zachariah, P. TORCH infections. Clin Perinatol 2015;42(1):77103, viii.Google Scholar
Markenson, GR, Yancey, MK. Parvovirus B19 infections in pregnancy. Semin Perinatol 1998;22(4):309–17.Google Scholar
Koch, WC, Harger, JH, Barnstein, B, Adler, SP. Serologic and virologic evidence for frequent intrauterine transmission of human parvovirus B19 with a primary maternal infection during pregnancy. Pediatr Infect Dis J 1998;17(6):489–94.Google Scholar
Gallagher, PG, Forget, BG, Lux, SE. Disorders of the erythrocyte membrane. In Nathan, DG, Orkin, SH, eds. Nathan and Oski’s Hematology of Infancy and Childhood, 5th ed. (Philadelphia, PA: W.B. Saunders Company, 1998), pp. 544664.Google Scholar
Katz, VL, Chescheir, NC, Bethea, M. Hydrops fetalis from B19 parvovirus infection. J Perinatol 1990;10(4):366–8.Google Scholar
Bascietto, F, Liberati, M, Murgano, D, et al. Outcome of fetuses with congenital parvovirus B19 infection: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018;52(5):569–76.Google Scholar
Matsuda, H, Sakaguchi, K, Shibasaki, T, et al. Intrauterine therapy for parvovirus B19 infected symptomatic fetus using B19 IgG-rich high titer gammaglobulin. J Perinat Med 2005;33(6):561–3.Google Scholar
Vanspranghels, R, Houfflin-Debarge, V, Vaast, P, et al. Does an intrauterine exchange transfusion improve the fetal prognosis in parvovirus infection cases? Transfusion 2019;59(1):185–90.Google Scholar
de Haan, TR, van den Akker, ES, Porcelijn, L, et al. Thrombocytopenia in hydropic fetuses with parvovirus B19 infection: incidence, treatment and correlation with fetal B19 viral load. BJOG 2008;115(1):7681.Google Scholar
Melamed, N, Whittle, W, Kelly, EN, et al. Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection. Am J Obstet Gynecol 2015;212(6):793e18.Google Scholar
Miller, E, Fairley, CK, Cohen, BJ, Seng, C. Immediate and long-term outcome of human parvovirus B19 infection in pregnancy [see comments]. Br J Obstet Gynaecol 1998;105(2):174–8.Google Scholar
Rodis, JF. Parvovirus infection. Clin Obstet Gynecol.1999;42(1):107–20; quiz 74–5.Google Scholar
Lejeune, A, Cremer, M, von Bernuth, H, et al. Persistent pure red cell aplasia in dicygotic twins with persistent congenital parvovirus B19 infection-remission following high dose intravenous immunoglobulin. Eur J Pediatr 2014;173(12):1723–6.Google Scholar
Kurtzman, G, Frickhofen, N, Kimball, J, et al. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med 1989;321(8):519–23.Google Scholar
The Working Group on Mother-To-Child Transmission of HIV. Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: Results from 13 perinatal studies. J Acquir Immune Defic Syndr Hum Retrovirol 1995;8(5):506–10.Google Scholar
Owen, WC, Werner, EJ. Hematologic problems. In Zeichner, SL, Read, JS, eds. Handbook of Pediatric HIV Care (Philadelphia, PA: Lippencott Williams and Wilkens; 1999), pp. 403–13.Google Scholar
Lynch, NG, Johnson, AK. Congenital HIV: Prevention of maternal to child transmission. Adv Neonatal Care 2018;18(5):330–40.Google Scholar
Feiterna-Sperling, C, Weizsaecker, K, et al. Hematologic effects of maternal antiretroviral therapy and transmission prophylaxis in HIV-1-exposed uninfected newborn infants. J Acquir Immune Defic Syndr 2007;45(1):4351.Google Scholar
Pacheco, SE, McIntosh, K, Lu, M, et al. Effect of perinatal antiretroviral drug exposure on hematologic values in HIV-uninfected children: An analysis of the Women and Infants Transmission Study. J Infect Dis 2006;194(8):1089–97.Google Scholar
Smith, C, Forster, JE, Levin, MJ, et al. Serious adverse events are uncommon with combination neonatal antiretroviral prophylaxis: AGoogle Scholar
Bae, WH, Wester, C, Smeaton, LM, et al. Hematologic and hepatic toxicities associated with antenatal and postnatal exposure to maternal highly active antiretroviral therapy among infants. AIDS 2008;22(13):1633–40.Google Scholar
Russo, F, Collantes, C, Guerrero, J. Severe paronychia due to zidovudine-induced neutropenia in a neonate. J Am Acad Dermatol 1999;40(2 Pt 2):322–4.Google Scholar
Rovira, N, Noguera-Julian, A, Rives, S, et al. Influence of new antiretrovirals on hematological toxicity in HIV-exposed uninfected infants. Eur J Pediatr 2016;175(7):1013–7.Google Scholar
Dryden-Peterson, S, Jayeoba, O, Hughes, MD, et al. Cotrimoxazole prophylaxis and risk of severe anemia or severe neutropenia in HAART-exposed, HIV-uninfected infants. PloS One 2013;8(9):e74171.Google Scholar
Brown, KE, Green, SW, Antunez de Mayolo, J, et al. Congenital anaemia after transplacental B19 parvovirus infection. Lancet 1994;343(8902):895–6.Google Scholar
Kuritzkes, DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: The role of granulocyte colony-stimulating factor. Clin Infect Dis 2000;30(2):256–60.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×